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Abstract 
We consider the energy operator of four-electron systems in an impurity 
Hubbard model and investigated the structure of essential spectra and dis-
crete spectrum of the system in the first triplet state in a one-dimensional lat-
tice. For investigation the structure of essential spectra and discrete spectrum 
of the energy operator of four-electron systems in an impurity Hubbard model, 
for which the momentum representation is convenient. In addition, we used 
the tensor products of Hilbert spaces and tensor products of operators in 
Hilbert spaces and described the structure of essential spectrum and discrete 
spectrum of the energy operator of four-electron systems in an impurity Hub-
bard model. The investigations show that there are such cases: 1) the essential 
spectrum of the system consists of the union of no more than eight segments, 
and the discrete spectrum of the system consists of no more than three ei-
genvalues; 2) the essential spectrum of the system consists of the union of no 
more than sixteen segments, and the discrete spectrum of the system consists 
of no more than eleven eigenvalues; 3) the essential spectrum of the system 
consists of the union of no more than three segments, and the discrete spec-
trum of the system is the empty set. Consequently, the essential spectrum of 
the system consists of the union of no more than sixteen segments, and the 
discrete spectrum of the system consists of no more than eleven eigenvalues. 
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1. Introduction 

In the early 1970s, three papers [1] [2] [3], where a simple model of metal was 
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proposed that has become a fundamental model in the theory of strongly corre-
lated electron systems, appeared almost simultaneously and independently. In 
that model, a single nondegenerate electron band with a local Coulomb interac-
tion is considered. The model Hamiltonian contains only two parameters: the 
matrix element t of electron hopping from a lattice site to a neighboring site and 
the parameter U of the on-site Coulomb repulsion of two electrons. In the sec-
ondary quantization representation, the Hamiltonian can be written as  

 , , , , , ,
,

,m m m m m m
m m

H t a a U a a a aγ γ
γ

+ + +
↑ ↑ ↓ ↓= +∑ ∑               (1) 

where ,ma γ
+  and ,ma γ  denote Fermi operators of creation and annihilation of 

an electron with spin γ  on a site m and the summation over τ  means sum-
mation over the nearest neighbors on the lattice. 

The model proposed in [1] [2] [3] was called the Hubbard model after John 
Hubbard, who made a fundamental contribution to studying the statistical me-
chanics of that system, although the local form of Coulomb interaction was first 
introduced for an impurity model in metal by Anderson [4]. We also recall that 
the Hubbard model is a particular case of the Shubin-Wonsowsky polaron mod-
el [5], which had appeared 30 years before [1] [2] [3]. In the Shubin-Wonsowsky 
model, along with the on-site Coulomb interaction, the interaction of electrons 
on neighboring sites is also taken into account. 

The Hubbard model is currently one of the most extensively studied multie-
lectron models of metals [6] [7] [8] [9] [10]. Therefore, obtaining exact results 
for the spectrum and wave functions of the crystal described by the Hubbard 
model is of great interest. The spectrum and wave functions of the system of two 
electrons in a crystal described by the Hubbard Hamiltonian were studied in [6]. 
It is known that two-electron systems can be in two states, triplet and singlet [6] 
[7] [8] [9] [10]. It was proved in [6] that the spectrum of the system Hamiltonian 

tH  in the triplet state is purely continuous and coincides with a segment 
[ ] [ ], 2 4 ,2 4m M A B A Bν ν= − + , and the operator sH  of the system in the singlet 
state, in addition to the continuous spectrum [ ],m M , has a unique antibound 
state for some values of the quasimomentum. 

The spectrum and wave functions of the system of three electrons in a crystal 
described by the Hubbard Hamiltonian were studied in [11]. The three-electron 
systems exist quartet state, and two type doublet states. 

The spectrum of the energy operator of a system of four electrons in a crystal 
described by the Hubbard Hamiltonian in the triplet state was studied in [12]. 
The four-electron systems exist quintet states, and three type triplet states, and 
two type singlet states. The triplet state corresponds to the basic functions 
1 1

, , , 0, , , ,m n p r m n p rt a a a a ϕ+ + + +
↑ ↑ ↑ ↓= , 2 1

, , , 0, , , ,m n p r m n p rt a a a a ϕ+ + + +
↑ ↑ ↓ ↑= ,  

3 1
, , , 0, , , ,m n p r m n p rt a a a a ϕ+ + + +

↑ ↓ ↑ ↑= . 
The spectrum of the energy operator of four-electron systems in the Hubbard 

model in the quintet and singlet states was studied in [13]. The quintet state 
corresponds to the free motion of four electrons over the lattice with the basic 
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functions 2
, , , 0, , , ,m n p r m n p rq a a a a ϕ+ + + +

↑ ↑ ↑ ↑= . The work [13] proved, that the spectrum 
of the system in a quintet state is purely continuous and coincides with the seg-
ment [ ]4 8 ,4 8A B A Bν ν− + , and the four-electron bound states or the 
four-electron antibound states are absent. The singlet state corresponds to the 
basic functions 1 0

, , , 0, , , ,p q r t p q r ts a a a a ϕ+ + + +
↑ ↑ ↓ ↓= , 2 0

, , , 0, , , ,p q r t p q r ts a a a a ϕ+ + + +
↑ ↓ ↑ ↓= , and these 

two singlet states have different origins. 
The use of films in various areas of physics and technology arouses great in-

terest in studying a localized impurity state (LIS) of a magnet. Therefore, it is 
important to study the spectral properties of electron systems in the impurity 
Hubbard model. The spectrum of the energy operator of three-electron systems 
in the Impurity Hubbard model in the second doublet state was studied [14]. 
The structure of essential spectra and discrete spectrum of three-electron sys-
tems in the impurity Hubbard model in the Quartet state were studied in [15]. 

2. Hamiltonian of the System 

We consider the energy operator of four-electron systems in the Impurity Hub-
bard model and describe the structure of the essential spectra and discrete spec-
trum of the system for the first triplet states in the one-dimensional lattice. The 
Hamiltonian of the chosen model has the form  

 ( ) ( ) ( )
( )

, , , , , , , ,
, , ,

0 0, 0, 0 0, , , 0,
,

0 0, 0, 0, 0, .

m m m m m m m m
m m m

H A a a B a a U a a a a

A A a a B B a a a a

U U a a a a

γ γ γ τ γ
γ τ γ

γ γ γ τ γ τ γ γ
γ τ γ

+ + + +
+ ↑ ↑ ↓ ↓

+ + +

+ +
↑ ↑ ↓ ↓

= + +

+ − + − +

+ −

∑ ∑ ∑

∑ ∑        (2) 

Here ( )0A A  is the electron energy at a regular (impurity) lattice site, ( )0B B  
is the transfer integral between (between electron and impurities) neighboring 
sites (we assume that ( )00 0B B> >  for convenience), , 1, 2, ,je jτ ν= ± = � , 
where je  are unit mutually orthogonal vectors, which means that summation 
is taken over the nearest neighbors, ( )0U U  is the parameter of the on-site 
Coulomb interaction of two electrons in the regular (impurity) sites, γ  is the  

spin index, γ = ↑  or γ = ↓ , ↑  and ↓  denote the spin values 1
2

 and 1
2

− ,  

and ,ma γ
+  and ,ma γ  are the respective electron creation and annihilation oper-

ators at a site m Zν∈ . 
The four-electron systems have a quintet state, and two type singlet state, and 

three type triplet states. The energy of the system depends on its total spin S. 
Along with the Hamiltonian, the eN  electron system is characterized by the  

total spin S, max max min, 1, ,S S S S= − � , max 2
eN

S = , min
10,
2

S = . 

Hamiltonian (2) commutes with all components of the total spin operator 

( ), , zS S S S+ −= , and the structure of eigenfunctions and eigenvalues of the sys-
tem, therefore, depends on S. The Hamiltonian H acts in the antisymmetric Fock 
space as . 
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3. Four-Electron First Triplet State in the Impurity Hubbard  
Model 

Let 0ϕ  be the vacuum vector in the space as . The first triplet state corres-
ponds to the free motion of four electrons and their interactions over the lattice 
with the basic functions 1 1

0, , , ,, , , p q r kp q r k Z
t a a a aν ϕ+ + + +

↑ ↑ ↑ ↓∈
= . The subspace 1

1
t , cor-

responding to the first triplet state is the set of all vectors of the form  
( )1 1 1

1 , , , , , ,
, , ,t

p q r k Z p q r k Z
f p q r k tν νψ

∈ ∈
= ∑ , 2

asf l∈ , where 2
asl  is the subspace of 

antisymmetric functions in the space ( )( )4

2l Zν . We denote by 1
1
tH  the restric-

tion of operator H to the subspace 1
1
t . We let 1 0A Aε = − , and 2 0B Bε = − , 

and 3 0U Uε = − . 
Theorem 1. (coordinate representation of the action of operator 1

1
tH ) The 

subspace 1
1
t  is invariant under the operator H, and the restriction 1

1
tH  of 

operator H to the subspace 1
1
t  is a bounded self-adjoint operator. It generates 

a bounded self-adjoint operator 1
1
tH  acting in the space 2

asl  as  

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1 1
1 1

, , ,

1 ,0 ,0 ,0 ,0 2 ,0

,0 ,0 ,0 ,

4 , , , , , , , , ,

, , , , , , , , ,

, , , , , ,

, , , , , , , , , 0, ,

t t

p k q k r k

p q r k p

q r k p

H Af p q r k B f p q r k f p q r k

f p q r k f p q r k U f p q r k

f p q r k f q r k

f p r k f p q k f p q r f q

τ

τ

τ

ψ τ τ

τ τ δ δ δ

ε δ δ δ δ ε δ τ

δ τ δ τ δ τ δ

= + + + +

 + + + + + + +  
  + + + + +  

+ + + +

∑

∑

( )
( ) ( ) ( )

( )
, , ,

3 ,0 ,0 ,0 ,0 ,0 ,0

,

,0, , , ,0, , , ,0

, , , .

q r k

p k q k r k

r k

f p r k f p q k f p q r

f p q r k
τ τ τδ δ δ

ε δ δ δ δ δ δ

+ + + 
 + + + 

(3) 

The operator 1
1
tH  acts on a vector 1 1

1 1
t tψ ∈   as  

 ( )( )1 1 1 1 1
1 1 1 , , ,

, , ,

, , , .t t t
p q r k Z

p q r k Z

H H f p q r k t ν
ν

ψ
∈

∈

= ∑              (4) 

Proof. We act with the Hamiltonian H on vectors 1 1
1 1
t tψ ∈   using the stan-

dard anticommutation relations between electron creation and annihilation op-
erators at lattice sites, { }, , , ,,m n m na aγ β γ βδ δ+ = , { } { }, , , ,, ,m n m na a a aγ β γ β θ+ += = , and 
also take into account that , 0ma γϕ θ= , where θ  is the zero element of 1

1
t . 

This yields the statement of the theorem.                                
Lemma 1. The spectra of the operators 1

1
tH  and 1

1
tH  coincide.  

Proof. Because the operators 1
1
tH  and 1

1
tH  are bounded self-adjoint opera-

tors, it follows that if ( )1
1
tHλ σ∈ , then the Weyl criterion (see [16], chapter 

VII, paragraph 3, pp. 262-263) implies that there is a sequence { } 1n n
ψ ∞

=
 such 

that 1nψ =  and ( )1
1lim 0t

n nH λ ψ→∞ − = . We set  
( ) 0, , , ,, , , , , ,n n p q r kp q r k f p q r k a a a aψ ϕ+ + + +

↑ ↑ ↑ ↓= ∑ . Then  

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

21 1 1
1 1 1

21
1 0 0, , , , , , , ,

, , ,

21
1 0 0, , , , , , , ,

, , ,

,

, , , ,

, , , ,

t t t
n n n

t
n p q r k p q r k

p q r k

t
n k r q p p q r k

p q r k

H H H

H f p q r k a a a a a a a a

H F p q r k a a a a a a a a

λ ψ λ ψ λ ψ

λ ϕ ϕ

λ ϕ ϕ

+ + + + + + + +
↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓

+ + + +
↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓

− = − −

= −

= −

∑

∑
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( ) ( ) ( )

( ) ( )

21
1 0 0

, , ,

21
1, , ,

, , , ,

, , , 0, as

t
n

p q r k

t
np q r k

H F p q r k

H F p q r k n

λ ϕ ϕ

λ

= −

= − → →∞

∑

∑
 

where ( ), , , , , ,n np q r kF f p q r k= ∑ . It follows that ( )1
1
tHλ σ∈ . Consequently, 

( ) ( )1 1
1 1
t tH Hσ σ⊂ . 

Conversely, let ( )1
1
tHλ σ∈ . Then, by the Weyl criterion, there is a sequence 

{ } 1n n
F ∞

=
 such that 1nF =  and ( )1

1lim 0t
n nH λ ψ→∞ − = . Setting  

( ), , , , , ,n np q r kF f p q r k= ∑ , ( )( )
1

2 2
, , , , , ,n np q r kF f p q r k= ∑ , we conclude that  

1n nFψ = =  and ( ) ( )1 1
1 1 0t t

n nH F Hλ λ ψ− = − →  as n →∞ . This means 
that ( )1

1
tHλ σ∈  and hence ( ) ( )1 1

1 1
t tH Hσ σ⊂ . These two relations imply  

( ) ( )1 1
1 1
t tH Hσ σ= .                                                  

We call the operator 1
1
tH  the four-electron first triplet state operator in the 

impurity Hubbard model. 
Let ( )( ) ( )( )4 4 1

2 2 1: tl Z L T Hν ν→ ≡ �  be the Fourier transform, where Tν  
is the ν -dimensional torus endowed with the normalized Lebesgue measure 
dλ , i.e. ( ) 1Tνλ = . 

We set 1 1 1
1 1
t tH H −=�   . In the quasimomentum representation, the operator 

1
1
tH  acts in the Hilbert space ( )( )4

2
asL Tν , where 2

asL  is the subspace of anti-
symmetric functions in ( )( )4

2L Tν . 
Theorem 2. (quasimomentum representation of the action of operator 1

1
tH ) 

The Fourier transform of operator 1
1
tH  is an operator 1 1 1

1 1
t tH H −=�    acting 

in the space ( )( )4

2
asL Tν  be the formula  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) [ ] ( )

1 1
1 1

1

2
1

, , , , , , , , , d

, , , d , , , d

, , , d , , , d , , , d

, , , d 2 cos cos , , , d

v

v v

v v v

v v

t t
T

T T

T T T

v

i iT T
i

H h f U f s s s

f u u u f v v v

f s s f u u f v v

f s f s s

ψ λ µ γ θ λ µ γ θ µ γ λ θ

λ γ µ θ λ µ γ θ

ε µ γ θ λ γ θ λ µ θ

λ µ γ ξ ξ ε λ µ γ θ
=

= + + −
+ + − + + − 

+ + +
+ + + 

∫

∫ ∫

∫ ∫ ∫

∑∫ ∫

�

 

[ ] ( )

[ ] ( )

[ ] ( )

( ) ( )

( )

1

1

1

3

cos cos , , , d

cos cos , , , d

cos cos , , , d

, , , d d , , , d d

, , , d d ,

v

v

v

v v

v

i iT
i

v

i iT
i

v

i iT
i

T T

u f u u

v f v v

f

f s s f u u

f v v

µ λ γ θ

γ λ µ θ

θ ξ λ µ γ ξ ξ

ε µ γ ξ ξ λ γ ξ ξ

λ µ ξ ξ

=

=

=

+ +

+ +

+ + 

+ +

+ 

∑∫

∑∫

∑∫

∫ ∫

            (5) 

where ( ) [ ]1, , , 4 2 cos cos cos cosi i i iih A B νλ µ γ θ λ µ γ θ
=

= + + + +∑ , and 2
asL  is 

the subspace of antisymmetric functions in ( )( )4

2L Tν .  
Proof. The proof is by direct calculation in which we use the Fourier trans-

formation in formula (3).                                             

https://doi.org/10.4236/jamp.2021.911179


S. M. Tashpulatov, R. T. Parmanova 
 

 

DOI: 10.4236/jamp.2021.911179 2781 Journal of Applied Mathematics and Physics 
 

In the impurity Hubbard model, the spectral properties of the considered op-
erator of the energy of four-electron systems are closely related to those of its 
two-particle subsystems (one-electron systems with impurity). We first study the 
spectrum and localized impurity electron states of the one-electron impurity 
systems. 

4. One-Electron Systems in the Impurity Hubbard Model 

The Hamiltonian of one-electron systems in the impurity Hubbard model also 
has form (2). We let 1  denote the space of one-electron states of the operator 
H. It is clear that the space 1  is also invariant under operator H. We let H1 
denote the restriction of H to the space 1

� . 
Theorem 3. (coordination representation of the action of operator H1) The 

space 1  is an invariant under operator H, and restriction H1 of operator H to 
the subspace 1  is a bounded self-adjoint operator. It generates a bounded 
self-adjoint operator 1H , acting in the space 2

asl  as  

( )( ) ( ) ( ) ( )

( ) ( )

1 1 ,0

2 ,0 , 0 ,

p

p p

H f p Af p B f p f p

f f
τ

τ
τ

τ ε δ

ε δ τ δ

= + + +  

 + + 

∑

∑
           (6) 

where ,k jδ  is the Kronecker symbol. The operator H1 acts on a vector 1ψ ∈  
as  

 ( )( )1 1 0,
,

.p
p

H H f p a
τ

ϕ+
↑= ∑                      (7) 

Lemma 2. The spectra of the operators 1H  and 1H  coincide.  
We let   denote the Fourier transform: ( ) ( )2 2: l Z L Tν ν→ . We set 

1
1 1H H −=�   . In the quasimomentum representation, the operator 1H  acts in 

the Hilbert space ( )2L Tν . 
Theorem 4. (quasimomentum representation of the action of operator 1H� ) 

The Fourier transform of the operator 1H  is a bounded self-adjoint operator 

1H�  acting in the space 1
�  be the formula  

 
( )( ) ( ) ( )

[ ]

1 1
1

2
1

2 cos d

2 cos cos d .

i T
i

i iT
i

H f A B f f s s

s s

ν

ν

ν

ν

λ λ λ ε

ε λ

=

=

 = + +  

+ +

∑ ∫

∑∫

�

          (8) 

Comparing the formulas (5) and (8), and using tensor products of Hilbert 
spaces and tensor products of operators in Hilbert spaces [17], and taking into 
account that the function ( ), , ,f λ µ γ θ  is an antisymmetric function, we can 
verify that the operator 1

1
tH�  can be represented in the form  

 { } { }1
1 1 1 1 1 ,tH H I I H K I I I I H I I H= ⊗ +⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗� � � � �    (9) 

where I is the unit operator in space 1
� , and 

11 2K K KΛ= + , and  

( )( ) ( )
1 11 d

T
K f U f s sνλΛ Λ= ∫ , and ( )( ) ( )2 , , d d

T T
K f s t f s t s tν ν= ∫ ∫ , and  

( ) ( )
1 1,f s f s sΛ = Λ − , 1 λ θΛ = + . 
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It is known that the continuous spectrum of operator 1H�  fills the entire 
segment [ ] [ ], 2 , 2m M A B A Bν ν ν ν= − + . We set  

( ) ( ) ( ){ }1
2 3 1 2 3 2 11D z b b a b b a bν

ν ν ν−= − + − −   , where  

1 2 1

1

1 2 1

2

1

1

1

1

2 cos d d
1 ,

2 cos

cos 2 cos d d
,

2 cos

i

T
i

i i

T
i

i

i

i

i

s s s
a

A B s z

s s s s
a

A B s z

ν

ν

ν
ν

ν

ν
ν

ν

ε ε

ε ε

=

=

=

=

 + = +
+ −

 + =
+ −

∑
∫ ∑

∑
∫ ∑

�

�
 

1 1

1

1 2 2 2

1

d d cos d d
2 , 1 2 ,

2 cos 2 cos
i

T T
i ii i

s s s s s
b b

A B s z A B s z
ν ν

ν ν
ν νε ε
= =

= = +
+ − + −

∫ ∫∑ ∑
� �  

3 2

1

1cos d d
2

2 cosi

i
T

i

s s s
b

A B s z
ν

ν
νε
=

=
+ −

∫ ∑
� ,  

and ν  is lattice dimensionality. 
Lemma 3. A number [ ]0 ,z m Mν ν∉  is an eigenvalue of operator 1H�  if and 

only if it is a zero of the function ( )D zν .  
Definition 1. The eigenfunction ( )2L Tνϕ ∈  of the operator 1H�  corres-

ponding to an eigenvalue [ ],z m Mν ν∉  is called a local impurity state (LIS) of 

1H� , and z is called the energy of this state.  
The following Theorem describes the exchange of the spectrum of operator 

1H�  in the case 1ν = . 
Theorem 5. (description of the spectra of the operator 1H� )  
A) If 2 Bε = −  and 1 2Bε < −  (respectively, 2 Bε = −  and 1 2Bε > ), then 

the operator 1H�  has a unique eigenvalue 1z A ε= + , lying below (respectively, 
above) the continuous spectrum of the operator 1H� . 

B) If 2 2Bε = −  and 1 0ε <  or 2 0ε =  and 1 0ε <  (respectively, 2 2Bε = −  
and 1 0ε >  or 2 0ε =  and 1 0ε > ), then the operator 1H�  has a unique ei-
genvalue 2 2

14z A B ε= − +  (respectively, 2 2
14z A B ε= + + ), lying the be-

low (respectively, above) of continuous spectrum of the operator 1H� . 
C) If 1 0ε =  and 2 0ε >  (respectively, 1 0ε =  and 2 2Bε < − ), then the op-

erator 1H�  has a unique eigenvalue 
2

2

1

BEz A
E

= −
−

, (respectively,  

2

2

1

BEz A
E

= +
−

), where ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, lying the below (respectively, above) 

of continuous spectrum of the operator 1H� . 

D) If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
=  (respectively, 

( )2
2 2

1

2 2B

B

ε ε
ε

+
= − ,) then the oper-

ator 1H�  has a unique eigenvalue 
( )2

2

2 1

1

B E
z A

E

+
= +

−
 (respectively,  

( )2

2

2 1

1

B E
z A

E

+
= −

−
), where ( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

, lying the above (respectively, below) 
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of continuous spectrum of the operator 1H� . 

E) If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
>  (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
> ), then the operator 1H�  has a unique eigenvalue  

( )2 2

1 2

2 1

1

B E E
z A

E

α α+ − +
= +

−
, where ( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real number 

1α > , lying the above of continuous spectrum of the operator 1H� . 

F) If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< −  (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
< − ), then the operator 1H�  has a unique eigenvalue  

( )2 2

1 2

2 1

1

B E E
z A

E

α α+ − +
= −

−
, where ( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real number 

1α > , lying the below of continuous spectrum of the operator 1H� . 

K) If 2 0ε >  and 
( ) ( )2 2

2 2 2 2
1

2 2 2 2B B

B B

ε ε ε ε
ε

+ +
− < <  (respectively,  

2 2Bε < −  and 
( ) ( )2 2

2 2 2 2
1

2 2 2 2B B

B B

ε ε ε ε
ε

+ +
− < < ), then the operator 1H�  has 

a exactly two eigenvalues 
( )2 2

1 12

2 1

1

B E E
z A m

E

α α+ − +
= + <

−
, and  

( )2 2

2 12

2 1

1

B E E
z A M

E

α α− − +
= + >

−
, where ( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

, and real number 

1α < , lying the above and below of continuous spectrum of the operator 1H� . 

M) If 22 0B ε− < < , then the operator 1H�  has no eigenvalue lying the out-
side of continuous spectrum of the operator 1H� .  

Proof. In the case 1ν = , the continuous spectrum of the operator 1H�  coin-
cide with the segment [ ] [ ]1 1, 2 , 2m M A B A B= − + . Expressing all integrals in the  

equation ( )1 0D z =  through the integral ( ) d
2 cosT

sJ z
A B s z

=
+ −∫ , we find 

that the equation ( )1 0D z =  is equivalent to the equation  

 ( )( ) ( ) ( )22 2
1 2 2 22 0.B B z A J z Bε ε ε ε + + − + + =            (10) 

Moreover, the function ( )J z  is a differentiable function on the set [ ]1 1\ ,m M ,  

in addition, ( )
[ ]2

d 0
2 cosT

sJ z
A B s z

′ = >
+ −

∫ , [ ]1 1,z m M∉ . Thus the function  

( )J z  is a monotone increasing function on ( )1,m−∞  and on ( )1,M +∞ . Fur-
thermore, ( ) 0J z → +  as z → −∞ , ( )J z → +∞  as 1 0z m→ − , ( )J z → −∞  
as 1 0z M→ + , and ( ) 0J z → −  as z → +∞ . 

If ( )( )2 2
1 2 22 0B B z Aε ε ε+ + − ≠  then from (10) follows that  
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( ) ( )
( )( )

2
2

2 2
1 2 2

.
2

B
J z

B B z A
ε

ε ε ε

+
= −

+ + −
 

The function ( ) ( )
( )( )

2
2

2 2
1 2 22

B
z

B B z A
ε

ψ
ε ε ε

+
= −

+ + −
 has a point of asymptotic 

discontinuity 
2

1
0 2

2 22
Bz A

B
ε

ε ε
= −

+
. Since ( )

( ) ( )
( )( )

2 2
2 2 2

22 2
1 2 2

2

2

B B
z

B B z A

ε ε ε
ψ

ε ε ε

+ +
′ =

 + + − 

  

for all 0z z≠  it follows that the function ( )zψ  is a monotone increasing (de-
creasing) function on ( )0, z−∞  and on ( )0 ,z +∞  in the case 2

2 22 0Bε ε+ >  
(respectively, 2

2 22 0Bε ε+ < ), in addition, and if 2 0ε > , or 2 2Bε < − , then 
( ) 0zψ → +  as z → −∞ , ( )zψ → +∞  as 0 0z z→ − , ( )zψ → −∞  as 

0 0z z→ + , ( ) 0zψ → −  as z → +∞  (respectively, if 22 0B ε− < < , then 
( ) 0zψ → −  as z → −∞ , ( )zψ → −∞  as 0 0z z→ − , ( )zψ → +∞  as 

0 0z z→ + , ( ) 0zψ → +  as z → +∞ ). 
A) If 2 Bε = −  and 1 2Bε < −  (respectively, 2 Bε = −  and 1 2Bε > ), then 

the equation for eigenvalues and eigenfunctions (10) has the form  

 ( ){ } ( )2 2
1 0.B B z A J zε − − =                  (11) 

It is clear, that ( ) 0J z ≠  for the values ( )1contz Hσ∉ � . Therefore, 1 0z Aε − + = , 
i.e., 1z A ε= + . If 1 2Bε < − , then this eigenvalue lying the below of continuous 
spectrum of the operator 1H� , if 1 2Bε > , then this eigenvalue lying the above 
of continuous spectrum of the operator 1H� . 

B) If 2 2Bε = −  and 1 0ε <  (respectively, 2 2Bε = −  and 1 0ε > ), then the 
equation for the eigenvalues and eigenfunctions has the form ( )2 2

1 0B J z Bε + = ,  

that is, ( )
1

1J z
ε

= − . It is clear, what the integral ( )J z  calculated in a quadrature,  

of the below (above) of continuous spectrum of the operator 1H� , the integral 
( ) 0J z > , ( ( ) 0J z < ,) consequently, 1 0ε <  ( 1 0ε > .) The calculated the integral  

( ) d
2 cosT

sJ z
A B s zν=
+ −∫ , the below of continuous spectrum of the operator 

1H� , we have the equation of the form 
( )2 2 1

1 1

4A z B ε
= −

− −
. This equation  

has a solution 2 2
1 4z A Bε= − + , lying the below continuous spectrum of the 

operator 1H� . In the above continuous spectrum of the operator 1H� , the  

equation takes the form 
( )2 2 1

1 1

4z A B ε
− = −

− −
. This equation has a solution  

of the form 2 2
1 4z A Bε= + + , lying the above continuous spectrum of the op-

erator 1H� . 
C) If 1 0ε =  and 2 0ε >  (respectively, 1 0ε =  and 2 2Bε < − ), then the eq-

uation for the eigenvalues and eigenfunctions take in the form  

( )( ) ( ) ( ) ( ) ( )
( )( )

2
2 22

2 2 2 2
2 2

2 , or .
2
B

B z A J z B J z
B z A
ε

ε ε ε
ε ε

+
+ − = − + = −

+ −
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Denote ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

. Then ( ) EJ z
z A

= −
−

, or ( ) EJ z
A z

=
−

. In the below 

of continuous spectrum of the operator 1H� , we have the equation of the form 

( )2 2

1

4

E
A zA z B

=
−− −

. This equation has a solution 
2

2

1

BEz A
E

= −
−

. It is  

obviously, that 2 1E > . This eigenvalue lies the below continuous spectrum of 
the operator 1H� . In the above continuous spectrum of the operator 1H� , the 
equation for the eigenvalues and eigenfunctions has the form  

( )2 2

1

4

E
z Az A B

− = −
−− −

. From here, we find 
2

2

1

BEz A
E

= +
−

. This eigen-

value lies the above continuous spectrum of the operator 1H� . 

D) If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= , then the equation for eigenvalues and eigenfunc-

tions has the form ( )( ) ( ) ( )22
2 2 22 2B z A B J z Bε ε ε+ − + = − + , from this  

 ( ) ( )
( )( )

2
2

2
2 2

.
2 2

B
J z

B z A B
ε

ε ε

+
= −

+ − +
               (12) 

We denote ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

. In the first, we consider Equation (12) in the below 

continuous spectrum of the operator 1H� . In Equation (12) we find the equation 

of the form 
( )2 2

1
24

E
A z BA z B

=
− −− −

. From this, we find  

( )2

1 2

2 1

1

B E
z A

E

+
= +

−
, and 2 2z A B= − . Now we verify the conditions  

2 , 1,2iz A B i< − = . The inequality 1 2z A B< − , is incorrect, and inequality 

2 2z A B< − , is incorrect. We now consider Equation (12) in the above conti-
nuous spectrum of the operator 1H� . We have  

( )2 2

1
24

E
z A Bz A B

− = −
− +− −

. From this equation, we find the same solutions  

1z  and 2z , the outside of the domain of continuous spectrum of the operator 1H� . 
Now we verify the conditions 2 , 1,2iz A B i> + = . The inequality 1 2z A B> + , 
is correct, and inequality 2 2z A B> + , is incorrect. Consequently, in this  

case, the operator 1H�  has a unique eigenvalue 
( )2

1 2

2 1

1

B E
z A

E

+
= +

−
, lying the 

above continuous spectrum of the operator 1H� . 

Let 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= − , then the equation of eigenvalues and eigenfunctions 

take in the form ( )
2

EJ z
z A B

= −
− −

, where ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

. 

In the below of continuous spectrum of the operator 1H� , we have equation of  
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the form 
( )2 2

1
24

E
A z BA z B

=
− +− −

. From here we find 
( )2

1 2

2 1

1

B E
z A

E

+
= −

−
,  

and 2 2z A B= + . Inequalities 1 2z A B< − , is correct, and  

2 2z A B< − , is incorrect. In the above continuous spectrum of the operator 1H� , 

we have equation of the form 
( )2 2

1
24

E
z A Bz A B

− = −
− −− −

. It follows that 

what 
( )2

1 2

2 1

1

B E
z A

E

+
= −

−
, and 2 2z A B= + . The inequality 1 2z A B> + , and 

2 2z A B> + , are incorrect. Therefore, in this case, the operator 1H�  has a 

unique eigenvalue 
( )2

1 2

2 1

1

B E
z A

E

+
= −

−
, lying the below continuous spectrum of 

the operator 1H� . 

E) If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
> , (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
> ), then consider necessary, that 

( )2
2 2

1

2 2B

B

ε ε
ε α

+
= × , where  

1α > -real number. Then the equation for eigenvalues and eigenfunctions has 
the form  

( ) ( )( ) ( ) ( )
2
2 2 22 2

2 2 2

2 2
2 0,

B
B B z A J z B

B

ε ε
α ε ε ε
 + × × + + − + + = 
  

 

or ( )( ) ( ) ( )22
2 2 22 2 0B z A B J z Bε ε α ε+ − + + + = . From this 

( ) ( )
( )( )

2
2

2
2 2

.
2 2

B
J z

B z A B
ε

ε ε α

+
= −

+ − +
 

We denote ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, then ( )
2

EJ z
z A Bα

= −
− +

. In the first, we consid-

er this equation in the below continuous spectrum of the operator 1H� . Then 

( )2 2

1
24

E
A z BA z B α

=
− −− −

. This equation has the solutions  

( ) ( )2 2 2 2

1 22 2

2 1 2 1
, and .

1 1

B E E B E E
z A z A

E E

α α α α+ − + − − +
= + = +

− −
 

Now, we verify the condition 2 , 1,2iz A B i< − = . The solution 1z  no satisfies 
the condition 1 2z A B< − , but 2z  satisfies the condition 2 2z A B< − . We 
now verify the conditions 2 2z A Bα< − . The appear, this inequality is incorrect. 
The appear inequalities 1 2z A B> +  is correct, and 2 2z A B> + , is incorrect. 
We now verify the conditions 1 2z A Bα> − . So far as, 2 2A B A Bα− < + , the 
appear, this inequality is correct. Consequently, in this case, the operator 1H�   

has a unique eigenvalue 
( )2 2

1 2

2 1

1

B E E
z A

E

α α+ − +
= +

−
, above of continuous 
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spectrum of the operator 1H� . 

F) If 2 0ε > , and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< − , (respectively, 2 2Bε < − , and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
< − ), then we assume that 

( )2
2 2

1

2 2B

B

ε ε
ε α

+
= − × , where  

1α > -real number. The equation for eigenvalues and eigenfunctions take in the 
form  

( )( ) ( ) ( )22
2 2 22 2 .B z A B J z Bε ε α ε+ − − = − +  

From here ( ) ( )
( )( )

2
2

2
2 22 2

B
J z

B z A B
ε

ε ε α

+
= −

+ − −
. The introduce notation  

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

. Then  

 ( ) .
2

EJ z
z A Bα

= −
− −

                   (13) 

In the below continuous spectrum of the operator 1H� , we have the equation  

( )
( )2 2

1, from here ;
2 24

E EJ z
A z B A z BA z Bα α

= =
− + − +− −

 

This equation takes the form  

( )( ) ( ) ( )22 2 2 21 4 4 0.E A z B A z B Eα α− − − − − + =  

We find  

( ) ( )2 2 2 2

1 22 2

2 1 2 1
and .

1 1

B E E B E E
z A z A

E E

α α α α+ − + − − +
= − = −

− −
 

We now verify the conditions 1 2 , 1, 2iz m A B i< = − = . The appear, that  

1 2z A B< − , is correctly and 2 2z A B< − , is incorrect. Now we consider Equa-
tion (13) in the above continuous spectrum of the operator 1H� . Then  

( )
2

EJ z
z A Bα

= −
− −

. From this 
( )2 2

1
24

E
z A Bz A B α

− = −
− −− −

. We find  

( ) ( )2 2 2 2

1 22 2

2 1 2 1
, and .

1 1

B E E B E E
z A z A

E E

α α α α+ − + − + − +
= − = +

− −
 

We verify the conditions 2 , 1,2iz A B i> + = . The appear 1 2z A B> + , it is not 
true, and the 2 2z A B> + , is true. We now verify the conditions 2 2z A Bα> + . 
The appear, this inequality is incorrect. Consequently, in this case, the operator  

1H�  have unique eigenvalue 
( )2 2

1 12

2 1

1

B E E
z A m

E

α α+ − +
= − <

−
, i.e., lying the 

below continuous spectrum of the operator 1H� . 

K) If 2 0ε >  and 
( ) ( )2 2

2 2 2 2
1

2 2 2 2B B

B B

ε ε ε ε
ε

+ +
− < <  (respectively,  
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2 2Bε < −  and 
( ) ( )2 2

2 2 2 2
1

2 2 2 2B B

B B

ε ε ε ε
ε

+ +
− < < ), we take  

( )2
2 2

1

2 2B

B

ε ε
ε α

+
= × , where 1 1α− < < -real number. Then the equation for 

eigenvalues and eigenfunctions has the form  

 ( )( ) ( ) ( )22
2 2 22 2 , 1.B z A B J z Bε ε α ε α+ − + = − + <         (14) 

We denote ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

. Then Equation (14) receives the form  

( ) .
2

EJ z
z A Bα

= −
− +

 

In the below of continuous spectrum of the operator 1H�  we have the equation 
of the form  

( )2 2

1 , 1.
24

E
A z BA z B

α
α

= <
− −− −

 

This equation has a solutions  

( ) ( )2 2 2 2

1 22 2

2 1 2 1
, and .

1 1

B E E B E E
z A z A

E E

α α α α+ − + − − +
= + = +

− −
 

The inequalities 1 2z A B< − , and 1 2z A Bα< − , is incorrect. The inequalities 

2 2z A B< − , is correct. We now verify the conditions 2 2z A Bα< − , since 
2 2A B A Bα− < − , this inequality is true. We now consider Equation (14) in the 

above continuous spectrum of the operator 1H� . We have the equation of the 
form 

( )2 2

1 .
24

E
z A Bz A B α

− = −
− +− −

 

This equation has a solutions  

( ) ( )2 2 2 2

1 22 2

2 1 2 1
, and .

1 1

B E E B E E
z A z A

E E

α α α α+ − + − − +
= + = +

− −
 

The inequalities 1 2z A B> + , and 1 2z A Bα> −  is true, as 2 2A B A Bα+ > − , 
that the inequality 1 2z A Bα> −  is correct. The inequalities 2 2z A B> + , and 

2 2z A Bα> +  is incorrect. Consequently, in this case, the operator 1H�  has ex-
actly two eigenvalues  

( ) ( )2 2 2 2

1 22 2

2 1 2 1
, and ,

1 1

B E E B E E
z A z A

E E

α α α α+ − + − − +
= + = +

− −
 

lying the above and below of continuous spectrum of the operator 1H� . 
M) If 22 0B ε− < < , then 2

2 22 0Bε ε+ < , and the function  

( ) ( )
( )( )

2
2

2
1 2 22

B
z

B B z A
ε

ψ
ε ε ε

+
= −

+ + −
 is a decreasing function in the intervals  
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( )0, z−∞  and ( )0 ,z +∞ ; By, z → −∞  the function ( ) 0zψ → − , and by 

0 0z z→ − , the function ( )zψ → −∞ , and by z → +∞ , ( ) 0zψ → + , and by 

0 0z z→ + , ( )zψ → +∞ . The function ( ) 0J z → , by z → −∞ , and by 

1 0z m→ − , the function ( )J z → +∞ , and by 1 0z M→ + , the function  
( )J z → −∞ , by z → +∞ , the function ( ) 0J z → − . Therefore, the equation 
( ) ( )z J zψ = , that’s impossible the solutions in the outside the continuous spec-

trum of operator 1H� . Therefore, in this case, the operator 1H�  has no eigenva-
lues lying the outside of continuous spectrum of the operator 1H� .           

Consequently, the spectrum of operator 1H�  is consisted of a continuous 
spectrum and at most two eigenvalues. 

Now, using the obtained results and representation (9), we describe the struc-
ture of essential spectrum and discrete spectrum of the energy operator of 
four-electron systems in the impurity Hubbard model in the first triplet state. 

Theorem 6. (essential spectra of the operator 1
1
tH� ) Let 1ν = . Then 

A) If 2 Bε = −  and 1 2Bε < −  (respectively, 2 Bε = −  and 1 2Bε > ), then 
the essential spectrum of the operator 1

1
tH�  is consists of the union of 1N  seg-

ments, where 14 8N≤ ≤ :  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]
[ ]

1
1

3 3 4 4

3 3

4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 4 ,2 4

2 , 2

2 , 2 ,

t
ess H A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z A B z

A B z z A B z z

A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + + +

∪ − + + + + +

�

 

and the discrete spectrum of the operator 1
1
tH�  is consists of no more than three 

eigenvalues:  

( ) { }1
1 3 44 , 2 , 2 ,t

disc H z z z z zσ = + +�  

where 1z A ε= + , and 3z  and 4z  are the additional eigenvalues of operator 
1

1
tH� . 

B) If 2 2Bε = −  and 1 0ε <  or 2 0ε =  and 1 0ε <  (respectively, 2 Bε = −  
and 1 0ε >  or 2 0ε =  and 1 0ε > ), then the essential spectrum of the operator 
1

1
tH�  is consists of the union of 1N  segments, where 14 8N≤ ≤ :  

 

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]
[ ]

1
1

3 3 4 4

3 3

4 4

4 8 , 4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 4 ,2 4

2 , 2

2 , 2 ,

t
ess H A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z A B z

A B z z A B z z

A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + + +

∪ − + + + + +

�

 

and discrete spectrum of the operator 1
1
tH�  is consists of no more three eigen-

values:  

( ) { }1
1 3 44 , 2 , 2 ,t

disc H z z z z zσ = + +�  

where 2 2
14z A B ε= + + , and 3z  and 4z  are the additional eigenvalues of 
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operator 1
1
tH� . 

C) If 1 0ε =  and 2 0ε >  (respectively, 1 0ε =  and 2 2Bε < − ), then the es-
sential spectrum of the operator 1

1
tH�  is consists of the union of 1N  segments, 

where 14 8N≤ ≤ :  
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1
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 ( ) { }1
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2
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1

BEz A
E

= +
−
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2
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, 

and 3z  and 4z  are the additional eigenvalues of operator 1
1
tH� . 
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B

ε ε
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( )2
2 2

1

2 2B

B

ε ε
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+
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tial spectrum of the operator 1
1
tH�  is consists of the union of 1N  segments, where 

14 8N≤ ≤ :  
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and discrete spectrum of the operator 1
1
tH�  is consists of no more than three ei-

genvalues:  
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where 
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−
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2
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, and 3z  and 4z  are the additional eigenvalues of operator 1
1
tH� . 

E) If 2 0ε >  and 
( )2
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B
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ε

+
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1

2 2B
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ε ε
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+
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1
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and discrete spectrum of the operator 1
1
tH�  is consists of no more than three ei-

genvalues:  
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, and the real number 1α > , and 3z  and 4z  are the ad-

ditional eigenvalues of operator 1
1
tH� . 
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B

ε ε
ε
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( )2
2 2

1
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+
< − ), then the essential spectrum of the operator 1

1
tH�  is con-

sists of the union of 1N  segments, where 14 8N≤ ≤ :  
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and discrete spectrum of the operator 1
1
tH�  is consists of no more than three ei-

genvalues:  
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and discrete spectrum of the operator 1
1
tH�  is consists of no more than eleven 

eigenvalues:  

( ) {
}

1
1 1 1 2 1 2 1 2 2 1 3 1 4

1 2 3 1 2 4 2 3 2 4
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t
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where  

( )2 2

1 12

2 1
,

1

B E E
z A m

E

α α+ − +
= + <

−
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( )2 2

2 12

2 1
,

1

B E E
z A M

E

α α− − +
= + >

−
 

and ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and real number 1α < , and 3z  and 4z  are the addi-

tional eigenvalues of operator 1
1
tH� . 

M) If 22 0B ε− < < , then the essential spectrum of the operator 1
1
tH�  is con-

sists of the union of 1N  segments, where 11 3N≤ ≤ :  
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1
1 3 3
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2 4 ,2 4 ,

t
ess H A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +

�
 

and the discrete spectrum of operator 1
1
tH�  is an empty set.  

Proof. A) It follows from representation (9), and from Theorem 5, that in 
one-dimensional case, the continuous spectrum of the operator 1H�  is consisted 
of ( ) [ ]1 2 , 2cont H A B A Bσ = − +� , and discrete spectrum of the operator 1H�  is 
consists of unique eigenvalue z. Therefore, the essential spectrum of the operator 
1

1
tH�  consists of the union of no more than eight segments:  
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1
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∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + + +

∪ − + + + + +
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and discrete spectrum of the operator 1
1
tH�  is consists is the no more than three 

eigenvalues:  

( ) { }1
1 3 44 , 2 , 2 ,t

disc H z z z z zσ = + +�  

This is given to the proof of statement A) from Theorem 6. 
The statements B), C), D), E), F) from Theorem 6 are proved similarly. 
We now is proved the statement K) from Theorem 6. It can be seen from 

Theorem 5 (statement K) in a one-dimensional case the operator 1H�  has ex-
actly two eigenvalues 1z  and 2z  outside the domain of continuous spectrum 
of the operator 1H� . Therefore, the set ( )1

1
t

ess Hσ �  consists of the union of no 
more than sixteen intervals:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

1
1 1 1

2 2 1 1

1 2 1 2 2 2

1 1 1 2 1 2

4 8 ,4 8 3 6 ,3 6

3 6 ,3 6 2 4 2 ,2 4 2

2 4 ,2 4 2 4 2 ,2 4 2

2 3 , 2 3 2 2 , 2 2

t
ess H A B A B A B z A B z

A B z A B z A B z A B z

A B z z A B z z A B z A B z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

�

 

  

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

1 2 1 2 2 2

3 3 4 4

1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4
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2 , 2 2 , 2

2 , 2 2 , 2 .

A B z z A B z z A B z A B z

A B z A B z A B z A B z

A B z z A B z z A B z z A B z z

A B z z A B z z A B z z A B z z

∪ − + + + + + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + + + +

∪ − + + + + + ∪ − + + + + +

 

The discrete spectrum of the operator 1
1
tH�  is consists of no more than eleven 

eigenvalues:  

( ) {
}

1
1 1 1 2 1 2 1 2 2 1 3 1 4

1 2 3 1 2 4 2 3 2 4

4 ,3 , 2 2 , 3 , 4 , 2 , 2 ,

, , 2 , 2 ,

t
disc H z z z z z z z z z z z z

z z z z z z z z z z

σ = + + + + +

+ + + + + +

�
 

where  

 
( )2 2

1 12

2 1
,

1

B E E
z A m

E

α α+ − +
= + <

−
 

and  

 
( )2 2

2 12

2 1
,

1

B E E
z A M

E

α α− − +
= + >

−
 

and ( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and real number 1α < , lying the outside of the essential  

spectrum of the operator 1
1
tH� , 3z  and 4z  are the additional eigenvalues of 

operator 1
1
tH� . This is given to the proof of statement K) from Theorem 6. 

We now are proved the statement M) from Theorem 6. It can be seen from 
Theorem 5 (statement M) in a one-dimensional case the operator 1H�  has no 
eigenvalues outside of the continuous spectrum of the operator 1H� . Therefore, 
the set ( )1

1
t

ess Hσ �  consists of the union of no more than three segment:  

( ) [ ] [ ]
[ ]

1
1 3 3

4 4

4 8 ,4 8 2 4 ,2 4

2 4 ,2 4 ,

t
ess H A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +
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and the operator has no eigenvalues, i.e., ( )1
1
t

disc Hσ = ∅� .                  
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