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Abstract 
The synchronizability of multiplex undirected regular networks has been in-
tensively studied based on the study of the synchronizability of single-layer 
networks. However, most real networks are characterized by some degree of 
directionality. So multiplex directed networks can better explain the synchro-
nizability phenomenon. Here, based on the theory of master stability function 
(MSF), we study the eigenvalue spectrum and synchronizability of double-layer 
inter-layer directed ring networks (Networks-A) and double-layer intra-layer 
directed ring networks (Networks-B). The eigenvalue spectrum of the su-
pra-Laplacian matrix of the networks is rigorously derived, and the influence 
of the networks structure parameters on the network’s synchronizability is 
analyzed. The correctness of the theory is further verified by numerical simu-
lation analysis. Finally, the synchronizability of four kinds of double-layer ring 
networks with different coupling modes, namely, Networks-A, Networks-B, 
Networks-C (double-layer undirected ring networks), and Networks-D 
(double-layer undirected inter-layer random-added-edge ring networks), is 
compared and the results can provide guidance for constructing the optimal 
synchronization network. 
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1. Introduction 

In the last two decades, research on complex networks has developed rapidly 
and many important results have been achieved. Actual complex systems are 
composed of multiple networks coupled and interacting with each other [1] [2] 
[3], for example, interpersonal social networks, neural networks, ecological net-
works composed of species interactions, etc. [4] [5] [6]. The multiplex networks 
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model has been proposed internationally in recent years and has become one of 
the most important research directions at the forefront of the current complex 
network landscape [7]. The interaction between different complex systems leads 
to the emergence of multiplex complex networks. Synchronization is a very com-
mon phenomenon in nature. Previous research has been conducted on different 
synchronization effects, such as full synchronization, intra-layer synchronization, 
inter-layer synchronization, etc. [8]-[14]. 

Synchronizability plays an overwhelming role in research fields such as biolo-
gy, chemistry, physics, and economics. Synchronizability of multi-layer net-
works is of great theoretical and economic importance, while the study is still in 
its infancy [15]-[22]. Among them, the Synchronizability of multiplex-directed 
networks has been less researched. A ring network is a type of regular network. 
Many technical networks, such as sensor networks and robot networks have the 
structural characteristics of ring networks, so it is of practical and economic im-
portance to explore the synchronization of ring networks [23]. In terms of re-
search on the synchronization of ring networks, in 2017, Wei Juan et al. studied 
the potential factors affecting the synchronization of two-layer regular networks, 
including the scale of the networks, inter-layer coupling strength, and intra-layer 
coupling strength, based on the master stability function (MSF) method and 
numerical simulation analysis. Among them, there are two modes of inter-layer 
connections, one is a one-to-one correspondence between layers with full con-
nections and the other one is between layers with one corresponding edge con-
nected, it was found that for a ring network with fixed coupling strength, the 
more the number of inter-layer connections, the better the synchronization [24]. 
In 2017, Sun Juan et al. derived the eigenvalue spectrum of a multilayer unidi-
rectional star network based on the MSF and analyzed the factors affecting its 
network synchronization ability [25]. In 2019, Yang Lixin et al. studied the effect 
of the interconnection mode of a multiplex oscillator grid consisting of two sub-
networks on the synchronization ability, which found that different interconnec-
tion modes affect the synchronization ability of the whole network. It revealed 
that increasing the number of inter-layer connections between ring networks of 
the same property facilitates the synchronization of double-layer networks [26]. 
In 2020, Zhang Li et al. derive an analytic expression for the eigenvalue spectrum 
of a multilayer k-nearest neighbor coupled network with one-to-one corres-
ponding full connectivity between layers in terms of the master stability function 
and analyzed the effect of the network structure parameters on the synchroniza-
tion ability of this network [27]. In 2021, Yang Feimei et al. rigorously derived 
the eigenvalue spectrum of two types of double-layers directed star-ring net-
works and analyzed the parameters that affect the synchronizability of the net-
works [28]. In summary, we find that the synchronizability of the ring networks 
is mostly studied by numerical simulation and comparison with other regular 
networks, and there is still a space for a rigorous theoretical derivation of the 
synchronization capability of multilayer directed ring networks. Studies on the 
synchronizability of multilayer networks have found that the inter-layer connec-
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tion density, inter-layer coupling weight, intra-layer coupling weight, and the 
scale of the network impact the synchronization ability of the networks. In the 
actual network, the direction and coupling weight is more sophisticated, follow-
ing which we consider how the degree of influence of the directionality of the 
networks and the number of inter-layer connections on the synchronizability of 
the networks? 

In this paper, we rigorously and strictly derive the eigenvalue spectrum of 
Networks-A and Networks-B based on the theory of MSF and analyze the effects 
of intra-layer coupling weight a , inter-layer coupling weight d , and the num-
ber of nodes within each layer N  on the synchronizability. Finally, simulations 
are undertaken to analyze the network synchronizability of four kinds of Net-
works-A, Networks-B, Networks-C, and Networks-D. It is organized as follows: 
the multilayer network dynamics model and the network structure model are 
given in Section 2. The eigenvalue spectra of Networks-A and Networks-B and 
their eigenvalue analytical expressions are rigorously derived in Sections 3 and 4, 
and numerical simulations are performed to verify the correctness of the theo-
retical results. Section 5 analyzes and compares the synchronizability of four 
kinds of double-layer ring networks with numerical simulations. Conclusions 
are given in the last section. 

2. Preliminaries 
2.1. The Dynamics Model of Multilayer Network 

For a multiplex network consisting of M layers and N nodes each layer, the dy-
namics of ixα  can be described as [29] [30]: 

 ( ) ( ) ( )1 2
1 1

d
,

d

N M
i

i i ij j i i i i
j

x
f x a x x d x x

t

α
α α α α α αβ β α

β= =

= + Γ − + Γ −∑ ∑        (1) 

where 1 i N≤ ≤ , 1 Mα≤ ≤ , n
ixα ∈ℜ  is the state vector of the ith node in the 

αth layer. : n n
if
α ℜ →ℜ  is the dynamic equation of the ith node in the αth 

layer, 1 : n nΓ ℜ →ℜ  is the intra-layer coupling function defining the interaction 
between nodes in the same layer, and 2 : n nΓ ℜ →ℜ  is the inter-layer coupling 
function defining the interaction between nodes on a separate layer. For simplic-
ity, let if fα =  and 21Γ = Γ = Γ . The intra-layer coupling weight ijaα  is posi-
tive if the ith node is connected with the jth node in the αth layer ( i j≠ ), other-
wise 0ijaα = , and there is 

 
1,

, , 1, 2, , ; 1, 2, , .
N

ii ij
j i j

a a i j N Mα α α
= ≠

= = =∑ � �              (2) 

If the ith node in the αth layer is connected to the j node in the βth layer 
(α β≠ ), then the interlayer coupling weight idαβ  is negative, otherwise 0idαβ = , 
and there is 

 
1,

,  , 1, 2, , ; 1, 2, , .
M

i id d M i Nαα αβ

β α β
α β

= ≠

= − = =∑ � �           (3) 

Let   is the supra-Laplacian matrix of multiplex networks, L  is the in-
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tra-layer supra-Laplacian matrix, I  is the inter-layer supra-Laplacian matrix, 
then , ,L I    can be written as: 

 .L I= +                              (4) 

Among them, 

 

( )

( )
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( )

1
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0 0
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�
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                 (5) 

( ) N NLα ×∈ℜ  is the intra-layer Laplacian matrix of the αth layer. ⊕  is the direct 
sum operation, ( )Lα  can be written as: 

 ( )
( )

( ),

,

,
ij

i j
ii

a i j
L

a i j

α
α

α

− ≠= 
=

                       (6) 

 .I I
NL I= ⊗                           (7) 

⊗  is the Kronecker product, ( )I M M
iL dαβ ×= ∈ℜ  is the inter-layer Laplacian 

matrix, NI  is the N N×  identity matrix. 
Eigenvalues of the supra-Laplacian matrix of the networks are recorded as: 

1 2 max0 λ λ λ= < ≤ ≤� . based on the theory of master stability function (MSF), A 
network can be achieving synchronization when all eigenvalues of its Laplacian 
matrix fall within the synchronized region of that network. The synchronization 
region of a real network can be mainly divided into two kinds: unbounded syn-
chronized region and bounded synchronized region (other cases such as con-
current synchronized region of multiple unconnected intervals and empty re-
gion rarely occur, and only two cases of unbounded and bounded synchronized 
region are studied in this paper). In general, the synchronizability of the network 
is determined by the minimum non-zero eigenvalue 2λ  or the ratio max 2R λ λ=  
of the maximum eigenvalue to the minimum non-zero eigenvalue of the su-
pra-Laplacian matrix  . When the network synchronization region is un-
bounded, the larger 2λ  is, the stronger the synchronizability of the network; 
when the network synchronized region is bounded, the smaller max 2R λ λ=  is, 
the stronger the synchronizability of the network. 

To convenient the following theoretical derivation, two lemmas are given 
here: 

Lemma 1 ([31]). If A is a square matrix of degree n, D is a square matrix of 
degree m, O is m n×  zero matrices, and B is a n m×  matrix, then 

.
A B

A D
O D

= ⋅                           (8) 

Lemma 2 ([32]). Let , ,A B C  and D  be all square matrices of the same di-
mension, and AC CA= , then 

 .
A B

AD CB
C D

= −                         (9) 
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2.2. Structural Model of Double-Layer Ring Networks 

In this paper, we focus on the synchronizability of inter-layer directed double- 
layer ring networks and intra-layer directed double-layer ring networks. It is 
supposed that the topology of each layer of the double-layer ring network is 
identical. The number of nodes within each layer N , the inter-layer coupling 
weight d , and the intra-layer coupling weight a  is all the same in the net-
works. Number each layer node orderly and form node pairs with the same 
number. The layer interconnection method of double-layer inter-layer directed 
ring networks is a unidirectional connection between layer node pairs as shown 
in Figure 1(a), double-layer intra-layer directed ring networks means that the 
nodes of the two layers are connected in opposite sequence as shown in Figure 
1(b), double-layer undirected ring networks as shown in Figure 1(c), double- 
layer undirected inter-layer random-added-edge ring networks is based on the 
double-layer undirected ring networks with randomly connected undirected edges 
of interlayer nodes, the interlayer connected edge probability is ( )0 1p p≤ ≤  as 
shown in Figure 1(d). 

For clarity of description, we denote the double-layer inter-layer directed 
ring networks as Networks-A, double-layer intra-layer directed ring networks 
as Networks-B, double-layer undirected ring networks as Networks-C, and 
double-layer undirected inter-layer random-added-edge ring networks as Net-
works-D. Additionally, SynA denotes the synchronizability of Networks-A, and 
so forth. 

3. Analysis of the Synchronizability of Networks-A 
3.1. The Eigenvalue Spectrum and Synchronizability of  

Networks-A 

From the structural model in Figure 1(a), the supra-Laplacian matrix corres-
ponding to Networks-A can be expressed as: 
 

 
Figure 1. Schematic diagram of the structure of double-layer ring network. (a) double-layer inter-layer directed ring networks; (b) 
double-layer intra-layer directed ring networks; (c) double-layer undirected ring networks; (d) double-layer undirected inter-layer 
random-added-edge ring networks. 
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According to Lemma 1, the Characteristic polynomials of 1  is: 

 ( )2 1 .N N NI I A d I Aλ λ λ− = − ⋅ − −                 (11) 

Let ( )0, 0N NI A d I Aλ λ− = − − = , the eigenvalues of 1  can be written as 
[27]: 

 ( ) ( )2 21 1
4 sin ,4 sin , 1,2, , .l

l l
a a d l N

N N
λ

− π − π   
= + =   

   
�     (12) 

when N is odd, at 
1 1

2
Nl −

= +  or 
1 1

2
Nl +

= +  has a maximum value of λ : 

 2
max 4 cos .

2
a d

N
λ π

= +                       (13) 

when N is even, at 1
2
Nl = +  has a maximum value of λ : 

 max 4 .a dλ = +                           (14) 

In practice, the number of network sizes is huge and for simplicity we take: 

 
2

2 2

4min , ,ad
N

λ
 π

=  
 

                      (15) 

 max 4 ,a dλ ≈ +                          (16) 

 
2

2

4 .
4min ,

a dR
ad
N

+
≈

 π
 
 

                      (17) 

According to the MSF theory, the relationship between the synchronizability of 
Networks-A and the structural parameters is shown in Table 1. 

3.2. Numerical Simulation of the Synchronizability of Networks-A 

In this paper, the values of various parameters verified by numerical simulation 
are set within the allowed range. 

From Figure 2(a), when the unbounded synchronized region, it is clear that 
the value of 2λ  increases linearly at first with the increase of a  (when  

2 24a dN< π ), and then remains a fixed value 2 0.01dλ = =  with the increase 
of a  (when 2 24a dN> π ). This means that the synchronizability of Net-
works-A is first strengthened and then remains constant with the increase in a .  
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Table 1. The change of synchronizability of Networks-A with the increase of , ,a d N . 

   Increase of 

   a  d  N  

The case of the  
synchronized region 

unbounded 

2

2

4ad
N
π

<  2 dλ =  — ↑ — 

2

2

4ad
N
π

>  
2

2 2

4a
N

λ π
≈  ↑ — ↓ 

The case of the  
synchronized region 

bounded 

2

2

4ad
N
π

<  
4R

d
a d+

≈  ↓ ↑ — 

2

2

4ad
N
π

>  ( ) 2

2

4
4

a d N
R

a
+

≈
π

 ↑ ↓ ↓ 

—: unchanged; ↑: strengthen; ↓: weaken. 
 

 
Figure 2. The synchronizability of Networks-A vs. varying intra-layer coupling weight a  ( 200, 0.01N d= = ). (a) 2λ  vs. vary-
ing a  ( a  varies from 5 to 15) (subgraph: 2λ  vs. varying a  ( a  varies from 11 to 15)); (b) R vs. varying a  ( a  varies from 5 
to 15) (subgraph: R vs. varying a  ( a  varies from 5 to 11)). 

 
From Figure 2(b), when the bounded synchronized region, The value of R is 
first decreases slowly (when 2 24a dN< π ) and then increases with the increase 
of a  (when 2 24a dN> π ). This indicates that the synchronizability of the 
Networks-A is first strengthened and then continuously weakened with an in-
crease in intra-layer coupling weight a . The synchronizability of Networks-A is 
optimum at * 2 24a dN= π . 

As is shown in Figure 3, when 2 24d a N< π , the value of 2λ  ( 2 dλ = ) in-
creases with the increase of d and the value of R ( ( )1 4R a d= + ) decreases with 
the increase of d, with the synchronized region is unbounded. When  
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Figure 3. The synchronizability of Networks-A vs. varying inter-layer coupling weight d ( 200, 10N a= = ). (a) 

2λ  vs. varying d (d varies from 0.001 to 0.02); (b) R vs. varying d (d varies from 0.001 to 0.02) (subgraph: R vs. 
varying d (d varies from 0.009 to 0.02)). 

 
2 24d a N> π , the value of 2λ  does not increase with the increase of d, the val-

ue of R enhances with the increase of d. Hence, with the increase of d, the syn-
chronizability of Networks-A is strengthened at first and then remains stable 
when the synchronized region is unbounded. When the synchronized region is 
bounded, the synchronizability of Networks-A is first weakened continuously 
and then strengthened slightly. The synchronizability of Networks-A is opti-
mum at * 2 24d a N= π . 

Figure 4(a) shows that with the unbounded synchronized region, the value 

2λ  remains invariant at first with the increase of N (when 24N a d< π ) and 
then decreases with the increase of N (when 24N a d> π ), so the synchroni-
zability of Networks-A first remains unchanged and then weakens. With 
bounded synchronized region, when 24N a d< π , as shown in the subgraph 
of Figure 4(b), when N is even, the value of R ( ( )4 2001R a d d= + = ) remains 
unchanged with the increase of N, and then when N is odd, the value of R 
( ( )2 24 cos 2R d a N d = + π  ) increases with the increase of N, so the value of 
R is less and less affected by N being odd and even. Hence, when the synchro-
nized region is bounded, the value of R first remains invariant ( 24N a d> π ), 
and then increases with the increase of N (when 24N a d> π ), in which the 
synchronizability of the Networks-A remains constant at first and then weakens. 

4. Analysis of the Synchronizability of Networks-B 
4.1. The Eigenvalue Spectrum and Synchronizability of  

Networks-B 

From the structural model in Figure 1(b), the supra-Laplacian matrix corres-
ponding to Networks-B can be written as: 
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Figure 4. The synchronizability of Networks-A vs. varying the number of nodes within each layer N 
( 10, 0.02a d= = ). (a) 2λ  vs. varying N (N varies from 100 to 200); (b) R vs. varying N (N varies from 100 to 
200) (subgraph: R vs. varying N (N varies from 100 to 140)). 
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According to Lemma 2, we can get the Characteristic polynomials of 2  is: 
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Let 2 2 0NIλ − = , the eigenvalues of 2  can be written as [32]: 

 
( ) ( )2 2 2 21 2 1

2 sin sin , 1,2, , .l

l l
d a d a l N

N N
λ

− π − π   
= + ± − =   

   
�    (19) 
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To make 
( )2 2 2 2 1

sin 0
l

d a
N
− π

− ≥ , just consider the case d a≥ . The mini-

mum non-zero eigenvalue 2λ  of 2  is at 2l = : 

 2
2

2 2 2 22 sin sin .
N

d a d a
N

λ π π
= + − −                 (20) 

when N is odd, at 
1 1

2
Nl −

= +  or 
1 1

2
Nl +

= +  has a maximum value of λ : 

 2 2 2 2
max 2 cos sin .

2
d a d a

N N
λ π π

= + + −               (21) 

when N is even, at 1
2
Nl = +  has a maximum value of λ : 

 ( )max 2 .a dλ = +                         (22) 

In actuality, the scale of networks is huge and for simplicity we take: 

 ( )max 2 .a dλ ≈ +                        (23) 

 
( )max

2 2 2 2 2

2
.

22 sin sin

a d
R

d a d a
N N

λ
λ

+
= ≈

π π
+ − −

            (24) 

According to the MSF theory, the relationship between the synchronizability 
of Networks-B and the structural parameters is shown in Table 2. 

In a d= , the relationship between the synchronizability of Networks-B and 
the structural parameters can be transformed from Table 2 to Table 3. 

4.2. Numerical Simulation of the Synchronizability of Networks-B 

When a d= , with the unbounded synchronized region, Figure 5(a) shows that 
the synchronizability of Networks-B is strengthened because 2λ  becomes larger 
with increases in ,a d . Figure 6(a) shows that the synchronizability of Net-
works-B is weakened because 2λ  becomes smaller with increases N. When the 
bounded synchronized region, as is shown in Figure 5(b) and Figure 6(b), the 
synchronizability of Networks-B is only determined by the number of nodes within  
 
Table 2. The change of synchronizability of Networks-B with the increase of , ,a d N  
when d a≥ . 

  Increase of 

  a  d  N  

The case of the  
synchronized region 

unbounded 

2
2

2 2 2 22 sin sin
N

d a d a
N

λ π π
= + − −  ↑ ↓ ↓ 

The case of the  
synchronized region 

bounded 

( )max

2 2 2 22

2
22 sin sin

a d
R

d a d a
N N

λ
λ

+
= ≈

π π
+ − −

 
↑ ↓ ↓ 

—: unchanged; ↑: strengthen; ↓: weaken. 
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Table 3. The change of synchronizability of Networks-B with the increase of , ,a d N  
when a d= . 

  Increase of 

  ,a d  N  

The case of the synchronized region unbounded 
2

2 2

4a
N

λ π
≈  ↑ ↓ 

The case of the synchronized region bounded 
2

2

NR ≈
π

 — ↓ 

—: unchanged; ↑: strengthen; ↓: weaken. 
 

 
Figure 5. The synchronizability of Networks-B vs. varying coupling weight ,a d  when a d=  
( 100N = ). (a) 2λ  vs. varying ,a d  ( ,a d  varies from 0.01 to 10); (b) R vs. varying ,a d  ( ,a d  
varies from 0.01 to 10). 

 

 
Figure 6. The synchronizability of Networks-B vs. varying the number of nodes within each layer 
N when a d=  ( 20a d= = ). (a) 2λ  vs. varying N (N varies from 100 to 200); (b) R vs. varying N 
(N varies from 100 to 200). 
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each layer N. The value R increases with the increase of N, the synchronizability of 
Networks-B is weakened. When 100N =  the value 2 2 1013.212R N≈ π ≈  is 
shown in Figure 5(b). 

When d a>  it is observed that the value 2λ  increases with the increase of 
a  (Figure 7(a)) and the value R decreases exponentially with the increase of a  
(Figure 7(b)). This means that, with the bounded or unbounded synchronized 
region, the synchronizability of Networks-B is enhanced continuously with an 
increase in a . Figure 8 and Figure 9 show the change of synchronizability of  
 

 
Figure 7. The synchronizability of Networks-B vs. varying intra-layer coupling weight a  ( 200, 10N d= = ). 
(a) 2λ  vs. varying a  ( a  varies from 0.01 to 10); (b) R vs. varying a  ( a  varies from 0.01 to 10). 

 

 
Figure 8. The synchronizability of Networks-B vs. varying inter-layer coupling weight d ( 200, 1N a= = ). (a) 

2λ  vs. varying d (d varies from 1 to 10); (b) R vs. varying d (d varies from 1 to 10). 
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Figure 9. The synchronizability of Networks-B vs. varying the number of nodes within each layer N 
( 1, 2a d= = ). (a) 2λ  vs. varying N (N varies from 100 to 200); (b) R vs. varying N (N varies from 100 to 200). 

 
Networks-B with the increase of d and N. The value 2λ  decreases with the in-
crease of d and N (as shown in Figure 8(a) and Figure 9(a)). The value of R in-
creases monotonically with the increase of d and N (as shown in Figure 8(b) 
and Figure 9(b)). Regardless of whether the synchronized region is bounded or 
unbounded, the synchronizability of Networks-B is weakened with the increase 
in d and N. 

The combined Figures 7-9, it can be noticed that the intra-layer coupling 
weight a  has a greater effect on the synchronizability of Networks-B than the 
inter-layer coupling weight d has on the synchronizability of Networks-B, so al-
though the inter-layer coupling weight d has a suppressive effect on the im-
provement of the synchronizability of Networks-B, the synchronizability of 
Networks-B is enhanced when ,a d  increases simultaneously. 

5. The Comparison of Synchronizability of Four Kinds of  
Double-Layer Ring Networks 

In this section, we analyze the changes of synchronizability of four kinds of 
double-layer ring networks, namely, Networks-A, Networks-B, Networks-C, and 
Networks-D, under parameters (the number of nodes within each layer N, the 
inter-layer coupling weight d, and the intra-layer coupling weight a ) changes 
with the help of numerical calculation methods and simulation experiments be-
cause the eigenvalues of the supra-Laplacian matrix of Networks-D cannot be 
expressed analytically. Where the numerical simulation experiments of Net-
works-D use the interlayer random-added edge probability 1p = . The value of 

2λ  and R of Networks-D in the tests are the results of 50 independent repeti-
tions to take the average value. In the figure below, the Green triangular solid 
line (Networks-A) illustrates the double-layer inter-layer directed ring network; 
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the black star solid line (Networks-B) illustrates the double-layer intra-layer di-
rected ring network; the red circular dashed line (Networks-C) illustrates the 
double-layer undirected ring network; the blue quadrilateral solid line (Net-
works-D, 1p = ) illustrates the double-layer undirected ring network with in-
ter-layer random-added-edge probability 1p = .  

For comparison purposes, the relationship between the synchronizability of the 
Networks-C and the structural parameters is shown in following Table 4 [27]. 

As illustrated in Figure 10, it is intuitive to show that the value 2λ  increases 
rapidly (Figure 10(a)) the value R decreases swiftly (Figure 10(b)) with the in-
crease of the inter-layer random-added-edge probability p. So, the synchroniza-
bility of Networks-D is continuously strengthened, whether the synchronized 
region is bounded or unbounded. Naturally, it can be observed that the larger 
the interlayer random edge addition probability p, the faster the synchronizabil-
ity of Networks-D optimization. 

As is shown in Figure 11(a), when d a> , with the unbounded synchronized 
region, for all four kinds of double-layer ring networks, the value 2λ  increases 
with the increase of a, so the synchronizability is strengthened with the increase 
of a. Then the size of the synchronizability of these four kinds of double-layer 
ring networks is: D A C BSyn Syn Syn Syn=> > . With the bounded synchronized 
region, it is observed from Figure 11(b) that the value R decreases with the in-
crease of a  all four kinds of double-layer ring networks. Then the size of the 
synchronizability of these four kinds of double-layer ring networks is:  

D A C BSyn Syn Syn Syn> >> . In sum, whether the synchronized region is bounded 
or unbounded, the synchronizability of the four kinds of double-layer ring net-
works is enhanced continuously with the increase of intra-layer coupling weight a . 
 

 
Figure 10. The synchronizability of Networks-D vs. varying inter-layer random-added-edge probability p 
( 200, 1, 1N a d= = = ). (a) 2λ  vs. varying p (p varies from 0 to 1); (b) R vs. varying p (p varies from 0 to 1) (sub-
graph: R vs. varying p (p varies from 0.5 to 1)). 
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Table 4. The change of synchronizability of Networks-C with the increase of , ,a d N . 

   Increase of 

   a  d  N  

The case of  
synchronized region 

unbounded 

2

2

2ad
N
π

<  2 2dλ ≈  — ↑ — 

2

2

2ad
N
π

>  
2

2 2

4a
N

λ π
≈  ↑ — ↓ 

The case of the  
synchronized region 

bounded 

2

2

2ad
N
π

<  ( )3 2 2
2

a d
R

d
π + + π

≈
π

 ↓ ↓ — 

2

2

2ad
N
π

>  ( )2 2

3

3 2 2
4

aN dN
R

a
π + + π

≈
π

 ↓ ↑ ↑ 

—: unchanged; ↑: strengthen; ↓: weaken. 
 

 
Figure 11. The synchronizability of four kinds of double-layer ring networks vs. varying intra-layer coupling weight a  
( 200, 2N d= = ). (a) 2λ  vs. varying a  ( a  varies from 0.1 to 1) (subgraph: 2λ  vs. varying a  ( a  varies from 0.1 to 1)); 
(b) R vs. varying a  ( a  varies from 0.1 to 1) (subgraph: R vs. varying a  ( a  varies from 0.1 to 1)). 

 
From Figure 12(a), it is shown that the 2λ  values of Networks-A and Net-

works-C do not change with an increase of d, the 2λ  value of Networks-B de-
creases slowly with the increase of d, and the 2λ  value of Networks-D increases 
with the increase of d in the presence of inter-layer randomly added probability 

1p = . So, with the synchronized region is unbounded, the synchronizability of 
Networks-A and Networks-C is the same as the trend with the increase of d, the 
synchronizability of Networks-B is weakened with the increase of d, and the 
synchronizability of Networks-D is strengthened with the increase of d. The 
synchronizability of networks in descending order of magnitude is:  
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Figure 12. The synchronizability of four kinds of double-layer ring networks vs. varying inter-layer coupling weight d 
( 200, 0.5N a= = ). (a) 2λ  vs. varying d (d varies from 1 to 2) (subgraph: 2λ  vs. varying d (d varies from 1 to 2)); (b) R vs. vary-
ing d (d varies from 1 to 2) (subgraph: R vs. varying d (d varies from 1 to 2)). 

 

D A C BSyn Syn Syn Syn=> > . In Figure 12(b), it is clear that the R value of all 
four kinds of networks increases with the increase of d. Hence, the synchroniza-
bility of the four kinds of networks is weakened with the increase of d (bounded 
synchronized region). So, it is obtained from Figure 12(b) that the size of syn-
chronizability of these four kinds of double-layer ring networks is weakened with 
inter-layer coupling weight d in the following order: D A C BSyn Syn Syn Syn>> > . 

When d a>  the synchronized region is unbounded, it can be seen from 
Figure 13(a) that the 2λ  values of these four kinds of double-layer ring net-
works all have a slowly decreasing trend with the increase of N. Then the 2λ  
value ( 2 2

2 4a Nλ = π ) of Networks-A and Networks-C have the same trend 
with the increase of N. So, the synchronizability of the four kinds of double-layer 
ring networks is diminished with the increase N. In particular, it is found that 
the order of these four kinds of double-layer ring network synchronizability 
from largest to smallest is the same as in Figure 11(a) and Figure 12(a). With the 
synchronized region is bounded, from Figure 13(b), it is clear that  

B C A DR R R R= > >  for any the number of nodes within each layer N. Then R 
value ( 2 22R N≈ π ) of Networks-B and Networks-C have the same trend with 
the increase of N. 

In contrast to Figure 13, Figure 14 shows the change of the synchronizability 
of these four kinds of double-layer ring networks with the increase of the num-
ber of nodes within each layer N for the case a d= . With the synchronized re-
gion is unbounded, from Figure 14(a), the 2λ  values ( 2 2

2 4a Nλ = π ) of Net-
works-A, Networks-B, and Networks-C have the same trend with the increase of  
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Figure 13. The synchronizability of four kinds of double-layer ring networks vs. varying the number of nodes within 
each layer N ( 2, 4a d= = ). (a) 2λ  vs. varying N (N varies from 100 to 600) (subgraph: R vs. varying N (N varies from 
100 to 600)); (b) R vs. varying N (N varies from 100 to 600) (subgraph: R vs. varying N (N varies from 100 to 600)). 

 

 
Figure 14. The synchronizability of four kinds of double-layer ring networks vs. varying the number of nodes within each 
layer N when a d=  ( 5a d= = ). (a) 2λ  vs. varying N (N varies from 100 to 600) (subgraph: R vs. varying N (N varies 
from 100 to 600)); (b) R vs. varying N (N varies from 100 to 600) (subgraph: R vs. varying N (N varies from 100 to 600)). 

 
N. The 2λ  value of Networks-D decreases slightly in the presence of inter-layer 
randomly added probabilities 1p =  with the increase of N. The size of the 
synchronizability of these four kinds of networks is, in order,  

D A C BSyn Syn Syn Syn=> > . With the synchronized region is unbounded, the 
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value R increases with the increase of N as shown in Figure 14(b), so the syn-
chronizability of all four kinds of networks is monotonically weakened.  

Combining Figure 13 and Figure 14, the four kinds of double-layer ring 
networks have a different ranking of synchronizability with N for different a  
and d. However, in general, the synchronizability of all four kinds of networks is 
in the following order: D A C BSyn Syn Syn Syn=> > , with the synchronized re-
gion is unbounded. It is easy to conclude that the ranks for synchronizability are: 

B A CDSyn Syn Syn Syn>> > , with the synchronized region is bounded. 

6. Conclusions 

For Networks-A and Networks-B, firstly, we investigate the synchronizability of 
inter-layer directed double-layer ring networks (Networks-A) and intra-layer 
directed double-layer ring networks (Networks-B), and rigorously derive the ef-
fects of each parameter on the synchronizability of the two kinds of networks, 
giving the analytical expressions for the eigenvalues. Finally, the theory is veri-
fied by numerical simulation analysis. The results show that the R values of the 
ring network are affected by both odd and even numbers in a small network 
range, which is similar to the results of the analytical expression for the eigenva-
lues of the network derived in [28]. By varying a single parameter, an optimal 
value of the parameter was found, which led to the optimal synchronizability of 
the networks. The effects of changes in inter-layer coupling weight a , in-
tra-layer coupling weight d , the number of nodes within each layer N  upon 
the network synchronizability for Networks-A and Networks-B are similar. To 
sum up, the larger the intra-layer coupling weight, the smaller the inter-layer 
coupling weight, and the smaller the number of nodes is more preferable to the 
synchronization of Network-A and Networks-B. 

Then, we also find that Networks-A, Networks-B, and Networks-C have the 
same minimum non-zero eigenvalue 2λ  when the inter-layer coupling weight d 
and intra-layer coupling weight a  are equal, indicating that these three kinds 
of networks have the same synchronizability when the synchronized region is 
unbounded. In addition, the synchronizability of Networks-D increases as the 
probability of randomly adding edges between layers increases. More impor-
tantly, we compare the synchronizability of four kinds of double-layer ring net-
works and find that the synchronizability of Networks-D is the best for each pa-
rameter variation, while it is remaining three kinds of ring networks are compa-
rable, and the synchronizability of Networks-A is stronger compared to Net-
works-B and Networks-C when both intra-layer coupling weight a  and in-
ter-layer coupling weight d  are affected. Recently, the diffusion of networks is 
an interesting and challenging topic. The spectrum of eigenvalues of multilayer 
directed networks is in general complex; it is part of our future work to investi-
gate the diffusion dynamics of multiplex directed networks. 
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