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Abstract 
Shortcomings of the Boltzmann physical kinetics and the Schrödinger wave 
mechanics are considered. From the position of nonlocal physics, the Schrödin-
ger equation is a local equation; this fact leads to the great shortcomings of 
the linear Schrödinger wave mechanics. Nonlocal nonlinear quantum me-
chanics is considered using the wave function terminology. 
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1. Introduction. Shortcomings of the Schrödinger and  
Madelung Quantum Mechanics 

Shortcomings of the Boltzmann physical kinetics consist in the local description 
of the transport processes on the level of infinitely small physical volumes (PhSV) 
as elements of diagnostics. In other words, in Boltzmann’s theory [1] PhSV is a 
closed thermodynamic system. All details of the proposed nonlocal theory can 
be found in [2]-[10]. But here we formulate the remarks of the principal signi-
ficance: 

1) Kinetic theory and hydrodynamic theory should be non-local. 
2) The nonlocal effects are due to the reduced description and are not related 

to the specific division of the physical system by the PhSV grid.  
3) Accurate derivation of the kinetic equation with respect to the one-particle 

distribution function (DF) should lead to corrections of the order of the Knud-
sen number before uncoupling the Bogolyubov chain [2]-[10].  

4) This means that in the Boltzmann equation the terms of the order of the 
Knudsen number are lost, significant for both large and small Knudsen num-
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bers.  
5) The Boltzmann equation does not even belong to the class of minimal 

models, being only a “plausible” equation.  
6) Boltzmann equation in this sense—the wrong equation. 
7) Obviously the mentioned non-local effects can be discussed from viewpoint 

of breaking of the Bell’s inequalities because in the non-local theory the mea-
surement (realized in PhSV1) has an influence on the measurement realized in 
the adjoining space-time point in PhSV2 and verse versa. 

8) Madelung’s quantum hydrodynamics is equivalent to the Schrödinger Equ-
ation (SE) and furnishes the description of the quantum particle evolution in the 
form of Euler equation and continuity equation. Madelung quantum hydrody-
namics does not lead to the energy equation in principal, and SE leads to the so-
liton destruction in the Schrödinger-Madelung wave mechanics. 

9) Nonlocal physical kinetics brings the strict approximation of non-local ef-
fects in space and time and after transfer to the local approximation leads to pa-
rameter τ , which on the quantum level corresponds to the uncertainty prin-
ciple “time-energy”. Methods of the τ  definition in [2]-[10] are considered.  

It is established that the theory of transport processes (including quantum 
mechanics) can be presented within the framework of the universal theory (uni-
fied theory of dissipative systems) based on the nonlocal physical description 
[2]-[10]. It is shown, in particular, that the equations of nonlocal physics lead to 
the appearance of solitons, which supports the Schrödinger opinion, who inter-
preted quantum mechanics from the point of view of the existence of waves of 
matter.  

Let us turn to the logic of the development of the non-local theory of trans-
port processes: 

1) In 1926 Madelung published a brilliant article [11] in which he transformed 
the quantum postulate (Schrödinger equation containing the ψ  wave function) 
in hydrodynamics. In other words, the evolution of a single bound electron was 
possible to interpret as some effective flow.  

2) In 1964 John Stewart Bell [12] found that local statistical theory of dissipa-
tive processes is incorrect in principle. 

3) In 2007 I found that the Schrödinger equation and hydrodynamic Made-
lung’s form are a deep particular case of nonlocal kinetic equations (see for ex-
ample [9] [10]) as a result of the transition to the local limit of non-local equa-
tions. In other words, generalized hydrodynamic equations (GHE) should con-
tain Schrödinger Equation (SE) as a deep special case. This affirmation was 
proved in articles [9] [10]; we formulated in explicit form all assumptions (all 
steps) that should be implemented to obtain SE from GHE. 

This means that generalized physical kinetics (as created earlier by me, see 
for example [2]-[10]) has been extended to quantum physics in the form of 
non-local quantum hydrodynamics (NLQH). Then a new quantum mechanics 
of dissipative processes has been created.  
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The Schrödinger equation is not dissipative. Therefore, generalized quantum 
hydrodynamics is a tool for solving problems in the theory of dissipative na-
no-systems.  

Here just note that: 
1) SE is not able to give a self-consistent description of the nucleus-electron 

shell.  
2) SE does not lead to an independent analogue of the hydrodynamic energy 

equation.  
3) SE (and its equivalent hydrodynamic Madelung form) is not a dissipative 

equation and therefore cannot be applied to the description of dissipative processes 
in nanotechnology. 

4) The Schrödinger equation cannot explain spontaneous emission, since the 
wave function of the excited state is an exact solution of the time-dependent SE 
equation [13]. 

5) The linear Schrödinger equation cannot describe the measurement process 
in quantum mechanics, since the measurement process is nonlinear, stochastic 
and irreversible in time. 

6) The Schrödinger equation cannot describe the processes of mutual trans-
formations of elementary particles. 

7) The Schrödinger equation is not able to describe the “nucleus-electron shell” 
complex as a whole. 

8) The Schrödinger equation is not able to describe the spatial electron shell 
without using additional assumptions, such as the Pauli principle. 

9) To a large extent, the result of quantization is the result of cutting off infi-
nite series and turning them into polynomials. This process resembles the trans-
formation of a traveling wave into a system of standing waves if a reflection from 
an obstacle is introduced. 

As you know, the basic equation of quantum mechanics—the Schrödinger 
equation is written in terms of the wave function and is, in fact, a postulate. The 
Schrödinger equation is “guessed” based on reasonable physical considerations. 
The main stages of similar “derivation” can be characterized as follows: 

1) The desired equation should reflect the wave properties of particles, in-
cluding one-dimensional harmonic oscillations 

( )cosA t kxξ ω= −                         (1.1) 

Relation (1.1) includes the circular frequency ω  and wave number 2k λ= π , 
where λ  is the wavelength. In accordance with the de Broglie principle, we 
compare this oscillation to a certain corpuscular object and introduce the con-
nection of its kinetic energy кE  and momentum p with the frequency attri-
buted to it: 

2ω υ= π ,                           (1.2) 

h hp
c
υ

λ
= = .                          (1.3) 

Formulas (1.2), (1.3) are known from the theory of radiation characteristics of 
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photons, distributed in all material particles.  
2) Now we introduce a complex function ( ),x tψ  as a characteristic of the 

field associated with the existence of this object: 
( )e i t kxωψ − −= .                          (1.4) 

Let us note, that  

кEω = � , 2k pλ= π = � .                   (1.5) 

3) After substitution (1.5) in (1.4) one obtains: 

( )exp к
i E t pxψ  = − −  �

.                    (1.6) 

Let us differentiate the wave function (1.6) by time 

кEi
t
ψ ψ∂  = − ∂  �

                        (1.7) 

and multiply both parts of (1.7) by i�   

кi E
t
ψ ψ∂

=
∂
� .                         (1.8) 

Now let’s differentiate (1.6) twice by x  
22 2

2 2

p pi
x
ψ ψ ψ∂  = = − ∂  � �

.                    (1.9) 

when differentiating, it is assumed that the kinetic energy and momentum of the 
particle do not depend on the coordinates and time, and, therefore, we are talk-
ing about a free particle. Because 

2

2к
pE
m

= ,                         (1.10) 

it is possible to record (1.9) in the form of 
2 2

22 кE
m x

ψ ψ∂
− =

∂
� .                      (1.11) 

Compare now (1.8) and (1.11), the right parts of these relations are the same. 
Therefore, recording is possible 

2 2

22
i

t m x
ψ ψ∂ ∂

= −
∂ ∂

�
� .                     (1.12) 

Equation (1.12) is declared to be the sought equation describing the state of the 
considered corpuscle.  

4) The following reasonable generalization: 
a) if we consider 3D case: 

2 2 2 2

2 2 22
i

t m x y z
ψ ψ ψ ψ ∂ ∂ ∂ ∂

= − + + ∂ ∂ ∂ ∂ 

�
� .             (1.13) 

b) if we consider now the particle movement in a potential field ( )tzyxU ,,, ; 
this potential energy should be added on the right-hand side of (1.13): 
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2 2 2 2

2 2 22
i U

t m x y z
ψ ψ ψ ψ ψ

 ∂ ∂ ∂ ∂
= − + + + ∂ ∂ ∂ ∂ 

�
� .            (1.14) 

Equation (1.14) was derived in 1926 by Erwin Schrödinger and bears his name. 
Schrödinger’s first message [14] is entitled “Quantization as an eigenvalue prob-
lem.” 

Some comments to this equation: 
1) Restriction on the mass of the particle is not entered. However, the particle 

is considered as a material point. Generalization of the equation to many-particle 
systems is a separate problem. To solve, for example, the problem of the evolu-
tion of a system containing n electrons, it is necessary to consider ψ  as a func-
tion of 3n independent coordinates and time t.  

2) The Schrödinger equation belongs to the class of linear equations. This 
means that in the sum of some solutions 1ψ  and 2ψ  of the Schrödinger equa-
tion there is also a solution to this equation 1 2ψ ψ ψ= + . 

3) The Schrödinger equation belongs to the class of reversible equations of 
physics; the form of this equation does not change when replacing t with (−t) 
and simultaneously ψ  replacing the wave functions on a complex conjugate 
wave function ψ ∗ . 

4) The Schrödinger equation does not satisfy Lorentz transformation and 
therefore does not describe relativistic phenomena. In particular, the Schrödin-
ger equation does not contain the spin of elementary particles, which is a con-
sequence of the relativistic quantum Dirac equation. No calculations are neces-
sary to ensure that Equation (1.14) is not invariant with respect to the Lorenz’s 
transformation. As it is known, in the four-dimensional Minkowski space relati-
vistic equations contain “equal standing” for independent variables, including 
time. However, the Schrödinger equation contains the second derivatives of 
coordinates and only the first derivatives of time. 

The disadvantages of the Schrödinger equation: 
1) The Schrödinger equation is a postulate. Another differentiation of the 

function leads to other equations, for example, to equations containing the 
second derivative of time. 

2) The Schrödinger equation does not describe dissipative processes. 
3) The Schrödinger equation is not able to describe the whole complex “nuc-

leus-electron shell”. 
4) The Schrödinger equation is unable to describe a spatial electron shell 

without the use of additional assumptions such as the Pauli principle. 
5) To a large extent, the quantization result is the result of cutting infinite se-

ries and turning them into polynomials. 
The next obvious step was taken by E. Madelung (E. Madelung [11]) in 1926. 

We are talking about the derivation of a special form of the Schrödinger equa-
tion after the wave function representation in the form of 

( ) ( ) ( ), ,, , , , ei x y zx y z x y z βψ α= .                 (1.15) 
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After using (1.15) and separating the real and imaginary parts of Equation 
(1.15), Madelung obtained two hydrodynamic equations-the continuity equation  

( ) 0
t
ρ ρ∂ ∂
+ ⋅ =

∂ ∂
v

r
                        (1.16) 

and the equation of motion for the Euler potential flow 

1 U
t m

∗∂ ∂ ∂ + ⋅ = − ∂ ∂ ∂ 

v v v
r r

,                    (1.17) 

where the effective potential has the form 
22 2 1

22 4quU U U U
m m

ρρ ρ
ρρ ρ

•
 ∂ = + − ∆ = − ∆ −  ∂   

� �
r

.     (1.18) 

Identifications 
2ρ α= ,                          (1.19) 

m
β∂  =  ∂  

�v
r

                        (1.20) 

introduced in Equations (1.16), (1.17). The existence of a condition (1.20) means 

that the stream has potential 
m
β�

. 

Schrödinger assumed, that the spatial evolution of a quantum object (such as 
an electron) can be described as the motion of a wave packet, in other words, a 
soliton. But Pauli showed that the wave packet, built on Schrödinger, is spread-
ing in space.  

Really, the non-stationary 1D Schrödinger Equation (SE) can be writes as 
2

2
i

t m
ψ ψ∂

= − ∆
∂

�
� ,                    (1.21) 

where ψ  is the wave function. In the ID case we have 
2

22
i

t m x
ψ ψ∂ ∂

= −
∂ ∂

� .                    (1.22) 

Let us introduce the scales 0 0 0,t x t
m

=
� . Introducing the dimensionless time 

t�  and Cartesian distance x� , we find for (1.22) ( 271.054572 10 erg s−= × ⋅� ) 
2

2

1
2

i
t x
ψ ψ∂ ∂

= −
∂ ∂� �

.                     (1.23) 

The solution (1.23) has the form 

( )
2

02
0

4 11
1 2 24

2

, e e
1 2

ik
xk itx t

it
ψ

 
− − −  +  π=

+

�
�� ���

�
,            (1.24) 

if  

( )
2

02
0

1
244

2,0 e e
ik

xk
xψ

 
− − −  
 =

π

�
��

� ,                (1.25) 
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where 0
~k  is the dimensionless wave number. We notice also that 

( )
2

2 02 0
0

1
444

2,0 e e
k

x xk ik
xψ

 
 − − −−  
 =

π

�
�� ��

�                 (1.26) 

The validity (1.24) can be proved after substitution (1.24) into (1.23). For exam-
ple 

( )

( ) ( )

2
02

0

2
02

0

4 11
1 2 24

3 2

4 211
1 2 2 04

1 2 2

2

e e
1 2

2
2e e

21 2 1 2

ik
xk it

ik
xk it

i
t it

ik
x

it it

ψ
 

− − −  +  

 
− − −  +  

∂ π=
∂ +

  π  − −   + +  

�
�� �

�
�� �

� �

�
�

� �

    (1.27) 

or 

( )

2
02

0

4 211
1 2 2 04

3 2

2
2e e 1

1 2 21 2

ik
xk it ik

i x
t itit
ψ

 
− − −  +  

  ∂ π  = − −  ∂ + +   

�
�� � �

�
� ��

.     (1.28) 

After calculation we find 

( )
( )

2
02

0

4 2112
1 2 2 04

2 3
2

22 2, e e 1
1 2 21 2

ik
xk it ik

x t x
itx it

ψ
 

− − −  +  
  ∂  π= − − −   +∂   +  

�
�� � �

�� �
�� �

  (1.29) 

and comparing (1.29) and (1.28) we find identity (1.23). 
Let us find now ( ) 2

,x tψ ψψ ∗=�� . With this aim we should obtain the com-
plex conjugate value ψ ∗ . We have the transformed wave function ψ  

( )
2 2

2 20 0
2 0 020

2 2
2 20 02 0 02 20

14 2 2 21
4 41 44

14 1 4 2 2
4 21 4 1 44

2

2

, e e
1 2

2

e e e 1 2 .
1 4

k k
x ixk it x ixkk t

k kix txk xk tx tk t t

x t
it

it
t

ψ

  
  − − − − − −

−   +   

   
−  − −   + − −    + +   

π=
+

π= −
+

� �
� ��� � � �� �

� �
� �� � �� � � �� � �

��
�

�
�

  (1.30) 

Using the De Moivre formula (1707) and geometric relations [15]) we obtain 

( ) ( )
( )

22
2 02 02 00 220

11 2 2 0.5arctan 21 4
24 1 41 44

4 2

2, e e e
1 4

kk i xk tx t tx txkk ttx t
t

ψ

      + − + −−  − −   −  + +      =
π +

�� �� � � �� � �� �� ����
�

.(1.31) 

Then 

( ) ( )
( )

22
2 02 02 00 220

11 2 2 0.5arctan 21 4
24 1 41 44

4 2

2, e e e
1 4

kk i xk tx t tx txkk ttx t
t

ψ

     −  + − + −−  − −   −  + +  •     =
π +

�� �� � � �� � �� �� ����
�

(1.32) 

Now we can calculate 

( ) ( )

2
2 02 020

21 4
2 41 42

2

2, e e
1 4

k
x tk xk tx t

t
ψ ψψ

  − − − − +∗   = =
π +

�
��� �� ���

�
.         (1.33) 
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As we see ( ) 2
, 0x tψ →��  if t →∞� . Really, the dispersive behavior of this 

wave packet is obvious by looking at the probability density (1.33). For the large 
t�  

( )
2

2 02 02 00

1 21 4
2 422

2

1 1 1 1, e e ~ e ~
2

k
x tk x k xk t tx t

t t t
ρ ψ

  − − − −   = =
π

�
��� � �� �� ���

� � �
.      (1.34) 

It is evident that this dispersive wave packet, while moving with constant 
group velocity ( 0 constk =� ), is delocalizing rapidly (if t →∞� ). This fact leads 
to dramatic consequences not only for the theoretical physics but for biology al-
so (see [16]). 

The nonlocal physics radically improve the situation; as a result we obtain sta-
ble solitons [2] [3] [4] [5] [17]. 

Let us consider the β  dimension, using (1.20). 

[ ]
2

2

cm erg s g cm s cm .
s g cm g cm ssm

β β β∂ ⋅ ⋅ = = = ∂ ⋅ ⋅ 

�v
r

         (1.35) 

It means that β  is a dimensionless value. The abstract of the classic Made-
lung’s article [11] contains only one brilliant phrase: “It is shown that the 
Schrödinger equation for one-electron problems can be transformed into the 
form of hydrodynamic equations”. 

This means that a single electron can be “smeared” into hydrodynamics! 
It is not surprising that the generalized hydrodynamic theory also works for 

large Knudsen numbers. SE is transformed into the hydrodynamic form of Ma-
delung without additional assumptions. Numerical methods of hydrodynamics 
are well developed. As a result, back in the late seventies of the last century, we 
implemented systematic calculations [2] of quantum mechanics problems using 
the equations of quantum hydrodynamics.  

However, practically the hydrodynamics of Madelung was forgotten. There 
was a (erroneous) opinion that quantization could not be introduced into Ma-
delung hydrodynamics. It is interesting to note that in the famous book by Da-
vid Bohm (Quantum Theory, New York, Prentice-Hall, Inc., 1952), containing 
728 pages in Russian translation, Madelung’s name is not even mentioned! 

SE is reduced to a system of equations consisting of the continuity equation 
and a special case of the motion equation with an additional quantum potential 

quU  proportional to 2� . The physical meaning and origin of the quantum po-
tential is discussed in [17] [18]. The SE is obtained within the framework of the 
classical theory of complex variables and cannot contain an independent energy 
equation in principle. As a result, a palliative approach is used in many cases, 
when the solution of dissipative problems of quantum mechanics is found by 
formally introducing quU  into classical hydrodynamic equations.  

Despite the non-dissipative form of the equations in the form of Euler equa-
tions, the Schrödinger equation becomes reversible with respect to the replace-
ment of the time direction t t→ −  only after the transition to complex conju-
gate quantities in the SE. In other words, the “derivation” of the SE using the 
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wave function in the form ( )ei t kxωψ −=  leads to another system of hydrody-
namic equations: 

( ) 0,
t
ρ ρ∂ ∂

− + ⋅ =
∂ ∂

v
r

                      (1.36) 

1 ,U
t m

•∂ ∂ ∂ − + ⋅ = − ∂ ∂ ∂ 

v v v
r r

                  (1.37) 

This means that the generalized hydrodynamic equations (GHE) contain an im-
plicit approximation against the direction of the arrow of time. The theory of ir-
reversible processes denies the possibility of the existence of such processes. 
However, the Poincare—Zermelo theorem allows, in principle, the return of the 
system to its original state if the evolution of the system obeys the dynamics of 
Newton. 

The next question of fundamental importance—is it possible to obtain the 
Schrödinger equation from the local Liouville equation, namely from the Liou-
ville equation written with respect to a single-particle distribution function 
( ), p,f x t  

( )p 0
p

f f fF x
t m x

∂ ∂ ∂
+ + =

∂ ∂ ∂
,                  (1.38) 

where ( ) UF x
x

∂
= −

∂
 is an external force acting on a particle of mass. The answer  

to this question is no. In essence, Equation (1.38) is a collisionless local Boltzmann 
equation. It is established [9] [10] that the Liouville equation can be transformed 
into SE only after the artificial introduction of spatial nonlocality without the in-
troduction of nonlocality in time (E. Carnovalli Jr, H.M. Franca, B.V. Alexeev). 

2. Generalized Hydrodynamic Equations of Nonlocal Physics  
and Madelung Wave Function 

The generalized hydrodynamic equations (GHE) can be obtained from the non-
local kinetic equation in the frame of the Enskog procedure, (see for example [2] 
[3] [4] [5]). Generally speaking to GHE should be added the system of genera-
lized Maxwell equations (for example in the form of the generalized Poisson eq-
uation for electric potential) and gravitational equations (for example in the 
form of the generalized Poisson equation for gravitational potential). For exam-
ple 

( )1
04 N t

ργ ρ τ ρ∂  ∂ ∂  ⋅ = − π − + ⋅  ∂ ∂ ∂  
F v

r r
.            (2.1) 

(Continuity equation for species α ) 

( ) ( )

( ) ( )

0 0 0

1
0 0 0I .

t t t

p q
R

m

α
α α α α α α

α α
α α α α α

α

ρ
ρ τ ρ ρ τ ρ

ρ ρ ρ

 ∂ ∂ ∂ ∂  ∂  − + ⋅ + ⋅ −    ∂ ∂ ∂ ∂ ∂   
∂∂ + ⋅ + ⋅ − − × =∂ ∂ 

�

v v v
r r

v v F v B
r r

   (2.2) 
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(Continuity equation for mixture) 

( ) ( )

( ) ( )

0 0 0

1
0 0 0I 0.

t t t

p q
m

 ∂ ∂ ∂ ∂  ∂  − + ⋅ + ⋅ −    ∂ ∂ ∂ ∂ ∂   

∂∂ + ⋅ + ⋅ − − × =∂ ∂ 

∑ ∑

�

α
α α α α

α α

α α
α α α α

α

ρ
ρ τ ρ ρ τ ρ

ρ ρ ρ

v v v
r r

v v F v B
r r

    (2.3) 

(Momentum equation for species α ) 

( ) ( )

( ) ( ) ( )

( )

1
0 0 0 0 0

1
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1
0 0 0 0 0

0 0

I

p q
t t m

q
t m t

p q
p

m

t

∂∂  ∂ ∂ − + ⋅ + − − × ∂ ∂ ∂ ∂ 

 ∂ ∂  ∂  − − + ⋅ − −   ∂ ∂ ∂   

∂ ∂ ∂+ ⋅ + − − × × + ⋅ + ∂ ∂ ∂ 
∂

−
∂

�

α α
α α α α α α α

α

α α
α α α α α α α

α

α α
α α α α α α

α

α α

ρ τ ρ ρ ρ ρ

ρ
ρ τ ρ ρ τ ρ

ρ ρ ρ ρ

τ ρ

v v v v F v B
r r

F v v v
r

v v F v B B v v
r r r

v v( ) ( ) ( ) ( )

( ) ( ) [ ] [ ]

0 0 0 0 0

1 1
0 0 0 0 0 0

, ,

I 2I I

d d .st el st inel

p p p

q q
m m

m J m J

∂ ∂ ∂  + + ⋅ + ⋅ + ⋅  ∂ ∂ ∂  

− − − × − × 


= +∫ ∫

� � �
α α α α

α α
α α α α α α

α α

α α α α α α α α

ρ

ρ ρ ρ ρ

v v v v v
r r r

F v v F v B v v v B

v v v v

(2.4) 

(Momentum equation for mixture) 

( ) ( )

( ) ( ) ( )

( )
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0 0 0 0 0 I

p q
t t m

q
t m t

p q
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∂∂  ∂ ∂ − + ⋅ + − − × ∂ ∂ ∂ ∂ 

 ∂ ∂  ∂  − − + ⋅ − −   ∂ ∂ ∂   
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∑ ∑
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α α
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α α α α
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ρ ρ ρ ρ
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( ) ( ) [ ] [ ]
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1 1
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I 2I I

0.

p p p

q q
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∂ ∂ ∂  + + ⋅ + ⋅ + ⋅  ∂ ∂ ∂  

− − − × − × =


� � �
α α α α α

α α
α α α α α α

α α

ρ

ρ ρ ρ ρ

v v v v v v v
r r r

F v v F v B v v v B

(2.5) 

(Energy equation for α  species) 
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2 2
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0 0
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( ) ( ) [ ] [ ]

[ ] ( ) ( ) ( ) ( )

( ) [ ]

2
1 12 0

0 0 0

1 1 1
0 0 0

1
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2 2
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α α α α α α

α α α α
α α α α α
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ε ε

− − − × − ×

   ∂ − × − − ⋅ − ⋅   ∂ 
∂ ∂ + ⋅ + ⋅ Ι − − × ∂ ∂ 

   
= + + +   

   
∫

�

F F v B v B

v B F F v F v

v v F v B
r r

v d .inel
α∫ v

   (2.6) 

(Energy equation for mixture) 
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2 2
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− − − × − ×

  ∂ − × − − ⋅ − ⋅   ∂ 
∂ ∂ + ⋅ + ⋅ Ι − − × =∂ ∂ 

∑ ∑

�

F F v B v B

v B F v F F v

v v F v B
r r

(2.7) 

Here ( )1
αF  are the forces of the non-magnetic origin acting on the mass unit, 

B —magnetic induction, I
�

—unit tensor, qα —charge of the α —component 
particle, pα —static pressure for α —component, αε —internal energy for the 
particles of α —component, αρ  is density for α  species, 0v —hydrodynamic 
velocity for mixture, ατ —non-local parameter.  

For many decades (due to natural historical reasons), the equations of quan-
tum mechanics were written in terms of the wave function ψ . Is such a nota-
tion possible for nonlinear Equations (2.1)-(2.7)?  

This procedure is quite possible if we take into account that the hydrodynamic 
correspondence of the wave function and the variables of quantum hydrody-
namics is introduced using the Madelung relations: 

( ) ( ) ( ), , ,, , , , , , ei x y z tx y z t x y z t βψ α= ,                (2.8) 

2ρ α= ,                            (2.9) 

0 m
β∂

=
∂
�v

r
                         (2.10) 

Of course, quantum pressure p cannot be represented through a wave func-
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tion, since Schrödinger-Madelung quantum mechanics does not contain an in-
dependent equation of energy (and, therefore, pressure p).  

Thus, at the first glance, the nonlocal hydrodynamic equations together with 
the Madelung conditions (2.8)-(2.10) exhaust the problem. 

3. About the Non-Local Hydrodynamic Equations in  
ψ-Interpretation 

The following conclusions of fundamental importance can be made: 
1) Madelung’s quantum hydrodynamics is equivalent to the Schrödinger equ-

ation and leads to a description of the evolution of a quantum particle in the 
form of the Euler motion equation and the continuity equation. We have a con-
sequence of the nonlocal Liouville equation as a result of the local spatial ap-
proximation of the nonlocal equations. 

2) Generalized Boltzmann physical kinetics contains strict consideration of 
nonlocal effects in space and time and, after a limiting transition to the local ap-
proximation, leads to a nonlocality parameter quτ , which at the quantum level 
is consistent with the Heisenberg uncertainty principle. 

3) Generalized hydrodynamic equations (GHE) contain SE as a deep special 
case. In other words, we have formulated explicitly [9] [10] all the assumptions 
that must be implemented to obtain SE from GHE. At the final stage, for sim-
plicity, a non–stationary 1D Madelung-Schrodinger model was obtained without 
taking into account external forces. So, we can state that we have a deep special 
case of generalized hydrodynamic equations. This means that a new quantum 
mechanics of dissipative processes has been created. 

4) The Boltzmann equation fundamentally “does not work” at distances of the 
order of the radius of interaction of particles and, therefore, cannot be effectively 
used in the theoretical study of nanotechnology problems even within the 
framework of “plausible” models. 

GHE have the extremely important special cases for astrophysics, when the 
density 0ρ →  (the initial stage of the evolution of the Universe, the Big Bang, 
see for example [4] [19]) and when the density ρ →∞  (the evolution of a 
black hole, [4] [20]. Both limiting cases have neither physical nor mathematical 
meaning in “classical” hydrodynamics. Thus, we have a unified statistical theory 
of dissipative structures having a hydrodynamic form. 

Between these global (and rather new problems) we have a very old problem 
about the physical sense of wave function and quantum jumps. When surveying 
the literature, one often gets the impression that Schrödinger held several dis-
tinct interpretations of quantum mechanics, and practically in all cases he de-
nied the interpretation of the Copenhagen group. It is known the most impres-
sive Schrödinger reaction: “If we have to go on with these damned quantum 
jumps, then I’m sorry that I ever got involved”. 

In NLQH we needn’t to use the formalism of the ψ  function description. 
Then we needn’t finding the physical interpretation of ψ  function.  
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From position of nonlocal physics ψ -function is only a mathematical func-
tion (between many others) defining by relations (2.8)-(2.10). The attempt to 
find any physical sense for ψ  has no reason. 

But physical community accustomed to “the ψ  interpretation”. Then it is 
reasonable to find “the ψ  interpretation” of non-local hydrodynamic equa-
tions from the simplest considerations avoiding complex mathematical formal-
ism. 

Let us consider the transformation of the nonlocal continuity equation in the 
equations of the wave quantum mechanics including the Schrödinger-Madelung 
model. We transform the nonlocal continuity equation written for one species 
flow corresponding to the Schrödinger-Madelung model (see also (2.3) and 
(2.8)-(2.10)). For the simplicity we do not take into account the influence of 
magnetic effects 

( ) ( ) 0qu qut t t
ρρ τ ρ ρ τ ρ ρ ρ∂  ∂ ∂  ∂  ∂ ∂    − + ⋅ + ⋅ − + ⋅ − =      ∂ ∂ ∂ ∂ ∂ ∂      

v v v vv F
r r r

.(3.1) 

Using the Madelung identifications 
2ρ α ψψ ∗= = ,                          (3.2) 

and 

m
β∂  =  ∂  

�v
r

,                          (3.3) 

we find 

eiβψ α= , ln ln iψ α β= + , ln lni iψ α β= − ,           (3.4) 

or 

ln lni iβ α ψ= − .                        (3.5) 

Then 
2ln lni i

ψβ ψ∂∂ ∂
= −

∂ ∂ ∂r r r
,                    (3.6) 

Let us rewrite the continuity equation  
2

2 2 2

2 2 2 0

qu

qu

t t m m

t m m m

α β βα τ α α

β β βτ α α α

  ∂ ∂ ∂  ∂  ∂  ∂    − + ⋅ + ⋅       ∂ ∂ ∂ ∂ ∂ ∂        
 ∂  ∂  ∂  ∂ ∂       − + ⋅ − =         ∂ ∂ ∂ ∂ ∂          

� �

� � �

r r r r

F
r r r r

   (3.7) 

The subsequent transformations are of a fundamentally important nature and 
we will give detailed calculations 

2
2 2

2
2 2 2 2 0

qu

qu

t t m

m t m m

α βα τ α

β β β βα τ α α α

  ∂ ∂ ∂ ∂  − + ⋅   ∂ ∂ ∂ ∂    
   ∂ ∂ ∂ ∂ ∂ ∂ ∂     + ⋅ − + ⋅ − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂         

�

� � �

r r

F
r r r r r r

(3.8) 
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or 
2 2

2

2
2 2 2 2 0

qu

qu

t t t m

m t m m

ψ ψ βτ ψ

β β β βψ τ ψ ψ ψ

  ∂ ∂ ∂ ∂ ∂  − + ⋅   ∂ ∂ ∂ ∂ ∂    
   ∂ ∂ ∂ ∂ ∂ ∂ ∂     + ⋅ − + ⋅ − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂         

�
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F
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(3.9) 
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(3.10) 

or 

2
2

2
2 2 2

1
2

2

0
2

qu

qu

i i
t t t m

i i
m m

i
t m m

ψ ψ βτ ψ
ψ

β β ψψ

β β βτ ψ ψ ψ
ψ
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  (3.11) 
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∂  ∂ ∂  − ⋅   ∂ ∂ ∂  

 ∂ ∂∂ ∂ ∂ ∂ ∂ = ⋅ − ⋅ + − ⋅
 ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

∂  ∂ ∂ ∂ + ⋅ ⋅  ∂ ∂ ∂ ∂ 
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is so called the Bohm’s quantum potential, where Laplacian ∆  defined as usual 
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 (3.18) 

Let us make some intermediate conclusions: 
1) The nonlocal continuity Equation (3.18), written in terms of the wave func-

tion and the relations (2.8)-(2.10), is a nonlinear partial differential equation 
containing derivatives in time, coordinates and cross derivatives. 

2) The local continuity equation corresponds to the condition 0quτ =  and 
has the form 

2

2
2 2 2

2

ln ln ln
2

qui U
t m

m m m

ψ ψ ψ

ρ ρ ψ ψ ψψ

∂
= − ∆ −

∂

 ∂ ∂ ∂ ∂ ∂
− + ⋅ − ⋅ 

∂ ∂ ∂ ∂ ∂  r r r r r

�
�

� � �
     (3.19) 

3) Equation (3.19) is transformed into the Schrödinger equation 
2

2 qui U
t m
ψ ψ ψ∂

= − ∆ −
∂

�
�                     (3.20) 

only after discarding the members of the second line in (3.19) as small terms 
containing derivatives of logarithmic functions. In this case, the nonlinear Equa-
tion (3.19) becomes the linear Schrödinger equation. 

4) The nonlocal nonlinear Equation (3.18) contains the symmetric cross time- 
coordinate derivatives (the last two terms of the left hand side of Equation (3.18)). 

In the following for the simplicity we use the condition constquτ = . We find 
from Equation (3.18) 
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 (3.22) 

https://doi.org/10.4236/jamp.2021.911183


B. V. Alexeev 
 

 

DOI: 10.4236/jamp.2021.911183 2905 Journal of Applied Mathematics and Physics 
 

Let us consider the penultimate term of Equation (3.22) using the tensor rela-
tions 

( )( ): = ⋅ ⋅ab cd a d b c                       (3.23) 

and  

( )W : W⋅ ⋅ =b a ba ,                       (3.24) 

where the double point ( ):  denotes the double tensor product. In this case 
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Then Equation (3.22) takes the form 
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or using the relation (3.6) we reach 
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Omitting all terms containing the derivatives of the logarithmic functions we have 

( )
2 2
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Omitting all terms containing nonlocal parameter quτ  in Equation (3.29) we 
lose the last connection with non-local physics and find the typical form of the 
Schrödinger equation  

2

0
2 qui U

t m
ψ ψ

 ∂
= − ∆ + = ∂  

�
� ,                   (3.30) 

where 
2

2quU
m

ρ
ρ

= − ∆
�

.                       (3.31) 

is the quantum potential in the Bohm interpretation. 
I underline that this equation does not contain the nonlocal parameter quτ  at 

all. It means that from the position of nonlocal physics the linear Schrödinger 
equation is local equation. This fact creates all difficulties of the Schrödinger 
wave mechanics.  

Interesting to notice, that introducing the operator of the substation derivative 

,qu
D
Dt t

τ∂ ∂
= + ⋅
∂ ∂

F
r

                       (3.32) 

we obtain the kinetic transport equation with the relativistic correction in the 
form 
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           (3.35) 

The force F  (in Equation (3.28)) is the force acting on the unit mass. In the 

theory of superconductivity, we can use 
e
m

=F E . Then 

e
e e
m m

ρ∂ ∂
⋅ = ⋅ =

∂ ∂
F E

r r
,                     (3.36) 

where eρ  is the charge density. Then using (3.35) and (3.36) we obtain 
2

2 2 2qu qu qu e
D i i eU
Dt m mt
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or 
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4. Conclusions 

1) For the SE obtaining we need only a generalized continuity equation even 
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without generalized motion equation and generalized energy equation. Moreo-
ver, the Schrödinger equation corresponds to the generalized continuity equa-
tion with nonlocal parameter 0quτ = . But we need to omit all nonlinear terms 
containing the derivatives of logarithmic functions. 

2) Omitting nonlinear terms in the generalized continuity equation but con-
serving the terms proportional to quτ  we obtain other known quantum equa-
tions. In particular, the second term in the left-hand side of Equation (3.29) cor-
responds to the relativistic Schrödinger equation. The corresponding last terms 
in Equation (3.38) lead to the Ginzburg-Landau theory.  

3) A rhetorical question arises—why does the Schrödinger equation work at 
all? Violation of the Bell inequalities for local statistical theories is established 
and the transition to a nonlocal description is inevitable.  

The physics of the twenty-first century is nonlocal physics. 
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