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Abstract 
Bearings are widely utilized as key components in industrial scenarios. 
Therefore, the automatic and precise inspection of bearing defects is impera-
tive for the manufacturing of the bearing. In this paper, a novel defect detec-
tion method based on acoustics is proposed to further improve both the ac-
curacy and the efficiency of the defection process. We firstly constructed a 
labeled dataset composed of acoustic signals sampling from different bearings 
with a certain rotational speed. OpenSMILE is adopted to extract the acoustic 
features and the target acoustic feature dataset with 6373 features is formed. 
To further improve the efficiency of the proposed method, a feature selection 
strategy based on the chi-square test is adopted to eliminate the most ineffi-
cient features. Several statistical learning models are constructed and trained 
as the classifier. Eventually, the performance of classifiers is evaluated and 
achieves relatively high accuracy and efficiency with an extremely imbalanced 
dataset.  
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1. Introduction 

Bearings are important components widely used in production, especially in 
precision instrument production like optical, mechanical and electrical systems. 
Thus, the requirements of manufacturing precision of bearings are relatively 
high to ensure the performance and reliability of integrated systems. Under this 
circumstance, the classification of bearing defects is extremely meaningful in 
both industrial and economic aspects. 

According to industrial experience and collected statistics, the common bear-
ing conditions in production can be roughly categorized into three groups: 
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Qualified, Inner Ring Defect (IRD) and Ultra Precision Defect(UPD). Samples 
with Inner Ring Defect and Ultra Precision Defect should be recalled and de-
structed. The purpose of our work is to propose an algorithm that can precisely 
classify the samples and reduce defective rate. In this scenario, capability of re-
calling the defective products is the main descriptor of model performance. 

In former research, the methods of detection of bearing defects were usually 
developed in perspective of time-domain signal, deep learning [1] and computer 
vision [2]. The deep learning model with high complexity may lead to massive 
amount of parameter, which will reduce the efficiency of training and classifica-
tion. In our model, instead of using a complicated convolutional or recursive 
deep neural network, we constructed classifiers based on traditional machine 
learning methods. The model was trained with a dataset composed of filtered 
acoustic features. The acoustic feature dataset and statistical learning models 
brought many unique characteristics to our model. 

We used openSMILE to extract acoustic features of original time domain sig-
nal, and built a new dataset based on the extracted features. With a certain vibra-
tion sequence, openSMILE can output the corresponding feature vector of the 
sample. Based on the extracted feature vectors, we constructed a new dataset. 
The acoustic feature dataset allowed to avoid using deep learning methods, such 
as one-dimensional Convolutional Neural Network to categorize. 

Then, we performed feature selection to the acoustic feature dataset to further 
improve the performance of our model. Due to the restrained size of our dataset 
and the mathematical characteristics of most machine learning algorithms, an 
extremely high dimensional dataset will result in overfitting and unacceptable 
computational cost. To improve the accuracy and efficiency of the classifier, we 
use MATLAB and the built-in statistical algorithms to select features. 

Finally, we applied statistical learning methods as the classifiers. In the indus-
trial scenes, the prevalent deep learning models are unacceptably time-consuming 
in both training and predicting stages. To construct a model with balanced per-
formance, we chose some of the statistical learning methods to improve the 
overall efficiency of the model. We also evaluated and compared the perfor-
mance of the different classifiers. 

The article is organized as follows: In Section 2 we introduced the basic struc-
ture and distribution of the original dataset. Section 3 presented the construction 
of ComParE 2016 Acoustic Feature Set and the procedure of feature extraction 
by openSMILE toolkit. In Section 4 we described feature selection with chi-square 
test. In Section 5, we trained the statistical learning models, listed related statistics, 
compared and analyzed their performances. Section 6 is the conclusion of the 
paper. 

2. Dataset Construction 

According to the experience of industrial production, defective bearings make a 
different sound from normal bearings when rotating. In our work, we built the 
bearing defect detection model based on sound signals. 
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The original dataset is composed of sound signals of different bearings rotat-
ing at a certain rotational speed of 1800 rpm. The sound signals are presented as 
numerical sequences; the value of elements in the sequences reflected the ampli-
tude of sound signal when rotating. 

The samples of sound signals were manually labelled and categorized into 3 
groups: Qualified, Inner Ring Defection (IRD), and Ultra Precision Defection 
(UPD). The total number of the samples in the dataset is 708, which indicated 
that the dataset is relatively small scaled. In the original labeled dataset, the dis-
tribution of different samples is shown in Table 1. According to Table 1, the 
dataset is relatively imbalanced, this may lead to models low capacity of genera-
lization, hence accuracy will not be the only evaluation standard of overall per-
formance.  
 
Table 1. Dataset distribution.  

Defect Category Number of Samples Percentage 

Qualified 627 88% 

IRD 78 11% 

UPD 9 1% 

3. Feature Extraction 

Traditionally, the classification problems about time domain signals are usually 
solved by deep learning methods. By using one-dimensional Convolutional 
Neural Networks (CNN), the model can automatically extract the features [3]. 
Recurrent Neural Networks (RNN) and their derivatives are another widely used 
category of Artificial Neural Networks in time-related problems. RNN can build 
the relationship between current output and previous hidden state, and one of 
the derivatives, Long Short-Term Memory model introduced gating system to 
solve the problem of gradient exploding and vanishing [4]. However, despite the 
outperforming results in accuracy of the deep learning models, their time cost of 
training and predicting is unacceptable in industrial bearing production. 

To apply our model into the scene of industrial production, the balance of 
accuracy and efficiency is required. Thus, we considered using statistical learn-
ing methods. However, traditional statistical learning methods usually performs 
badly on sequential problems, so we performed feature extraction by using 
openSMILE to extract acoustic features of the time domain signals. 

3.1. Feature Set 

Effective feature extraction can output crucial acoustic features for bearing de-
fect detection, which can directly improve the performance of prediction system. 
However, there are few studies about feature extraction of bearing defect detec-
tion. In our work, we adopted experience on emotion recognition to our model. 
In emotion recognition and natural language processing tasks, to process more 
complex sound signals, a more detailed feature set is need. We utilized the ComParE 
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2016 Acoustic Feature Set in feature extraction. The ComParE feature set con-
tains 6373 features resulting from the computation of various functionals over 
low-level descriptor (LLD) contours [5]. The feature set has been proved effec-
tive in emotion recognition [6], thus it is very likely to be capable of defect de-
tection. 

3.2. Extraction with OpenSMILE 

OpenSMILE is an open-source audio feature extractor. It can process the origi-
nal vibration sequences and directly output the corresponding numerical values 
and name of the acoustic features [7]. With different configuration files, openS-
MILE can extract different features. The overall steps of feature extraction are 
described in Figure 1. 

In our architecture, we used one of the default configuration files provided by 
the developers of openSMILE. We extracted 6373 acoustic features in total.The 
features can be divided into 65 categories by corresponding LLDs [8]. The LLDs 
are shown in Table 2. 
 

 
Figure 1. Process of feature extraction. 

 
Table 2. 65 low-level descriptors (LLDs).  

LLDs 

Sum of auditory spectrum (loudness) 

Sum of RASTA-style filtered auditory spectrum 

RMS energy ZCR (Zero-Crossing Rate) 

RASTA-style auditory spectrum, bands 1 - 26 (0 - 8 kHz) 

MFCC 1 - 14 

Spectral energy 250 - 650 Hz, 1 kHz - 4 kHz 

Spectral roll off point 0.25, 0.50, 0.75, 0.90 

Spectral flux, centroid, entropy, slope 

Psychoacoustic sharpness, harmonicity 

Spectral variance, skewness, kurtosis 

F_0 

Prob. of voice 

Log. HNR, Jitter (local, delta), Shimmer (local) 

4. Feature Selection 

Due to the unacceptable computational cost of deep learning model, we chose 
several classical machine learning models as the classifier. According to the ma-
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thematical theory, for most of the machine learning models, an extremely large 
number of dimensions will lead to overfitting, and result in perfect performance 
on training set and bad performance on testing set. An overfitted model does not 
have ideal performance in application for its lack of generalization capability, so 
the model cannot be used in industrial production under this circumstance. Be-
sides, high dimensional dataset will greatly increase the computational cost of 
our model, which will have negative effect on the efficiency of our model. 

To avoid overfitting, we performed feature selection to decrease the number 
of features. By using chi-square tests, we computed the corresponding p-values 
of features. According to basic knowledge of statistics, a small p-value indicates 
that the corresponding feature is dependent on label, thus, it is an important 
feature. 

We performed feature selection with MATLAB and its built-in function fsc-
chi2. The fscchi2 function automatically compute the p-values, then output the 
vector of predictor scores.The predictor score is −log(p), therefore, a larger pre-
dictor score indicates the corresponding predictor is more label-dependent and 
contains more information. We selected 600 features with largest predictor 
scores and built the final dataset. The features with the largest predictor scores 
are shown in Table 3.  

The most label-dependent attributes are mainly related to spectral LLDs, such 
as spectral variance and spectral slope. This is reasonable for the sound signals of 
bearing rotation are generally periodic and simple signals when compared to 
human emotional signals. 
 
Table 3. The most label-dependent features and corresponding predictor sores. 

Feature LLD Predictor Score 

pcm_fftMag_spectralVariance_sma_quartile1 Spectral Variance 86.78 

pcm_fftMag_spectralSlope_sma_quartile3 Spectral Slope 80.58 

pcm_fftMag_spectralVariance_sma_amean Spectral Variance 79.13 

pcm_fftMag_spectralSlope_sma_quartile2 Spectral Slope 78.07 

pcm_fftMag_spectralSlope_sma_amean Spectral Slope 76.44 

pcm_fftMag_spectralVariance_sma_rqmean Spectral Variance 76.20 

pcm_fftMag_spectralVariance_sma_quartile2 Spectral Variance 75.49 

pcm_fftMag_spectralSlope_sma_peakMeanAbs Spectral Slope 74.88 

logHNR_sma_de_minPos Log.HNR 73.70 

pcm_fftMag_spectralSlope_sma_quartile1 Spectral Slope 71.05 

5. Classifiers and Performance Analysis 
5.1. Classification Algorithms 

The training of machine learning models is implemented on WEKA platform, 
which integrated various statistical learning methods [9]. We selected several 
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prevalent statistical learning methods as classifiers: Simple Logistic Regression, 
C4.5 Decision Tree, Discrete AdaBoost and LogitBoost. 

Simple Logistic Regression is a classical linear classification algorithm. It is 
widely used in various fields. It is easy to train and use, however, due to the rela-
tively simple model structure, Simple Logistic Regression may have unsatisfying 
performance on complex nonlinear problems. Thus, we applied LogitBoost Al-
gorithm. LogitBoost Algorithm is an application of boosting procedure. Boost-
ing means combining the performance of several weak classifiers and produce a 
strong learnable classifier. The most famous boosting machine learning algo-
rithm is AdaBoost. LogitBoost is a unique derivative of AdaBoost based on logis-
tic regression and maximum log-likelihood cost function [10]. To compare the 
classification capabilities of different AdaBoost algorithms, we also implemented 
Discrete AdaBoost, also known as AdaBoost M1, it is another widely used 
boosting algorithm [11]. To investigate the effect of Decision Tree on bearing 
defect detection, the C4.5 Decision Tree Algorithm is also included to compari-
son [12]. 

5.2. Performance Analysis 

Due to the limited scale of the dataset, we implemented the evaluation of models 
with 10-flod cross validation. Since the dataset is extremely imbalanced, and the 
final purpose is to detect the defective samples, to evaluate the overall perfor-
mance, in addition to accuracy, we also made use of other information such as 
AUC (area under ROC curve), recall and confusion matrices. 

The accuracies, AUC and recalls are presented in Table 4. The simplest clas-
sifier, logistic regression, performs well in both Qualified and IRD categories, 
with an overall accuracy of 89.22%. However, even though its recall of the UP 
category is 0.364, which is relatively good, the corresponding AUC is as low as 
0.545. According to knowledge about machine learning, a low AUC value, which 
is close to 0.5, indicates that the classifier tends to classify the samples randomly, 
so the correct classification of UP samples is the result of random classification. 

The boosting methods, LogitBoost and Discrete AdaBoost perform differently 
under the imbalanced circumstance. LogitBoost has a high accuracy of 91.46%, 
the highest value in selected classifiers, and performs well in IRD samples, with a 
recall of 0.592. LogitBoost also have a high AUC value in all three categories. By 
optimizing the distribution of dataset, the performance of LogitBoost may be 
improved. However, Discrete AdaBoost tends to categories all of the samples as 
Qualified samples. This is a common problem in imbalanced machine learning. 
C4.5 Decision Tree has an accuracy of 89.36%, and its recalls in IRD and UPD 
categories are close to Logistic Regression, while the AUC is relatively low. This 
may prove that the C4.5 Decision Tree is not reliable enough in defect detection. 

Confusion matrices also provided direct visual information about the perfor-
mance of different models. We presented the confusion matrices of selected 
models in Figure 2. The diagonal blocks are painted blue, a deeper blue color  
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Table 4. Performance statistics. 

Classifier Recall AUC Accuracy 

Logistic Regression 

Qualified 0.936 0.862 

89.22% IRD 0.605 0.857 

UPD 0.364 0.545 

LogitBoost 

Qualified 0.968 0.932 

91.46% IRD 0.592 0.916 

UPD 0.091 0.919 

Discrete AdaBoost 
(AdaBoost M1) 

Qualified 0.992 0.884 

88.66% IRD 0.145 0.870 

UPD 0.000 0.883 

Decision Tree (J48) 

Qualified 0.941 0.699 

89.36% IRD 0.579 0.701 

UPD 0.364 0.653 

 

 

Figure 2. Confusion matrices. 
 
represents better performance on the corresponding category. According to the 
figure, we can conclude that Logistic Regression and C4.5 Decision Tree have 
relatively satisfying performance. This may indicate that defect detection is not a 
extremely complex nonlinear question, and methods with simple structures are 
capable of classification. However, as we mentioned in previous analysis, Logis-
tic Regression and C4.5 Decision Tree have low values of AUC, which proved 
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that the classification procedures of the two algorithms are performed randomly. 
This may explain their good performances on rare categories in an extremely 
imbalanced scenario. 

To compare the efficiency of machine learning model and evaluate the im-
provement brought by feature selection, we trained the model with original 
acoustic feature dataset and outputted relative statistics. The time cost data of 
model training with dataset before and after feature selection is shown in Table 
5. 
 
Table 5. Average time cost of model training. 

Classifier 
Average Time Cost (Seconds) 

6373 Features 600 Features 

Logistic Regression 10.35 0.68 

LogitBoost 18.01 0.98 

Discrete AdaBoost (AdaBoost M1) 3.41 0.58 

C4.5 Decision Tree (J48) 4.04 0.25 

 
According to the statistics, LogitBoost Algorithm have highest time cost while 

obtaining relatively ideal accuracy and recall. When traininig with 6373 features, 
the average time cost of 18.01 seconds is unacceptable in industrial application. 
High training time cost may result in difficulty in updating and maintaining the 
model, which will greatly reduce the efficiency. However, after feature selection, 
the time costs were greatly lowered, made the models more practical in produc-
tion. 

6. Conclusions 

The classification of three categories of bearing conditions: Qualified, Inner Ring 
Defect, Ultra Precision Defect, was investigated with integrated statistical learn-
ing methods. We adopted ComParE 2016 Acoustic Feature Set in our model, 
which has been proved to be effective in various fields including emotion and 
language recognition. The ComParE 2016 Acoustic Feature Set configuration file 
was integrated into openSMILE, by using the file and openSMILE toolkit, we ex-
tracted 6373 acoustic features related to 65 LLDs. Then we performed feature se-
lection with a chi-square test and selected 600 of most label-dependent attributes. 
The important attributes are mainly related to spectral LLDs. In the WEKA 
platform, we trained several statistical learning classifiers. The best accuracy of 
91.46% was obtained by LogitBoost model. The model also performed relatively 
well in minor categories. In IRD category, the model acquired a recall of 0.592. 
The AUC of the model is also relatively high, with a weighted average value of 
0.930. We also compared the time cost of models trained with 6373 and 600 fea-
tures and concluded that feature selection greatly improved the efficiency. 

Since the dataset is small-scaled and unevenly distributed, the overall perfor-
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mance of the model can still be improved. A larger and evenly distributed data-
set will be constructed in near future. With a more reasonable dataset, the aim of 
future work will focus on improving performance in defective categories, com-
pare and investigate the time cost of the defect detection model.  
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