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Abstract 
In this paper, we studied the existence of a family of the random attractor for 
a class of generalized Kirchhoff-type equations with a strong dissipation term. 
Firstly, according to Ornstein-Uhlenbeck process, we transformed the equa-
tion into a stochastic equation with random variables and multiplicative 
white noise. Secondly, we proved the existence of a bounded random absorb-
ing set. Finally, by using the isomorphic mapping method and the compact 
embedding theorem, we get the stochastic dynamical system with a family of 
random attractors. 
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1. Introduction 

In recent years, the global attractor, exponential attractor, inertial manifold, and 
approximate inertial manifold of the Kirchhoff equation in infinite dimensional 
dynamical systems have been extensively studied. With further in-depth re-
search, people have found that many real-life problems will be interfered with by 
all external uncertain factors to varying degrees, and a deterministic dynamic 
system cannot be used to describe this type of problem. At this time, we intro-
duce a random attractor with multiplicative white noise. The random attractor is 
a measurable, compact and invariant random set that attracts all solution orbits. 
As the smallest absorption set in the solution set of an infinite-dimensional dy-
namical system, the random attractor is also the largest invariant set; it can bet-
ter describe the development trajectory of a disturbing object, to further predict 
the state of the development of things to a certain moment. In other words, the 
random attractor is a reasonable promotion of the global attractor of the classic 
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deterministic dynamic system, so the random attractor has more practical and 
deeper properties. The random attractors can be used to study fluid mechanics, 
finance and other fields; they are the supplement of deterministic dynamical 
systems. Therefore, many scholars have done a lot of research on random at-
tractors of nonlinear partial differential equations with white noise, and have 
obtained a series of research results, including stochastic parabolic equations, 
generalized Ginzburg-Landau equations, dissipative KdV equation, stochastic 
reaction-diffusion equations, stochastic Sine-Gordon equations, stochastic Bous-
sinesq equations, stochastic Kirchhoff equations and other stochastic evolution 
equations have corresponding study about random attractors, more significant 
research can refer to [1]-[10]. 

Guoguang Lin, Ling Chen, Wei Wang [11] studied the stochastic strongly 
damped higher-order nonlinear Kirchhoff-type equation with white noise: 

( ) ( )( ) ( )

( ) ( )

2
d d

d d , , 1.

m mm
t tu u u u g u t

f x t q W t x m

φ + −∆ + ∇ −∆ +  
= + ∈Ω >

 

They proved the existence of a random attractor of the random dynamical sys-
tem. 

Guigui Xu and Libo Wang [12] studied the large-time behavior of the follow-
ing initial boundary value problem for the stochastic strongly damped wave eq-
uation with white noise in a bounded domain R⊂  with smooth boundary:  

( ) ( ) ( ) ( ) [ ), , 0, ;tt t tu u u u f u g x q x W x tα β−∆ − ∆ + + − = ∈ × +∞�   

( ) ( ) ( ) ( )0 1,0 , ,0 , ;tu x u x u x u x x= = ∈  

( ) ( ) [ ), 0, , 0, .u x t x t
∂Ω

= ∈∂ × +∞  

where ( ) ( ) ( )1 2
0 1 0,u u H L∈ ×  , and ,α β  are positive constants, ( ),u u x t=  

is a real-valued function on [ )0,× +∞ . W�  is a scalar Gaussian white noise, 
that is, ( )W t  is a two-sided wiener process. 

The functions : R Rf →  and , : Rg q →  satisfies the following assump-
tions:  

1) ( )1
0g H∈  , while ( ) ( )2 1

0q H H∈ ×   is not identically equal to zero;  
2) The nonlinear term f satisfies  

( ) ( )0 1, , R;f u C f u C u′ ≤ ≤ ∀ ∈  

( ) ( ) 2 , , R.f u f v C u v u v′ ′− ≤ − ∀ ∈  

where 0 1 2, ,C C C  are positive constants. 
Guoguang Lin and Zhuoxi Li [13] studied the random attractor family of so-

lutions to the strongly damped stochastic Kirchhoff equation with white noise:  

( )( ) ( ) ( ) ( )
2

, .m mm
tt tu M u u u g x u q x Wβ+ ∇ −∆ + −∆ + = �  

They get the temper random compact sets of random attractor family. 

On the basis of reference [13], the stress term 
2mD u  is extended to 

pm
p

D u ,  
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this paper studied the long-time dynamic behavior of a class of generalized Kir-
chhoff equation. According to preliminary knowledge and reasonable assump-
tion for Kirchhoff stress term and nonlinear source term, we proved the exis-
tence of random absorbing set in stochastic dynamical system; furthermore, a 
family of the random attractor is obtained. 

In this paper, we study the existence of a family of the random attractors for a 
class of generalized Kirchhoff-type equation with damping term:  

 ( )( ) ( ) ( )2 2 ,
p m mm

tt tp
u M u u u g u qWβ+ ∇ −∆ + −∆ + = �        (1.1) 

 ( ), 0, 0, 1, 2, , 2 1, ,
i

i

uu x t i m x
v
∂

= = = − ∈∂Ω
∂

�            (1.2) 

 ( ) ( ) ( ) ( )0 1,0 , ,0 , , 0.tu x u x u x u x x t= = ∈Ω >            (1.3) 

where 1, 2m p> ≥ , ( ) [ )( )2 0, ;M s C R+∈ +∞  is a real-valued function,  

( ) ( )2 0m
tuβ β−∆ >  denotes strong damping term, ( )g u  is nonlinear source 

term, ( ),u u x t=  is a real-valued function on [ )0,Ω× +∞ , ( )1nR nΩ ⊂ ≥  is a 
bounded domain with a smooth boundary ∂Ω , dq W  denotes an additive 
white noise. ( )W t  is a one-dimensional bilateral Wiener process on probability 
space ( ), ,F PΩ , ( ) ( ){ }, : 0 0C R Rω ωΩ = ∈ = , F is a Borel σ -algebra gener-
ated by compact open topology on Ω , p is a probability measure, the assump-
tion of ( )g u  and ( )M s  as follow: 

(A1) ( ) ( )g u C R∞∈  is Lipschitz continuous; 
(A2) There existence constant 0gl > , such that  

( ) ( )( ) ( )k k
gg u g v l u v∇ − ≤ ∇ − ; 

(A3) ( ) ( )dJ u G u x= ∫ , where ( ) ( ) tG u g u u′ = ; 

(A4) ( )
22

4
m kJ u u cµ +≥ − ∇ − ; 

(A5) ( ) [ )( )2 0, ,M s C R+∈ +∞ , ( )0 11 M sε µ µ+ = < < ,  

22
0

22
1

d, 0
d
d, 0
d

m

m

u
t

u
t

µ
µ

µ

 ∇ ≥= 
 ∇ <


 and 
2 22

0 0 11
2

1

1 2 1
0 min ,

2

mm

m

µ µ λβλ
ε

λ

−

−

 + −+ − < <  
  

. 

Where 0 1, ,µ µ µ  are constant, 1λ  is the first eigenvalue of −∆  with ho-
mogeneous Dirichlet boundary conditions on Ω . 

2. Preliminaries 

For convenience, define the following spaces and notations: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 1 4 4 1
0 0 0 0

2 2 1 2 2
0 0 0

2 2
0 0

, , ,

, ,

, 0,1, 2, , 2 , .

m m m m

m k m k m

m k k
k

H L H H H H H H

H H H E H L

E H H k m f x L

+ +

+

= Ω Ω = Ω Ω Ω = Ω Ω

Ω = Ω Ω = Ω × Ω

= Ω × Ω = ∈ Ω

∩ ∩

∩

�

 

( ),⋅ ⋅  and ⋅  represent the inner product and norms of H respectively, i.e.: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2
2, d , , , , ,PL P L Lu v u x v x x u u u ∞Ω Ω ∞ ΩΩ

= = ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅∫ . 
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( ) ( ) ( )
( ) ( )

2 2
1 2 1 2 1 2, , , ,

, , 1, 2, 1, 2, , 2 .
k

m k m k k k
E

i i i k

y y u u v v

y u v E i k m

+ += ∇ ∇ + ∇ ∇

∀ = ∈ = = �
 

Here are some basic knowledge of stochastic dynamic systems required: 

( ) ( ) ( )( ) ( ), kB R F B X B Dω ω+ × × ⊂  is a probabilistic space and define a 
family of measures-preserving and ergotic transformations of { },t t Rθ ∈ : 

( ) ( ) ( ).t w w t w tθ ⋅ = ⋅+ −  

( )( ), , , t t R
F P θ

∈
Ω  is an ergodic metric dynamical system. 
Let ( ),X ⋅  is a separable Hilbert space and ( )B X  is a Borel σ -algebra on 

X, ( ), ,F PΩ  be a probability space, where ( ) ( ){ }R,R ; 0 0w C wΩ = ∈ =  is 
endowed with compact-open topology, P is the corresponding Wiener measure, 
and F is the Borel σ -algebra on Ω . The space ( )( )R

, , , t t
F P θ

∈
Ω  is called the 

metric dynamical system on the probability space ( ), ,F PΩ .  
Definition 2.1. ([9]) Let ( )( )R

, , , t t
F P θ

∈
Ω  be a metric dynamical system, if 

( ) ( ) ( )( ),B R F B X B X+ × × -measurable mapping  

( ) ( ): , , , , , .S R X X t w x S t w x+ ×Ω× → �  

satisfies the following properties: 
1) For , 0s t∀ ≥  and w∈Ω , mapping ( ) ( ), : , ,S t w S t w= ⋅  satisfies  

 ( ) ( ) ( ) ( )0, , , , , .sS w id S t s w S t w S s wθ= + = �  

2) For w∀ ∈Ω , mapping ( ) ( ), , , ,t w x S t w x�  is continuous. Then S is a 
continuous stochastic dynamical system on ( )( )R

, , , t t
F P θ

∈
Ω .  

Definition 2.2. ([9]) It is said that random set ( )B w X⊂  is tempered. If for 
w∈Ω , 0β ≥ , there is 

( )( )lim inf e 0.s
ss

d B wβ θ−
−→∞

=  

where ( ) sup X
x B

d B x
∈

= , for x X∀ ∈ .  
Definition 2.3. ([9]) Let ( )D w  as the set of all random sets on X, and ran-

dom set ( )B w  is called an absorption set on ( )D w . If for any ( ) ( )B w D w∈  
and . .a e wP ∈Ω , there exists ( ) 0B wT >  such that  

( ) ( )( ) ( )0, .t tS t w B w B wθ θ− − ⊂  

Definition 2.4. ([9]) Random set ( )A w  is called a random attractor on X for 
continuous stochastic dynamical system ( )( ) 0

,
t

S t w
≥

, if random set ( )A w  sa-
tisfies  

1) ( )A w  is a random compact set;  
2) ( )A w  is an invariant set, that is, for arbitrary 0t > ,  
( ) ( ) ( ), tS t w A w A wθ= ;  
3) ( )A w  attracts all sets in ( )D w , that is, for any ( ) ( )B w D w∈  and 

. .a e wP ∈Ω , we have the limit formula  

 ( ) ( ) ( )( )lim , , 0.t tt
d S t w B w A wθ θ− −→∞

=  

where ( ), supinf Hy Bx A
d A B x y

∈∈
= −  is the Hausdorff semi-distance. (There  
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,A B H⊆ ).  
Definition 2.5. ([9]) Let random set ( ) ( )kB w D w∈  be the random absorp-

tion set of stochastic dynamical system ( )( ) 0
,

t
S t w

≥
, and random set ( )kB w  

satisfies  
1) Random set ( )kB w  is closed set on Hilbert space;  
2) For . .a e wP ∈Ω , random set ( )kB w  satisfies the following asymptotic com-

pactness conditions for arbitrary sequence ( ) ( )0,
n nn n t tx S t w B wθ θ− −∈ , t → +∞ , 

there is a convergent subsequence in space X, then the stochastic dynamical sys-
tem ( )( ) 0

,
t

S t w
≥

 has a unique global attractor, i.e.,  

 ( )
( )

( ) ( )0, .k t t
t w t

A w S t w B w
τ τ

θ θ− −
≥ ≥

= ∩ ∪  

Theorem 2.1. [9] The Ornstein-Uhlenbeck process is given as following: 
From the above we can know that the Ornstein-Uhlenbeck process on  

( )2
0

m kH + Ω  is given by Wiener process on measurement system  
( )( ), , , t t R

F P θ
∈

Ω . 
Set ( ) ( )0

e dt tz w wατθ α θ τ τ
−∞

= − ∫ , where t R∈ . It can be seen that for any 
0t ≥ , the stochastic process ( )tz wθ  satisfies the Ito equation  

( )d d d .z z t W tα+ =  

According to the nature of the O-U process, there exists a probability measure 
P, tθ -invariant set 0Ω ⊂ Ω , and the above stochastic process  

 ( ) ( )0
e dt tz w wατθ α θ τ τ

−∞
= − ∫  

satisfies the following properties:  
1) The mapping ( )ss z wθ→  is a continuous mapping, for any given 0w∈Ω ;  
2) The random variable ( )z w  is tempered;  
3) There exist a slowly increasing set ( ) 0r w > , such that  

( ) ( ) ( ) ( )2 2e
t

t t tz w z w r w r w
α

θ θ θ+ ≤ ≤ ; 

4) ( ) 2

0

1 1lim d
2

t
tt

z w
t

θ τ
α→∞

=∫ ; 

5) ( )
0

1 1lim d
t

tt
z w

t
θ τ

α→∞
=

π∫ . 

3. The Existence for a Family of the Random Attractor 

In this section, our objection is to prove the existence of random attractors for 
the initial boundary value problem (1.1)-(1.3). 

At first, we define the inner product and norms on kE  as follows: 

( ) ( ) ( )
( ) ( )

( )

2 2
1 2 1 2 1 2

2 22 2

, , , ,

, , 1, 2, 1, 2, , 2 ;

, .

k

kk

m k m k k k
E

i i i k

m k k
EE

y y u u v v

y u v E i k m

y y y u v

+ +

+

= ∇ ∇ + ∇ ∇

∀ = ∈ = =

= = ∇ + ∇

�  

Let ( ), ,k tU u v E v u uε= ∈ = + , there exist 0ε > , such that the Equation (1.1)- 
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(1.3) equivalent the following evolution equation:  

( )( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( )

2 2

0 1

d d ,

d d d , 0, ,

,0 , ,0 , .

t

p m mm
t tp

t

u u t

u M u u u g u t q x W t t

u x u x u x u x x

β

 =

  + ∇ −∆ + −∆ + = ∈ +∞   
 = = ∈Ω

(3.1) 

Let ( )T, , tu v v u uϕ ε= = + , the problem (3.1) can be simplified to  

 
( )

( ) ( )T
0 0 1 0

d d , ,

, .

tL t F w

w u u u

ϕ ϕ θ ϕ

ϕ ε

 + =


= +
                     (3.2) 

where 
u
v

ϕ
 

=  
 

, ( )( )( ) ( )( )2 22p m mm
p

I I
L

M u I I

ε

βε ε β ε

− 
 =   ∇ − −∆ + −∆ −    

, 

( ) ( ) ( ) ( )
0

,
d dtF w

g u t q x W t
θ ϕ

 
=  − + 

. Suppose ( ) ( )tz v q x wδ θ= − , ( )t wδ θ  

is a stochastic process, then Equation (3.1) can be written as  

 
( )

( ) ( ) ( )( )T
0 0 1 0

d , ,

, .

t t

t

L t F w

w u u u q x w

ψ ψ θ ψ

ψ ε δ θ

 + =


= + −
              (3.3) 

where 
u
z

ψ
 

=  
 

, ( )( )( ) ( )( )2 22p m mm
p

I I
L

M u I I

ε

βε ε β ε

− 
 =   ∇ − −∆ + −∆ −    

, 

( )
( ) ( )

( ) ( )( ) ( ) ( )2,
1

t

mt
t

q x w
F w

g u q x w

δ θ
θ ψ

ε β δ θ

 
 =
 − + − − −∆
 

. 

Lemma 3.1. Assume that nonlinear source term ( )g u  and Kirchhoff stress 
term ( )M s  satisfy the assumption (A1), (A2), f H∈ ,  
( ) ( ) ( )2 2

0 0 0, mu v E H L∈ = Ω × Ω , then the initial boundary value problem (1.1)- 
(1.3) has smooth solution ( ) 0,u v E∈  and ( )( )2 20, ; mv L T H∈ Ω  satisfy the 
following inequality 

( ) ( ) ( )1 1

0

22 22 1

1

, 0 e 1 e .b t b tm
E

Cu v u v Y
b

− −= ∇ + ≤ + −        (3.4) 

Where tv u uε= + , 2
1 1min , , 2

ab a ε
µ

 
=  

 
, ( )

22 22 2
0 0 00 mY v u uµ ε= + ∇ + , 

so there’s a non-negative real number 1
0

1

2CR
b

= , 
( )1

1
1 1

01 ln
b Y

t
b C

 
=   

 
 and 

22
0

d
T mv t C∇ ≤∫ , such that  

 ( ) ( )
0

22 22 2
0 1, .m

E
u v u v R t t= ∇ + ≤ >                (3.5) 

Proof. Taking the inner product of the second equation of (3.1) with v in 
( )2L Ω , we find that  

 ( )( ) ( ) ( )( ) ( )( )2 2 , , .
p m mm

tt tp
u M u u u g u v q x W vβ+ ∇ −∆ + −∆ + = �  (3.6) 
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( ) ( )
2

2 2 2 22 31 d, , .
2 d 2tt tu v v v u v v v v u

t
εε ε ε ε= − + ≥ − + −      (3.7) 

( )( )( )
( ) ( )( )
( ) ( )

2

2 2

2 22 2

2 22 2
0

,

,

d
2 d

d .
2 d

p mm
p

pm m m
tp

pm
pp m m m
p

m m

M u u v

M u u u u

M u
u M u u

t

u u
t

ε

ε

µ εµ

∇ −∆

= ∇ ∇ ∇ +

∇
= ∇ + ∇ ∇

≥ ∇ + ∇

          (3.8) 

By using Poincare’s inequality, we obtain  

( )( ) ( )( )22 22

2 2 22 2 222 2 21

, ,

1 .
2 2 2 2

m mm
t

m
m m m

u v v u v

v v u u

β β βε

βλβ β ε

−∆ = ∇ − −∆

≥ ∇ + − ∇ − ∇
   (3.9) 

The following estimation can be obtained from hypothesis (A1)  

( )( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )2

d, , , d ,
d

d dd d .
d d

tg u v g u u g u u G u x g u u
t

G u x G u x J u J u
t t

ε ε

ε

= + = +

≥ + ≥ +

∫

∫ ∫
    (3.10) 

By using the weighted Young’s inequality, we obtain  

 ( )( ) ( ) ( )
22 2

2

1, .
22

q x W v q x W v q x W vε
ε

≤ ⋅ ≤ +� � �           (3.11) 

Substitute inequality (3.6)-(3.10) into Equation (3.5), therefore  

 

( ) ( )

( ) ( ) ( )

( )

22 22 2 2
1

2 22 2 2 2 2 2
0 1

2

02

d 2 2 2
d

2 1 2

.

m m

m m m

v u J u v
t

v u J u

q x W
C

µ βλ ε ε

β β ε εµ ε λ

ε

−

 + ∇ + + − −  

+ − ∇ + − − ∇ +

≤ +
�

       (3.12) 

Let 2 2
1 1 2 0ma βλ ε ε= − − ≥ , 2 02 1 0a εµ= − ≥ , 2 2 2

1 0mβ β ε λ− − ≥ , and let 

2
1 1min , , 2

ab a ε
µ

 
=  

 
, 

( ) 2

1 02

q x W
C C

ε
= +

�
, then the Equation (3.11) can be re-

duced to  

 ( ) ( ) ( ) 22 2 2
1 1

d .
d

mY t b Y t v C
t

β β ε+ + − ∇ ≤              (3.13) 

According to hypothesis (A3) 

( ) ( )
2 2 22 22 2 2min 1, 2 .

2 2 2
m m mv u v u u J u Cµ µ µ   + ∇ ≤ + ∇ + ∇ + ≤   

   
 (3.14) 

Then  

 ( ) ( )
22 2 2 0.mY t v u J uµ= + ∇ + >                 (3.15) 
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By using Gronwall’s inequality, we get  

 ( ) ( ) ( )1 1

0

22 22 1

1

, 0 e 1 e .b t b tm
E

Cu v u v Y
b

− −= ∇ + ≤ + −         (3.16) 

And  

 ( )
0

2 1

1

lim , .
Et

Cu v
b→∞

≤                       (3.17) 

So, there are constants 1
0

1

2CR
b

=  and 
( )1

1
1 1

01 ln 0
b Y

t
b C

 
= >  

 
, we obtain  

 ( ) ( )
0

22 22 2
0 1, , .m

E
u v u v R t t= ∇ + ≤ >              (3.18) 

Lemma 3.1 is proved.                                                
Lemma 3.2. Let ( ) ( ) ( )2

0 0 , 1, 2, , 2m k k
kE H H k m+= Ω × Ω = � , for  

( )T
1 2, ky y y E∀ = ∈ , we have  

 ( )
22 2

1 2 2, .
k k

m k
E ELy y k y k y+≥ + ∇               (3.19) 

where 
2 2

1 1
1

2
min ,

2 2

m m

k βε ε ε λ βλ βε ε
β

− + − − −
=  

 
, 

2

2 2
k β β ε βε− +

= . 

Proof. Because of ( )( )( ) ( )( )2 22p m mm
p

I I
L

M u I I

ε

βε ε β ε

− 
 =   ∇ − −∆ + −∆ −    

, 

( )T
1 2, ky y y E∀ = ∈ , we get  

( )

( )( ) ( )( )( )

( ) ( )

( ) ( )( )
( ) ( )

22 2
1 2 1 1

2 22
1 1 2 2 2

22 2 2 2 2
1 2 1 1 2

2 22 2 2 2
1 2 1 2 2 2

,

,

,

, ,

, ,

kE

p mm k m k k m
p

m m k

pm k m k m k m m k m k
p

m k m k k k m k k

Ly y

y y y M u y

y y y y y

y y y M u y y

y y y y y y

ε

βε ε β ε

ε

βε ε β ε

+ +

+ + + + +

+ + +

= ∇ − ∇ + ∇ ∇ −∆


− −∆ + + −∆ − ∇ 


= ∇ − ∇ ∇ + ∇ ∇ ∇

− ∇ ∇ + ∇ ∇ + ∇ − ∇

 

( ) ( )
( )( ) ( )

( ) ( )

22 2 2 2 2
1 2 1 1 2

2 2 2
1 2 1 2

2 22
2 2

2 22 2
1 1

2 22 2 2 22
1 2 2 2

, ,

, ,

1 1
2 2

2 2

m k m k m k m k m k

m k m k k k

m k k

m k m k

k k m k k

y y y y y

y y y y

y y

y y

y y y y

ε

βε ε ε

β ε

β ε β βε
ε

β
ε βε β ε
β

+ + + + +

+ +

+

+ +

+

≥ ∇ − ∇ ∇ + ∇ ∇

− − ∇ ∇ + ∇ ∇

+ ∇ − ∇

− −
≥ ∇ − ∇ −

− ∇ − ∇ + ∇ − ∇
 

2 2 22 22 21
1 2

2 2
21

2

2 2
2

2

m
m k m k

m
k

y y

y

βε ε ε λ β β ε βε
β

βλ βε ε

−
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≥ ∇ + ∇

− −
+ ∇

 

https://doi.org/10.4236/jamp.2021.911190


G. G. Lin, L. J. Yang 
 

 

DOI: 10.4236/jamp.2021.911190 2974 Journal of Applied Mathematics and Physics 
 

( )2 2 22 2
1 1 2 2 2

22 2
1 2 2 .

k

m k k m k

m k
E

k y y k y

k y k y

+ +

+

≥ ∇ + ∇ + ∇

= + ∇
                    (3.20) 

Lemma 3.2 is proved. 
Lemma 3.3. Let ϕ  is a solution of Equation (3.2), then there exists a 

bounded random compact set ( ) ( )0k kB w D E∈� , such that for any random set 
( ) ( )k kB w D E∈ , there exists a random variable ( ) 0

kB wT > , we have  

 ( ) ( ) ( ) ( )0, , , .
kt k t k B wt w B w B w t T wϕ θ θ− ⊂ ∀ ≥ ∈Ω�          (3.21) 

Proof. Let ψ  is a solution of Equation (3.3), by using ( )T, ku z Eψ = ∈  to 
taking the inner product of two sides of Equation (3.3) on kE , we get  

 ( ) ( )( )21 d , , , .
2 d kk tEE L F w

t
ψ ψ ψ θ ψ ψ+ =              (3.22) 

According to Lemma 3.2, we know  

 ( )
22 2

1 2, .
k k

m k
E EL k k zψ ψ ψ +≥ + ∇                (3.23) 

Furthermore, according to the inner product defined in kE , we can get  

 
( )( ) ( ) ( )( ) ( )((

( )( ) ( ) ( )) )
2 2

2

, , ,

1 , .

m k m k k
t t

m k
t

F w q x w u g u

q x w z

θ ψ ψ δ θ

ε β δ θ

+ += ∇ ∇ + ∇ −

+ − − −∆ ∇
    (3.24) 

By using Holder inequality, Young inequality and Poincare inequality, we get  

( ) ( )( ) ( ) ( )
222 2 2 21, .

2 2
m k m k m k m k

t tq x w u u q x wεδ θ δ θ
ε

+ + + +∇ ∇ ≤ ∇ + ∇  (3.25) 

( ) ( )( ) ( ) ( )
2 2 221, .

2 2

m
k k m k k

t tq x w z z q x wελ εε δ θ δ θ
−

+∇ ∇ ≤ ∇ + ∇    (3.26) 

( )( ) ( ) ( )( )
( ) ( )

( ) ( )

2

2 2 2 221

2 2 22

1 ,

1 1
2 2

.
2

mk k
t

m
m k k

t
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t

q x w z

z q x w

q x w

β δ θ

ελ
δ θ

ε
β δ θ

−
+

+

∇ − −∆ ∇

−
≤ ∇ + ∇

+ ∇

          (3.27) 

According to assumption (A2), we get  

( )( ) ( ) ( )( )

( )
2 2

2 2 2 21 12 2

, 0

.
2 2 2

k k k k k k
g

m m
g g gk k m k m k

g u z g u g z l u z

l l l
u z u z

λ λ− −
+ +

−∇ ∇ ≤ ∇ − ∇ ≤ ∇ ∇

≤ ∇ + ∇ ≤ ∇ + ∇
   (3.28) 

Combine (3.19)-(3.25), we have  

 

( )

( ) ( ) ( )

( ) ( )

22 2 2 2 2
1 2 1 1

2 2 22 2 2 2
1

2 2
2

d 2 2 2 1
d

1

1 .

k k

m m m k
gE E

m m k m k
g t

k
t

k k l z
t

l u q x w

q x w C

ψ ψ λ ελ

ε λ β δ θ
ε

ε δ θ
ε

− − +

− + +

+ + − − + ∇

 ≤ + ∇ + + ∇ 
 

 + + ∇ + 
 

    (3.29) 
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Let 1 12kα = , ( ) ( )
2 22 21 1m k kM q x q xβ ε

ε ε
+   = + ∇ + + ∇   

   
, then  

 ( ) 22 2
1 2

d .
d k k tE E C M w

t
ψ α ψ δ θ+ ≤ +               (3.30) 

By using Gronwall inequality , ,a e wP ∈Ω , we get  

( ) ( ) ( ) ( )( )11
22 2

20
, e 0, e d .

k k

t t st
tE E

t w w C M w sααψ ψ δ θ− −−≤ + +∫    (3.31) 

Because ( )t wδ θ  is tempered, and ( )t wδ θ  is continuous with respect to t, so 
refer to the reference [2], we can obtain a temper random variable 1 :r R+Ω → , 
such that for t R∀ ∈ , ω∈Ω , there established  

( ) ( ) ( )1
2

1 1e .k t
t tw r w r wδ θ θ≤ ≤                  (3.32) 

Then we use t wθ−  to replace the w in Equation (3.28), we can get  

( ) ( ) ( ) ( )( )11
2 2 2

20
, e 0, e d .

k k

t t st
t t s tE E

t w w C M w sααψ θ ψ θ δ θ− −−
− − −≤ + +∫  (3.33) 

Let s tτ = − , then  

 

( ) ( )( )
( )( ) ( )

1

1

2
20

0 2 2
2 1

1 1

e d

2e d .

t t s
s t

t

C M w s

CC M w Mr w

α

α τ
τ

δ θ

δ θ τ
α α

− −
−

−

+

= + ≤ +

∫

∫
        (3.34) 

Because ( ) ( )0, t k tw B wϕ θ θ− −∈  is tempered, and ( )t wδ θ−  is also tempered, 
so we let  

 ( ) ( )2 2
0 1

1 1

2 .
CR w Mr w
α α

≤ +                    (3.35) 

Then ( )2
0R w  is tempered, let ( ){ }0 0

ˆ |
kk k EB E R wψ ψ= ∈ ≤  is a random ab-

sorption set, and because of  

 
( ) ( )

( ) ( ) ( ) ( )( )( ) ( ) ( )( )T T

, 0,

, 0, 0, 0, .

t t

t t t t

S t w w

t w w q x w q x w

θ ψ θ

ϕ θ ψ θ δ θ δ θ

− −

− − − −= + −

�
 (3.36) 

So let  

( ) ( ) ( ) ( ) ( ){ }0 0 0| .
k

k
k k EB w E R w q x w R wϕ ϕ δ= ∈ ≤ + ∇ =�     (3.37) 

Then ( )0kB w�  is the random absorption set of ( ),t wϕ , and ( ) ( )0k kB w D E∈� . 
Lemma 3.3 is proved. 

Lemma 3.4. When 1,2, , 2k m= � , for ( )k kB D E∀ ∈ , assume that ( )tϕ  is 
the solution of Equation (3.2) in initial value ( )T

0 0 1 0, ku u u Bϕ ε= + ∈ , it can be 
decomposed into 1 2ϕ ϕ ϕ= + , where 1ϕ  and 2ϕ  satisfy  

 
( ) ( )

1 1
T

10 0 1 0

d d 0,

, .

L t

w u u u

ϕ ϕ

ϕ ε

+ =


= +
                   (3.38) 

( )
( )

2 2

20

d d , ,

0.

L t F w

w

ϕ ϕ ϕ

ϕ

+ =


=
                   (3.39) 
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Then ( ) ( )2
1 , 0,

k
t E

t w tϕ θ− → →∞ , For ( ) ( )0 t k tw B wϕ θ θ− −∀ ∈ , there exist a 

tempered random radius ( )1R w , such that  

 ( ) ( )2
2 1, , .

k
t E

t w R w wϕ θ− ≤ ∀ ∈Ω                  (3.40) 

Proof. Let ( ) ( ) ( )( )TT
1 2 1 1 1 2 2 2, ,t t tu u u u u u q x wψ ψ ψ ε ε δ θ= + = + + + −  is a 

solution of the Equation (3.3), then according to the Equation (3.35)-(3.36), we 
know that 1 2,ψ ψ  satisfy respectively  

 
( ) ( )( )

1 1
T

10 0 0 1 0

0,

, .

t

t

L

u u u q x w

ψ ψ

ψ ψ ε δ θ

+ =


= = + −
             (3.41) 

( )2 2 2

20

, ,
0.

t tL F wψ ψ ψ θ

ψ

 + =


=
                    (3.42) 

By taking the inner product of equation ( )T
1 1 1 1, tu u uψ ε= +  with Equation 

(3.38) on kE , we get  

 ( )2
1 1 1

1 d , 0.
2 d kk EE L

t
ψ ψ ψ+ =                    (3.43) 

According to Lemma 3.2 and Gronwall inequality, we have  

 ( ) ( )1
2 22

1 10, e .
k k

k t
E E

t w wψ ψ−≤                   (3.44) 

We use t wθ−  to replace the w in inequality (3.41), we get  

 ( ) ( ) ( ) ( )1
2 22

1 0 0, e 0, , .
k k

k t
t t t kE E

t w w t w Bψ θ ψ θ ψ θ−
− − −≤ → →∞ ∀ ∈  (3.45) 

Similarly, by using ( ) ( )( )T
2 2 2 2, t tu u u q x wψ ε δ θ= + −  to take the inner product 

with Equation (3.39) in kE , and according to Lemma 3.1 Lemma 3.2 and Lem-
ma 3.3, we have  

 ( ) 22 2
2 1 2 2

d .
d k k tE E C M w

t
ψ α ψ δ θ+ ≤ +              (3.46) 

where 1 12kα = , ( ) ( )
2 22 4 21 1m mM q x q xβ ε

ε ε
   = + ∇ + + ∇   
   

. 

Then we use t wθ−  to replace the w in inequality (3.43) and by using Gron-
wall inequality, we get  

 

( )

( ) ( ) ( )( )
( )

11

2
2

2 2
2 20

2
1

1 1

,

e 0, e d

2 .

k

k

t E

t t st
t s tE

t w

w C M w s

C Mr w

αα

ψ θ

ψ θ δ θ

α α

−

− −−
− −≤ + +

≤ +

∫       (3.47) 

So there is a tempered random radius  

 ( ) ( )2 3
1 1

1 1

2 .
C

R w Mr w
α α

= +                    (3.48) 

Thus, for w∀ ∈Ω , we have  
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 ( ) ( )2 1, .
k

t E
t w R wϕ θ− ≤                      (3.49) 

Therefore, Lemma 3.4 is proved. 
Lemma 3.5. The stochastic dynamical system ( ){ }, , 0S t w t ≥ , while 0t = , 

. .a e wP ∈Ω  determined by Equation (3.2) has a compact absorption set  
( ) kK w E⊂ . 
Proof Let ( )K w  be a closed sphere in space kE  with a radius of ( )1R w . 

According to embedding relation 0kE E⊂ , ( )K w  is a compact set in kE . For 
any temper random set ( )kB w  in kE , for ( ), t kt w Bϕ θ−∀ ∈ , according to 
Lemma 3.4, ( )2 1 K wϕ ϕ ϕ= − ∈ , so for ( ) 0

kB wt T∀ ≥ > , we have  

 

( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )

( ) ( )1

2 2
1

22
10

, ,

inf , ,

e , 0, .

k

k k

k

E t k t

t tE Et K w

k t
t E

d S t w B w K w

t w t t w

t w t

ϑ

θ θ

ψ θ ϑ ψ θ

ψ θ

− −

− −∈

−
−

= − ≤

≤ → →∞

         (3.50) 

Lemma 3.5 is proved. According to Lemma 3.1-Lemma 3.5, we have the follow-
ing theorem.  

Theorem 3.1. The stochastic dynamical system ( ){ }, , 0S t w t ≥  has a family 
of random attractors ( ) ( ) ,k kA w K w E w⊂ ⊂ ∈Ω  and there exists a tempered 
random set ( )K w , so that . .a e wP ∈Ω   

 ( ) ( )( )
0,

, , .k
t t

A w S t w K wτ
τ

θ θ τ−
≥ ≥

= −∩ ∪              (3.51) 

and ( ) ( ) ( ), k k tS t w A w A wθ= . 
In conclusion, according to Ornstein-Uhlenbeck process, we transformed the 

equation into a stochastic equation with random variables and multiplicative 
white noise; then we proved the existence of a bounded random absorbing set; 
through the isomorphic mapping method and the compact embedding theorem, 
we get the stochastic dynamical system with a family of the random attractors. 
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