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Abstract 
The problem of excitation and the propagation of a nerve impulse by an axon 
(nerve fiber) for the case of a noninstantaneous function is studied. The ap-
plication of no instantaneous step function of the Heaviside type takes into 
account the time of delay. This generalizes the problem of the propagation of 
axon excitation to the case of an input impulse function’s noninstantaneous 
action with some increasing excitation. An exact analytical solution to the 
problem is constructed based on the Laplace integral transform and Ephros 
theorem. The propagation of the transmembrane potential was studied, in 
response to the switching on and off, for impulse of a constant current pulse 
delivered intracellularly at different points in time. The time analysis of excita-
tion propagation along axon at different distances from the excitation point 
was performed. 
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1. Introduction 

The transient reaction of active nerve fiber is considered under off-cell excitation 
when excitation impulse is originated from a step function. In this paper, the ef-
fect of this deviation on the change of transmembrane potential in time and 
space was estimated. 

In [1], the model of excitation in the nerve was constructed. This model is of a 
hyperbolic type. They registered potassium and sodium currents of membrane 
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and constructed phenomenological system of equations which describes quite 
well the process of propagation of nerve impulse. Their model was considerably 
based on the research of Hodgkin & Rushton (1946) [2], where the instantane-
ous excitation was introduced earlier. 

In [3], singularities of construction of the excitation model on the example of 
Timoshenko model are considered. In [4], the propagation of medical substance 
in human tissue was investigated. In [5], complex problem of wave diffraction in 
elastic medium was analyzed and an exact mathematical solution was presented. 

In [6], we use numerical and analytical methods for wave propagation and 
diffraction analysis. In [7] [8] [9] for mathematical modeling and physiological 
aspects, we consider nerve metamerism and use wave hyperbolical models [10] 
of excitation propagation as a generalization of parabolic models. 

The theorem from operational calculus was adapted for the construction of 
solutions and in applying methods of complex analysis. 

2. The Effect of Magnetic Field 

It is shown that constant magnetic field does not influence the propagation of 
nerve excitations.  

It was experimentally shown in 1980 by V. I. Danilov from JINR, Dubna, that 
constant in time magnetic fields do not disturb a cell, and the cell still is well 
functioning, generating electrical impulses with constant frequencies.  

3. Traditional Models of Instantaneous Reaction  

The Hodgkin-Huxley model was reduced to the Fitzhugh-Nagumo form, the 
most popular model of excitation medium, which was proposed in 1960 by the 
American biophysicist Fitzhugh. Later this model has been investigated by Japa-
nese physicist Nagumo, and now it is known as Fitzhugh- Nagumo model. 

For distributed medium, it can be presented in the form 
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where mV —is the transmembrane potential, ε —a small positive parameter, 
D—diffusion coefficient and the value a satisfy the inequality 0 <α< 1. 

4. The Effect of Noninstantaneous Excitation 

We solve the IBV problem, based on [1], [10] for the differential equation 
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Where ( ),mV x t  is an action potential, which satisfies the boundary condition: 
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with regularity condition on infinity  

( )lim , 0mx
V x t

→∞
= ,                         (4) 

And the initial condition 

( )
0

, 0m t
V x t

=
= .                         (5) 

Here x is the longitudinal coordinate along with the fiber ( )x−∞ < < ∞ ; 0I
—stimulated current, applied to the intercellular space; λ —typical length, 

( )m i er r rλ = + ; τ —typical time; m mr cτ = ; mr  is the leakage resistance of 
membrane on a unit of length; ir  is the internal cell resistance on a unit of 
length (unitary resistance); er  is the outer cell resistance on a unit of length 
(unitary resistance); mc  is capacity. 

The problem is solved by the Laplace transform: 
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After the Laplace transform (6), the Equation (2) and condition (3) with (5), 
obtains the following form: 
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The solution of Equation (7) with taking into account condition (8) and regu-
larity condition (4) is of the form 
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Figure 1 shows the form of excitation function, constructed as a composition 
with Heaviside function,  
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Figure 1. The form of excitation function. 
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where the value α stands for the delay; b is the increasing function velocity—the 
rate of function growth (as a result of the step function). 

In (10) we use the Heaviside function for 0a →  and b →∞  or 1a� . 
Then the Laplace transform function (10) has the form  

( ) ( )
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L bu s
s s b

−

=
+

,                       (11) 

and the solution L
mV  (9) in (11), has the following form: 
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For the inverse Laplace transform of ( ),LV x s , we use the Ephros theorem 
(generalized theorem of multiplication): given a transform ( ) ( )F s f t→ii  
and two analytical functions ( )G s  and ( )q s  such that  
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Then for the transform ( ),LV x s  we obtain 
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After the few simple transformations, we get 
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The final solution of Equation (11) has the form  
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The solution (20) corresponds to the current pulse (current supply) 0I  into the 
intercellular space at the point 0x =  and gives the membrane behavior at 

0x > . The behavior at 0x <  can be found from symmetry. Passing to absolute 
values x, ( ),mV x t  has the form 
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Correctness of the obtained solution (21) was verified by substitution of this so-
lution to (2)-(5).  

5. Numerical Calculations  

From the solution form (21) such conditions follow:  

1bτ < , 0 a t
τ τ

≤ < .                          (22) 

According to (22) the condition 1 bτ <  holds, where the value 1/b characte-
rizes the potential delay.  

Calculations are conducted at 0.01τ = , and 0.01a τ = . 
Distribution of potential is obtained along the space coordinate X in different 

times 0.16,0.36,0.7,1.0T =  and potential values in time in different points 
along 0.5,1.0,2.0,3.0X = . 

From the conducted calculations of transmembrane potential mV  at instan-
taneous and no instantaneous application, the effect of input delay was eva-
luated. 

Particularly it is shown, that a delay at application increases the time till a sta-
tionary state.  

Calculations of mV , as a time function, along the axon were conducted at dif-
ferent distances from the point excitation 0.5,1.0,2.0,3.0X = . These calcula-
tions show that the value of transmembrane potential mV  is reduced, as a func-
tion of instantaneity and no instantaneity, both at switching on and off. 

6. Conclusion 

We present in the paper a full analytical solution for the propagation of the 
transmembrane potential under the application of a magnetic field. The solution 
refers to the case when excitation functions are different from the traditional 
Heaviside step function. The step function is used to manage the delay. Some 
extensions of the model have been presented. The solution is analyzed in detail 
for different cases. Our approach is new and it can significantly improve the 
transfer and absorption of medications especially in problematic cases. Our ap-
proach is new and it can significantly improve the transfer and absorption of 
medications especially in problematic cases 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

References 
[1] Hodgkin, A.L. and Huxley, A.F. (1952) A Qualitative Description of Membrane 

Current and Its Application to Conduction and Excitation in Nerve. The Journal of 

https://doi.org/10.4236/jamp.2021.912203


N. G. Gulko, I. T. Selezov 
 

 

DOI: 10.4236/jamp.2021.912203 3121 Journal of Applied Mathematics and Physics 
 

Physiology, 117, 500-544. https://doi.org/10.1113/jphysiol.1952.sp004764 

[2] Hodgkin, A.L. and Rushton, W.A.H. (1946) The Electrical Constants of a Crusta-
cean Nerve Fiber. Proceedings of the Royal Society, 133, 444-479.  
https://doi.org/10.1098/rspb.1946.0024 

[3] Selezov, I.T. (2020) Timoshenko Equation of Hyperbolic Type and Basic Singulari-
ties. Collection of Kiev Polytechnical Institute, Kiev, 81-87. 

[4] Gulko, N.G., Selezov, I.T. and Volynsky, R.I. (2020) Mathematical Study of Medi-
cine Propagation in Biological Tissue and Some of Its Applications. Journal of Ap-
plied Mathematics and Physics, 9, 127-132.  
https://doi.org/10.4236/jamp.2021.91009 

[5] Khimich, A.N., Selezov, I.T. and Sydoruk, V.A. (2020) Simulation of Elastic Wave 
Diffraction by a Sphere in Semi Bounded Region. Reports of NAS of Ukraine, Kyiv, 
No. 10, 22-27. https://doi.org/10.15407/dopovidi2020.10.022 

[6] Selezov, I.T., Kryvonos, Y.G. and Gandzha, I.S. (2018) Wave Propagation and Dif-
fraction. Mathematical Methods and Applications. Springer, 237 p.  
https://doi.org/10.1007/978-981-10-4923-1 

[7] Selezov, I.T. and Bersenev, V.A. (2009) Neurometamerism. Mathematical Modeling 
and Physiological Aspects. AVERS, Kiev, 136 p. (In Russian)  

[8] Selezov, I.T. and Kryvonos, Y.G. (2015) Wave Hyperbolic Models of Disturbance 
Propagation. Naukova Dumka, Kiev, 172 p. (In Russian) 

[9] Fitzhugh, R. (1961) Impulses and Physiological States in Theoretical Models of 
Nerve Membrane. Biophysical Journal, 1, 445-466.  
https://doi.org/10.1016/S0006-3495(61)86902-6 

[10] Joshi, R.P., Mishra, A., Song, J., Pakhomov, A.G. and Schoenbach, K.H. (2008) Si-
mulation Studies of Ultrashort, High-Intensity Electric Pulse Induced Action Po-
tential Block in Whole-Animal Nerves. IEEE Transactions on Biomedical Engi-
neering, 55, 1391-1398. https://doi.org/10.1109/TBME.2007.912424 

 
 

https://doi.org/10.4236/jamp.2021.912203
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1098/rspb.1946.0024
https://doi.org/10.4236/jamp.2021.91009
https://doi.org/10.15407/dopovidi2020.10.022
https://doi.org/10.1007/978-981-10-4923-1
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/TBME.2007.912424

	How Does the Slow Injection of a Medicine under the Influence of a Magnetic Field Affects the Spreading of Medical Substances
	Abstract
	Keywords
	1. Introduction
	2. The Effect of Magnetic Field
	3. Traditional Models of Instantaneous Reaction 
	4. The Effect of Noninstantaneous Excitation
	5. Numerical Calculations 
	6. Conclusion
	Conflicts of Interest
	References

