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Abstract 
Many problems in science and engineering require solving large consistent 
linear systems. This paper presents a relaxed greedy block Kaczmarz method 
(RGBK) and an accelerated greedy block Kaczmarz method (AGBK) for 
solving large-size consistent linear systems. The RGBK algorithm extends the 
greedy block Kaczmarz algorithm (GBK) presented by Niu and Zheng in [1] 
by introducing a relaxation parameter to the iteration formulation of GBK, 
and the AGBK algorithm uses different iterative update rules to minimize the 
running time. The convergence of the RGBK is proved and a method to de-
termine an optimal parameter is provided. Several examples are presented to 
show the effectiveness of the proposed methods for overdetermined and un-
derdetermined consistent linear systems with dense and sparse coefficient ma-
trix. 
 

Keywords 
Linear Consistent Systems, Convergence Properties, Relaxed Greedy Block 
Kaczmarz 

 

1. Introduction 

We are concerned with the solution of the large consistent linear system  

 ,x b=A                              (1) 

where m n×∈A  , and mb∈ . The Kaczmarz method in [2] is possible one of 
the most popular, simple while efficient algorithms for solving (1). It was revised 
to be applied to image reconstruction in [3], which is called algebraic reconstruc-
tion technique, and has a large range of fields of applications such as image re-
construction in computerized tomography [4] [5] [6] and parallel computing [7]. 

How to cite this paper: Liao, Y.M., Yin, F. 
and Huang, G.X. (2021) A Relaxed Greedy 
Block Kaczmarz Method for Solving Large 
Consistent Linear Systems. Journal of Ap-
plied Mathematics and Physics, 9, 3032-3044. 
https://doi.org/10.4236/jamp.2021.912196 
 
Received: October 29, 2021 
Accepted: December 12, 2021 
Published: December 15, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2021.912196
https://www.scirp.org/
https://doi.org/10.4236/jamp.2021.912196
http://creativecommons.org/licenses/by/4.0/


Y. M. Liao et al. 
 

 

DOI: 10.10.4236/jamp.2021.912196 3033 Journal of Applied Mathematics and Physics 
 

There are many extended Kaczmarz algorithms [8]-[16] developed to solve (1). 
Strohmer and Vershynin in [17] introduced a randomized Kaczmarz method 
(RK) for consistent overdetermined systems (1). The RK method has a conver-
gence bound with the expected exponential convergence, which was called linear 
convergence. Zhang [18] proposed an improved greedy Kaczmarz (GK) method 
for solving (1). Bai and Wu in [19] presented a greedy randomized Kaczmarz 
algorithm (GRK) for (1) when the system is consistent. In each step of iteration, 
GRK is based on a probability criterion trying to grasp larger entries of the resi-
dual vector. Bai and Wu [20] further developed a relaxed GRK method for large 
sparse Equations (1). Due to its fast convergence, the block method [21] [22] [23] 
[24] has also been extensively developed in linear or nonlinear optimization prob-
lems. Recently, Liu and Zheng in [1] presented a greedy block Kaczmarz algo-
rithm (GBK) with the iteration  

 ( )†
1 ,

k k kk k kx x b x+ = + −A A                      (2) 

where the index of the selected row  
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k
A  stands for the submatrix ( ),:kA   of A , ib  represents the ith element 

of the vector b, ( )iA  denotes the ith row of A  and †A  denotes the Moore- 
Penrose pseudoinverse of A . 

In this paper, based on the GBK method in [1], we develop a new relaxed 
greedy block Kaczmarz algorithm (RGBK) for (1). RGBK extends the GBK algo-
rithm by introducing a relaxed parameter. The convergence of the algorithm is 
provided and the optimal relaxed parameter is discussed. The rest of this paper 
is organized as follows. In Section 2, a new relaxed greedy block Kaczmarz algo-
rithm is presented. The convergence is provided and the optimal relaxed para-
meter is determined. Several types of examples are shown in Section 3, including 
the overdetermined or underdetermined systems with dense and sparse coeffi-
cient matrices. Some conclusions are drawn in Section 4.  

At the end of this section, we introduce some mathematical symbols that will 
be used. For a matrix m n×∈Q  , ( )iQ  denotes the ith row vector of Q . 

k
Q  

stands for the submatrix ( ),:kQ   of Q , where k  is an index set composed 
of positive integers not exceeding m, and m is the number of rows of Q . Let 

( )minδ Q  and ( )maxδ Q  be the maximum and minimum positive singular val-
ues of Q , respectively. 2

2Q  and 
22

1 1
m n

iji jF q
= =

= ∑ ∑Q  are the spectral norm 
and Frobenius norm, respectively. For any vector mp∈ , ip  represents the 
ith component of p. 
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2. The Relaxed Greedy Block Kaczmarz Algorithm  

Replacing the left side 1kx +  in (2) with the combination of kx  and 1kx +  in (2) 
by introducing a relaxed parameter ( )0,2λ ∈ , we have  

 ( ) ( )( )†
1 1 .

k k kk k k kx x x b xλ λ+ = − + + −A A                (5) 

Thus  

 ( )†
1 .

k k kk k kx x b xλ+ = + −A A                      (6) 

The method presented by (6) is called a relaxed greedy block Kaczmarz algo-
rithm, which is abbreviated by RGBK. Algorithm 1 summarizes the RGBK algo-
rithm. 

We remark that the iteration formulation (6) reduces to (2) when 1λ = , thus 
the GBK method in [1] is a special case of Algorithm 1. 

The results below give the convergence of Algorithm 1.  
Theorem 1. Assume the linear system (1) is consistent. The iterative sequence 

{ }kx  generated by Algorithm 1 converges to the minimum norm solution 
†x b∗ = A  of (1). Moreover, it holds that  
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, 
FA  denotes the Frobenius norm of  

A , ( )maxδ A  and ( )minδ A  are the maximum and minimum positive singular 
values of A , respectively.  

Proof. Let k ke x x∗= − , where x∗  satisfies 
k k
x b∗ =A  , then we have from 

(6) that  
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According to the definition of k  at Step 3 in Algorithm 1 and the fact that

( ) ( )2 2
min maxk k

δ δ −=A A 
† , we have that  

 
Algorithm 1. A relaxed greedy block Kaczmarz algorithm (RGBK). 

Input: 0, ,b xA  parameter ( ]0,1η ∈  and ( )0,2λ ∈ . 

Output: the approximation solution kx  of (1) 

for 0,1,k = �  do until termination criterion is satisfied; do 

Compute kε  by (4); 

Determine the control index set k  by (3); 

Update 1kx +  by (6). 

end for 
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For 1,2,k = � , it holds that  
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thus the constant kε  at step 2 of Algorithm 1 becomes  
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Thus (8) together with (9) and (10) implies (7). This completes the proof.    □ 
We derive easily the results below from Theorem 1. 
Corollary 1. Let ( ) ( )

0 1
, max ,jj k

M λ η φ λ η
≤ ≤ −

= . Under the conditions of Theorem 
1, we obtain an upper bound of error  
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Proof. Using (7) iteratively for 1,k = � , we have (11) with the definition of 
( ),M λ η .                                                        □ 

The upper bound of error below is independent of k . 
Corollary 2. Under the conditions of Theorem 1, (7) becomes  
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Proof. We notice that  
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Therefore, (12) results from (12) together with (7).                      □ 
Remark 1. The RGBK method reduces to the GBK method in [1] when 1λ = . 

Examples in Section 3 provide a way to determine the optimal relaxed parameter 
value of λ  that minimizes the CPU time or the number of iteration for both 
overdetermined and underdetermined systems.  
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Remark 2. Taking into account the limitation of computer memory space, we 
use Gaussian Kaczmarz method defined in [22] instead of (6), which could avoid 
the calculation of †A ,  
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i
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= −∑ A


, this method abbreviated as AGBK.  

3. Numerical Examples  

In this section, we give several examples to show the efficiency of our RGBK and 
AGBK methods and compare them with GBK in [1]. All experiments are carried 
out with the MATLAB 2020b on a computer with 3.00 GHz processing unit and 
16 GB RAM. 

We compute the solution of the consistent system (1) with m n×∈A   and 
mb∈  computed by *b x= A , where * nx ∈  denotes the exact solution gen-

erated by the MATLAB function randn. Denote the relative solution residuals 
2 2

2 2
RSE : kx x x∗ ∗= − . We define different acceleration ratios as follows,  

CPU of GBK CPU of GBKSU-R and SU-A .
CPU of RGBK CPU of AGBK

= =  

To avoid calculating the Moore-Penrose inverse †A  when implementing the 
update (6) in Algorithm 1, we use the CGLS algorithm in [21] to solve a cor-
responding least-squares problem. Considering the fairness of the three algo-
rithms, all parameters involved in AGBK are the same as RGBK. We set the ini-
tial vector 0 0x =  and the termination criterion satisfying RSE < 10−6 for GBK, 
RGBK and AGBK in all examples. 

Example 4.1. We use this example to illustrate how to determine an optimal 
parameter η  in Algorithm 1 for both overdetermined and underdetermined 
systems (1). We use different parameter η  ranged from 0.05 to 0.9 to compute 
the number of iteration (IT) and CPU time (CPU) by Algorithm 1 for the con-
sistent systems (1) with 2000 1000×∈A   and 1000 2000×∈A  , which are randomly 
dense matrices generated by the MATLAB function randn, respectively, then 
determine an optimal parameter η  that minimizes the IT or CPU. 

Figure 1 shows the plot of CPU versus η . From Figure 1, we can choose the 
optimal parameter 0.2η = , which minimizes CPU by using Algorithm 1 for 
the consistent systems (1) with 2000 1000×∈A   and 1000 2000×∈A  . 

Example 4.2. In this case, we give the same way to determine the optimal re-
laxation parameters λ  of RGBK as shown in Figure 2, and strictly abide by the 
method of controlling variables. We default that GBK and RGBK have the same 
η . 

Figure 2 shows the plot of IT and CPU versus relaxed parameter λ . From 
Figure 2(a) and Figure 2(b), we can choose the optimal relaxed parameter 

1.2optλ =  and 1.3optλ = , which minimizes CPU by using Algorithm 1 for the 
consistent systems (1) with 2000 1000×∈A   and 1000 2000×∈A  . 
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Figure 1. An optimal parameter (η ) determined by the minimum of CPU for overdetermined 2000 × 1000 (left) and underde-
termined 1000 × 2000 (right) systems in RGBK. 
 

 
Figure 2. An optimal relaxed parameter ( λ ) determined by the minimum of IT (left) and CPU (right) for overdetermined and 
underdetermined systems. (a) IT (left) and CPU (right) versus λ  with 2000 × 1000; (b) IT (left) and CPU (right) versus λ  with 
1000 × 2000. 

https://doi.org/10.4236/jamp.2021.912196


Y. M. Liao et al. 
 

 

DOI: 10.10.4236/jamp.2021.912196 3038 Journal of Applied Mathematics and Physics 
 

Example 4.3. We compare the convergence of RGBK and AGBK with the optimal 
relaxed parameter optλ  determined similarly in Example 4.2 with that of GBK 
algorithm for overdetermined and underdetermined systems (1) with m n×∈A   
generated by the MATLAB function randn. Table 1 lists IT and CPU(s) of the 
RGBK and AGBK algorithms with the optimal relaxed parameter optλ  com-
pared with that of GBK algorithm for different overdetermined systems (1) with 
Gaussian coefficient matrices A . The corresponding optimal relaxed parameter 
computed similarly in Example 4.2 is 1.2,1.2,1.3,1.2,1.2,1.2,1.25optλ = , respec-
tively. 

Table 2 shows similar results for different underdetermined Gaussian systems 
(1) with A . From Table 1 and Table 2, we can see the advantages of our pro-
posed RGBK and AGBK methods over GBK algorithm. 

Example 4.4. We use the RGBK and AGBK methods and compare them with 
GBK to solve systems (1) with sparse coefficient matrix A  from the Florida 
sparse matrix collection in [25]. Table 3 summarizes the different sparse systems 
and its density and condition number ( )Cond A , where the density of A  means 
the ratio of the number of the nonzero elements of A  to the total number of 
the elements of A .   

Table 4 lists IT and CPU(s) of the RGBK and AGBK algorithms with the optimal  
 
Table 1. Performance of GBK, RGBK, AGBK for overdetermined systems. 

method Index 
m × n 

3000 × 1000 4000 × 1000 5000 × 1000 3000 × 2000 

GBK(η) IT 37 (0.2) 26 (0.2) 24 (0.25) 159 (0.15) 

 CPU 0.1064 0.0904 0.0824 1.0852 

RGBK(λ) IT 34 (1.2) 24 (1.2) 23 (1.3) 149 (1.3) 

 CPU 0.0884 0.0790 0.0715 0.9881 

AGBK IT 36 25 25 158 

 CPU 0.0587 0.0538 0.0635 0.4778 

SU-R  1.2039 1.1448 1.1542 1.0983 

SU-A  1.8146 1.7943 1.2983 2.2713 

  4000 × 2000 5000 × 2000 4000 × 3000 5000 × 3000 

GBK(η) IT 71 (0.15) 43 (0.15) 313 (0.2) 121 (0.15) 

 CPU 0.6024 0.4370 3.8447 1.9698 

RGBK(λ) IT 66 (1.2) 42 (1.2) 290 (1.2) 115 (1.25) 

 CPU 0.5577 0.4128 3.3780 1.7867 

AGBK IT 69 44 293 120 

 CPU 0.2730 0.2149 1.7092 0.8857 

SU-R  1.0801 1.0659 1.1380 1.1025 

SU-A  2.2061 2.0474 2.2491 2.2241 
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Table 2. Performance of GBK, RGBK, AGBK for underdetermined systems.  

name Index 
m × n 

1000 × 3000 1000 × 4000 1000 × 5000 2000 × 3000 

GBK(η) IT 35 (0.15) 23 (0.1) 20 (0.1) 163 (0.15) 

 CPU 0.1488 0.1392 0.1487 1.2579 

RGBK(λ) IT 32 (1.25) 22 (1.2) 19 (1.3) 150 (1.3) 

 CPU 0.1231 0.1334 0.1418 1.0974 

AGBK IT 33 22 19 163 

 CPU 0.0532 0.0434 0.0457 0.4838 

SU-R  1.2087 1.0431 1.0487 1.1463 

SU-A  2.7982 3.2101 3.2541 2.6001 

  2000 × 4000 2000 × 5000 3000 × 4000 3000 × 5000 

GBK(η) IT 65 (0.1) 49 (0.15) 299 (0.15) 142 (0.2) 

 CPU 0.7464 0.6181 4.3543 2.3230 

RGBK(λ) IT 63 (1.4) 44 (1.25) 280 (1.3) 132 (1.4) 

 CPU 0.7112 0.5401 3.9027 1.9067 

AGBK IT 71 45 294 145 

 CPU 0.2719 0.2164 1.7181 1.0346 

SU-R  1.0496 1.1443 1.1157 1.2183 

SU-A  2.7454 2.8555 2.5344 2.2452 

 
Table 3. The properties of different sparse matrices.   

name ash-958 Trefethen-700 relat6 flower-5-1 stat96v5 

m × n 958 × 292 700 × 700 2340 × 157 211 × 201 2307 × 75,779 

Density 0.68% 2.58% 2.20% 1.42% 0.13% 

Full rank Yes Yes No No No 

Cond(A) 3.20 4.71e+3 Inf 2.00e+16 1.2609e+17 

 
Table 4. Performance of GBK, RGBK, AGBK for overdetermined systems.  

name  ash958 Trefethen-700 relat6 flower-5-1 stat96v5 

GBK(η) IT 25 (0.25) 468 (0.1) 116 (0.25) 242 (0.25) 55 (0.3) 

 CPU 0.0008 0.0219 0.0064 0.0036 0.1006 

RGBK(λ) IT 21 (0.9) 401 (1.2) 115 (0.9) 214 (1.2) 46 (0.8) 

 CPU 0.0006 0.0191 0.0062 0.0030 0.0934 

AGBK IT 24 624 111 251 59 

 CPU 0.0004 0.0134 0.0035 0.0018 0.0388 

SU-R  1.2246 1.1417 1.0360 1.2123 1.0771 

SU-A  2.0521 1.6324 1.8407 1.9953 2.5934 
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relaxed parameter optλ  compared with that of GBK algorithm for different 
sparse systems (1) with coefficient matrices A . The corresponding optimal re-
laxed parameter computed similarly in Example 4.3 is 0.9,1.2,0.9,1.2optλ =  
and 0.8, respectively. Figure 3 shows the plot of RSE versus IT (left) or RSE ver-
sus CPU (right) of Algorithm 1 applied to solve (1) with different sparse coeffi-
cient matrix A  in Table 4. From Table 4, we can see that the speedup ratio 
SU-R can reach 1.2246 and SU-A can reach 2.5934, which shows the fast con-
vergence of our proposed algorithm. From Figure 3, RGBK and AGBK converge 
much faster than GBK does on RSE versus IT (left) and RSE versus CPU (right) 
for sparse consistent Equation (1) with coefficient matrices A  named ash958 
and stat96v5 in Table 4. 

Example 4.5. This example uses RGBK and AGBK to restore a computer  
 

 
Figure 3. RSE versus IT (left) and RSE versus CPU (right) of RGBK and AGBK compared with GBK to solve consistent Equation 
(1) with sparse coefficient matrix A  named ash958 (a) stat96v5 (b) in Table 3. (a) IT (left) and CPU (right) vesue ash958; (b) IT 
(left) and CPU (right) vesue stat96v5.     
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tomography (CT) image. The MATLAB function ( ), ,paralleltomo N pθ  from 
Algebraic Iterative Reconstruction (ART) package in [26], which generates a 
large sparse matrix A  and the exact solution x∗  is used, where 70N = ,  

0 : 0.7 :178θ = � �  and 70p = , then the size of A  is 17,850 × 4900. We com-
pute b by b x∗= A , RGBK and AGBK are used to recover x∗  from b and com-
pared with the GBK method.    

Table 5 reports the IT and CPU(s), and RSE of RGBK and AGBK compared 
with GBK for overdetermined consistent sparse matrix, where 6RSE 10−≤ . 
Figure 4 shows the recovered images by GBK, RGBK and AGBK together with 
the original image. 

It can be seen from Table 5 that RGBK(1.3) and AGBK obtain lower IT and 
CPU(s) than GBK(0.2) for restoring CT images, which show that RGBK and 
AGBK converge faster than GBK dose if the parameter λ  is selected appro-
priately. 

 
Table 5. GBK, RGBK and AGBK for reconstruction of CT image.   

Method IT CPU(s) RSE 

GBK(0.2) 863 5.6002 9.8576e−07 

RGBK(1.3) 753 5.0474 8.3409e−07 

AGBK 787 1.9918 9.5513e−07 

 

 
Figure 4. The original “phantom” image (a), the recovered images by GBK (b), RGBK(1.3) 
(c) and AGBK (d).   
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4. Conclusion  

We present a relaxed GBK algorithm abbreviated as RGBK for solving large con-
sistent linear systems. The RGBK method extends the GBK method in [17]. The 
convergence is provided and a method is provided to determine an optimal re-
laxed parameter for the RGBK method. In addition, AGBK effectively accelerates 
the convergence of RGBK in running time. The examples for different cases 
show the advantage of the proposed RGBK and AGBK methods as long as the 
optimal relaxation parameter optλ  is determined. 
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