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Abstract 
In gamma spectrometry of voluminous samples, inhomogeneous distribution 
of radioactivity caused by the presence of hot particles can create significant 
Bias in the results of activity determinations. We developed a novel method 
to reduce this Bias using the gamma-peak ratio. We show that the peak area 
ratio of two gamma peaks of different energies, emitted by the same radio-
nuclide, is a sensitive measure of emitting source location and thus the inho-
mogeneity. A new calibration formula was then derived for true gamma effi-
ciency pi as a function of efficiency ratio pi/pj of two peaks. This approach was 
verified by Monte Carlo simulations for a sample of 1-L volume containing 
from 1 up to 2048 of hot particles randomly distributed in a soil matrix. A 
152Eu radionuclide was selected for calculations and we used various combi-
nations of two gamma spectral peaks selected from three gamma energies of 
121.8, 344.3, and 1408.0 keV. This new method is shown to reduce the Bias 
range and Bias standard deviation by several times when compared with the 
traditional homogeneous calibration applied to measuring hot particles. The 
method is independent of the number, location, and distribution of hot par-
ticles in the samples, and can be applied to a mixture of radionuclides. It 
complements our previous calibration model based on the peak-to-total ratio. 
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1. Introduction 

In gamma spectrometry of voluminous samples, Germanium (Ge) detector cali-
bration is normally accomplished assuming the homogeneous distribution of ra-
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dioactivity using either the physical traceable standards or computational me-
thods. In many types of samples, however, the distribution of radioactivity may 
be inhomogeneous owing to the presence of hot particles, potentially leading to 
substantial Bias in activity determination. In the previous investigation [1], we 
provided a review of the sources, distribution, and fate of radioactively hot par-
ticles originating mostly from nuclear reactor accidents. Hot particles are often 
refractory and physical homogenization of a sample may result only in redistri-
bution of the particles. 

To address measurements of hot particles by gamma spectrometry, statistical 
methods have been developed based on either splitting of a large sample and 
measurements of several sub-samples [2] [3], or repetitive mixing and measur-
ing of the same sample (from 25 to 100 times) [4] [5] [6]. While these methods 
can provide a relatively accurate average of the measured activity, they are not 
practical for many samples, and the dispersion evaluated by means of a standard 
deviation can be large and increase as the number of hot particles decreases. 
With a large standard deviation, significant Bias could result from a single mea-
surement of the sample. 

Thus, in this paper, we would like to answer the question: can a single labora-
tory measurement of an inhomogeneous sample, with proper calibration, reduce 
the dispersion and Bias of the results? We propose a novel calibration of the 
form 

( ) ,p f q=                             (1) 

where p is the true gamma peak efficiency and q is a parameter sensitive to in-
homogeneity, which can be both calculated and measured, having a functional 
form of f. In the previous investigation [1], we used the peak-to-total ratio, q = 
p/t, where t is the total gamma efficiency. p/t can be easily measured as the ratio 
of gamma peak area in counts to the total counts in the gamma spectrum. 

In this paper, we propose q = pi/pj as the ratio of two effective peak efficiencies 
for two gamma rays of different energies, i and j, emitted by the same radionuc-
lide. This ratio is experimentally realized as the ratio of corresponding peak 
areas or counting rates in the gamma spectrum. Since two gamma rays of dif-
ferent energies are attenuated differently in the sample, the ratio is expected to 
depend on the location of the emitting radionuclide in the sample, and thus the 
inhomogeneity. Gamma-peak ratios were used as one of the several techniques 
in the context of in-situ gamma spectrometry [7]-[12]. The goal of in-situ gam-
ma spectrometry is to determine radioactive contamination in the field, with 
certain assumptions about contamination profiles such as uniform, plane, mul-
ti-layered, or exponential. 

There are many multi-peak radionuclides to which peak-ratio calibration could 
apply. Some of the radionuclides of interest are included in Table 1, such as fis-
sion products, activation products, and natural radionuclides. Their principal 
gamma peak energies and intensities are listed. For the purpose of this work, we 
chose 152Eu and selected three gamma peaks for the investigation: at 121.8, 
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Table 1. Nuclear data of selected multi-peak radionuclides for the peak-ratio method 
[20]. 

Radionuclide Half-life Gamma energy (keV) Gamma intensity (%) Progeny 

I-131 8.025 d 
364.5 81.50 

 

637.0 7.16 

Ba-133 10.55 y 
81.0 32.90 

356.0 62.05 

Cs-134 2.065 y 

569.3 15.37 

604.7 97.62 

795.9 85.46 

Cs-137(a) 30.08 y 
32.1 5.63 

Ba-137 
661.7 85.10 

Eu-152 13.52 y 

121.8 28.41 

 

344.3 26.59 

1408.0 20.85 

Ir-192 73.83 d 

296.0 28.71 

316.5 82.86 

468.1 47.84 

604.4 8.22 

Ra-226(a) 1600 y 

295.2 18.42 
Pb-214 

351.9 35.60 

609.3 45.49 

Bi-214 1120.3 14.92 

1764.5 15.30 

Ra-228(a) 5.75 y 

338.3 11.27 
Ac-228 

911.2 25.80 

238.6 43.60 Pb-212 

583.2 30.55 
Tl-208 

2614.5 35.85 

a: In equilibrium with the progeny. 
 
344.3, and 1408.0 keV to study three combinations of gamma rays using Equa-
tion (1). 

The approach taken in this investigation is by Monte Carlo (MC) simulation, 
described in detail in Section 2. We develop two calibration models: 1-particle 
model and an n-particle model. For the 1-particle model, Equation (1) is derived 
using gamma attenuation [13], and its dependence on calibration is described in 
Section 3. The n-particle model is described in Section 4. The relation from Eq-
uation (1) is more complicated for this model and has to be interpolated be-
tween those for single-particle and homogeneous sample efficiency. We describe 
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the interpolation process using Signal Detection Theory (SDT) [14] in Section 4. 
For both models, we determine Bias range, Bias standard deviation, and im-
provement factors from homogeneous calibration. The performance of the 
n-particle model when activities of the particles are not equal is described in Sec-
tion 5, followed by discussion in Section 6 and conclusions in Section 7. In this 
work, we are not considering radiation counting statistics and focus exclusively 
on the dispersion caused by sample inhomogeneity. 

2. Monte Carlo Simulations 

We selected counting geometry for calculations depicted in Figure 1. The sam-
ple consists of a 1-L cylindrical container with the radius and height of 5.45 and 
10.72 cm, respectively, filled with a soil matrix of 1.55 g·cm−3 density. A coaxial 
p-type Ge detector of 48% relative efficiency was used having crystal radius and 
height of 3.10 and 5.95 cm, respectively. This configuration actually exists in the 
laboratory.  

The calculations were performed using the MC code Gespecor, version 4.2 
(CID Media GmbH, Germany) [15]. This program is especially designed for 
calculations in gamma spectrometry. It incorporates all materials and dimen-
sions, such as the container, sample, Ge detector, including its housing and dead 
layer, as well as the lead shield (not shown in Figure 1). The program tracks 
emitted gamma-rays in all directions. Therefore, the calculations are realistic re-
presentations of the laboratory measurement system. Typically, 106 events were 
calculated for each simulation case. 

In gamma spectrometry, the effective peak efficiency p at given gamma energy 
can be expressed as 

 

 
Figure 1. Counting geometry subject of Monte Carlo simulations: 1-L cylindrical sample 
container and 48% Ge crystal. The relative dimensions are to scale. The cylindrical sym-
metry axis is depicted by the broken line. 
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.cp IFε=                             (2) 

In Equation (2), ε is a calculated gamma efficiency at that energy independent of 
radionuclide but including self-absorption in the sample. I is the emitted gamma 
intensity for a radionuclide such as from Table 1. Fc is a calculated coinci-
dence-summing factor dependent on the decay scheme of radionuclide. 

In the initial simulations, we calculated the efficiencies for several special cases 
listed in Table 2 at the three gamma energies of 121.8, 344.3, and 1408.0 keV 
from 152Eu abbreviated as E1, E2, and E3, respectively. The results are given for 
hypothetical hot particle locations in Figure 1 resulting in maximum and min-
imum efficiencies. It is seen that the ratio of effective efficiencies at those loca-
tions varies from 35.8 to 250.2 as gamma energy decreases. This can create sig-
nificant Bias in the determination of hot-particle activity. Also given in Table 2 
are efficiencies calculated separately for homogeneous samples, referred to as 
Bulk efficiencies. It can be observed from Table 2 that the calculated coinci-
dence-summing factors have the lowest values (highest corrections) at the clos-
est distance to the detector and they do not correlate with the gamma energy. 

To study the effects associated with hot particles, we calculated the effective 
peak efficiencies for 2048 particles randomly positioned in the 1-L container, 
one particle at a time. The random positions of particles were calculated first 
using the algorithm for cylindrical coordinates [16]. In this algorithm, the height 
of particle position is proportional to a random number, while the radius of par-
ticle position is proportional to the square root of the random number. The 
azimuth angle is not important in this case because of cylindrical symmetry. 
Then, the 2048 random particle positions were supplied to the Gespecor pro-
gram, which calculated effective peak efficiencies at these positions. To verify the 
randomness of particle positions, we calculated the Grand average efficiencies 
for all 2048 particles. It is seen from Table 2 that the deviations of Grand aver-
age efficiencies from the Bulk efficiencies are between −1.02% and 0.67% for the  
 

Table 2. MC results of special cases for 152Eu. 

Gamma  
efficiency type 

Particle location  
Radius, Height (cm) 

Peak 
Coincidence  

summing factor 
Gamma  

efficiency (a) 
Effective  
efficiency 

Effective efficiency ratio 
Max/Min 

Maximum 0, 0 

E1 0.7569 2.054E−01 4.418E−02 250.2 

E2 0.8645 9.840E−02 2.262E−02 104.0 

E3 0.7747 3.062E−02 4.945E−03 35.8 

Minimum 5.45, 10.72 

E1 0.9939 6.253E−04 1.766E−04 
Grand average  

deviation from Bulk (%) 
E2 0.9959 8.214E−04 2.175E−04 

E3 0.9989 6.642E−04 1.383E−04 

Bulk homogeneous source 

E1 0.9169 1.553E−02 4.045E−03 0.52 

E2 0.9515 9.921E−03 2.510E−03 0.67 

E3 0.9563 4.218E−03 8.410E−04 −1.02 

a: Corrected for self-absorption in the sample. 
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three gamma energies. Therefore, the randomness of particle positions is judged 
satisfactory, and we will use the Grand average instead of Bulk as the value for 
homogeneous sample (this differs from the previous work, where we used the 
Bulk efficiencies [1]).  

The wide range of possible effective efficiencies of hot-particles can result in a 
large Bias of measured sample activity if homogeneous efficiency is inadvertently 
assumed. Let us abbreviate counting rate in the gamma peak as R. The true ac-
tivity determined using particle effective peak efficiency p is equal to A = R/p. 
The activity determined using homogeneous peak efficiency ph is equal to Ah = 
R/ph. Bias is defined as 

( ) ( ) ( )Bias % 100 1 100 1 .h hA A p p= − = −                 (3) 

It is seen that the Bias does not depend on the activity, only on the efficiencies. 
Therefore, this investigation focuses on the efficiencies only. The Bias was calcu-
lated using Equation (3) for the 2048 particles and is plotted in Figure 2 for E1 
gamma peak. It ranges from about −100% to over 900%, or by a factor of about 
10. The Bias distribution is non-symmetric as discussed in detail in [1]. This si-
mulated Bias variation is substantially smaller than the peak efficiency ratio at 
maximum and minimum positions equal to 250.2 (Table 2), however, it is sta-
tistically unlikely to have a particle located at any of these positions (compare 
Figure 1). 

3. One-Particle Model 

One-particle model assumes presence of a single hot particle in the sample. We 
developed this model as a foundation for easier derivation of a more general  
 

 
Figure 2. Histogram of Bias of using Grand average efficiency from single particle effi-
ciency for E1 peak of 152Eu. 
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n-particle model to be described in the next section. Let us consider a particle in 
the sample matrix located at a distance r from the Ge detector. In a simplified 
picture, we neglect all possible angles and finite sizes of both sample and the de-
tector. For a gamma radiation to be detected in the peak with effective peak effi-
ciency pr, it must be attenuated in the sample and detected with an intrinsic peak 
efficiency of the detector pd. The coincidence summing is neglected at this stage. 
For a gamma ray i emitted from the particle at the distance r, we thus have 

( )exp ,ri i di ip I p rµ= −                          (4) 

where μi is a total gamma attenuation coefficient [13]. 
By manipulating Equation (4) for two gamma rays i and j emitted from the 

same radionuclide at the distance r, one obtains 

( )
.

i i j
j dj ri

ri i di
i di rj

I p p
p I p

I p p

µ µ µ−
 

=   
 

                    (5) 

It is seen from Equation (5) that the effective peak efficiency is a power func-
tion of the ratio of two effective peak efficiencies, 

( ) ,
b

ri ri rjp a p p=                          (6) 

where a, b are coefficients. Therefore, this ratio carries the information about the 
location of emission source within the sample, from which true pri can be com-
puted. 

In Figure 3, we plotted the effective peak efficiencies for peaks E1 and E2 as 
functions of peak ratios, where we always take the ratio of lower to higher energy 
peak. This results in 3 possible combinations. The MC data for 2048 particles are 
indicated as shaded areas in Figure 3. For p1 vs. p1/p3 only, we fitted the data 
with the power-law function given by Equation (6) (dashed curve).  

 

 
Figure 3. Single-particle calibration curves of effective peak efficiency vs. effective peak 
efficiency ratio for 3 peaks from 152Eu. 
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This model can be refined by including coincidence-summing corrections. In 
general, gamma rays i and j can be coincident with each other as well as many 
other gamma rays in the decay scheme. The full correction includes all combina-
tions of gamma rays [17]. However, as a first-order approximation, we assume 
that gamma rays i and j are coincident with each other only. There are two ef-
fects to consider. One is called summing-out, in which the intensity of gamma 
ray i decreases due to coincidence with gamma ray j and vice versa. The second 
effect is summing-in, where intensity of a third peak (if it exists), with the energy 
equal to the sum of gamma energies of peaks i and j, is increased. Analytical 
formulas for these two cases were derived [18] [19]. The most common coinci-
dence effect is summing-out, for which the coincidence-summing factor can be 
written as 

1 1,ci rjF ct= − <                            (7) 

where trj is the total efficiency and c is a coefficient. It is seen from Table 2 that 
the coincidence-summing factors for the peaks from 152Eu are of the summing- 
out category. 

Using Equation (7), Equation (4) is refined as 

( )( )exp 1 .ri i di i rjp I p r ctµ= − −                      (8) 

By manipulating Equation (8) for two gamma rays i and j emitted from the same 
radionuclide at the distance r, one obtains 

( )
( )

1
1 ,

1

i i j
j dj ri ri

ri i di rj
i di rj rj

I p p dt
p I p ct

I p p ct

µ µ µ−
 −

= −   − 
              (9) 

where d is another coefficient. To simplify Equation (9), we abbreviate y = pri 
and x = pri/prj. We also recall from the former investigation [1], that t is a power 
function of p, whereas p is a power function of x according to Equation (6). 
Therefore, t is also a power function of x, different for peaks i and j. Equation (9) 
can be rewritten as 

( ) 11 ,
1

fe
c

c

dxy a bx x
bx

 −
= −  − 

                     (10) 

where a through f is another set of coefficients. Equation (10) is ill-defined for 
fitting purposes because coefficients b and c occur more than once. To simplify 
this, we note that the ratio of summing-out factors in the fraction tends to cancel 
out, as can be seen in the examples from Table 2. Therefore, we neglect these 
factors and arrive at the final simplified equation: 

 

( )1 ,c dy a bx x= −                          (11) 

with fit coefficients a, b, c, and d. 
We fitted Equation (11) to p1 vs. p1/p3 data in Figure 3 (solid curve) resulting 

in a slightly better fit than that using Equation (6) (dashed curve). Other cases in 
Figure 3 were fitted with Equation (11) as well; they appear to be slightly worse 
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than the p1 vs. p1/p3 fit. These fits are the calibration curves for the 1-particle 
model. 

Then, we calculated the Bias values from the true single-particle efficiencies 
when using 1-particle model for E1 peak calibrated with E1/E3, for 2048 par-
ticles. Equation (3) was modified by replacing ph with p1-particle for the 1-particle 
model.  

( ) ( )1-particleBias % 100 1 .p p= −                    (12)  

It is seen from Figure 4 that the Bias is significantly reduced to about ±20%. 
We calculated the Bias Range (lowest value of Bias subtracted from the highest 
value) and Bias Std Dev with the 1-particle model for each of the 3 cases studied 
using the calibration curves from Figure 3. Also, the Bias Range and Bias Std 
Dev were calculated for homogeneous calibration (for the data depicted in Fig-
ure 2). The Improvement factor is defined as a Bias measure for homogeneous 
calibration divided by the corresponding measure for the 1-particle model. Im-
provement factors indicate how many times 1-particle model performs better 
than the homogeneous calibration, when measuring randomly distributed single 
hot particle in the sample. It is seen from Figure 5 that the Improvement factors 
are significant. The Improvement factors for both Bias Range and Bias Std Dev 
are the highest when the gamma energy difference between the peaks in the largest 
(E1, E3), whereas they are the lowest for (E1, E2). 

4. n-Particle Model 

The n-particle model assumes that there are 1 or more hot particles in the sam-
ple, all having the same activity. It can be realized by simple grouping of the  
 

 
Figure 4. Histogram of Bias of using 1-particle model efficiency from single particle effi-
ciency for E1 peak of 152Eu. 
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Figure 5. Improvement factors of Bias range and Bias Std Dev by 1-particle model from 
homogeneous model for various combinations of peaks. 
 
2048 MC particles. For instance, one can group 2 particles (1024 cases), 4 par-
ticles (512 cases), etc., until finally arriving at 1 case of 2048 particles. The aver-
age efficiencies and their ratio for any group of n particles are given by 

1

1 ,i k
n

iknp p
n =

= ∑                         (13) 

.i j i jnn n
p p p p=                      (14) 

As an example, the 1 np  vs. 1 3 np p  groups are plotted in Figure 6. They 
form fanning-out bands. The band at n = 1 is the topmost, identical to the data 
in Figure 3. As n increases, the bands are becoming narrower and positioned 
lower in Figure 6, until they reach the Grand average point at 1 2048p  for 

1 3 2048
p p , which we take as the point of the homogeneous calibration, ph. 
The Bias of the homogeneous calibration for the grouped particles is genera-

lized from Equation (3), with p substituted by 
np  as follows: 

 

( ) ( )Bias % 100 1 .hnp p= −                  (15) 

The Bias results of homogeneous calibration for E1 peak are given in the up-
per part of Table 3, for groups up to 512 particles. The Bias Std Dev and Bias 
Range for 1 hot particle are for the data from Figure 2. It is seen that as the 
number of particles in a group increases, the Bias Std Dev and Bias Range de-
crease. The characteristic result of homogeneous calibration is that the Average 
Bias is zero for all particle groups. This reflects the fact that if sufficient number 
of repetitions are performed, the Average Bias tends to zero, and it is the basis 
for sample splitting and mixing methods described in Section 1. 

The first step of the n-particle model is to encompass the points in Figure 6. 
The upper bound is given by the 1-particle model fit which is the black curve in  
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Table 3. 152Eu E1 peak Bias using the homogeneous calibration and Bias using n-particle 
model for E1/E3. 

Bias 
measure 

Number of hot particles n 

1 2 4 8 16 32 64 128 256 512 

Homogeneous calibration Bias (%) 

Average 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Std Dev 146.9 102.1 75.1 53.5 38.1 26.7 19.1 14.1 10.2 2.4 

Range 1032.5 681.5 442.0 294.6 175.6 113.7 79.0 54.4 26.6 5.3 

n-particle model Bias (%) 

Average 14.9 3.3 −3.7 −4.9 −3.4 −0.5 0.8 0.4 0.2 0.0 

Std Dev 27.8 25.2 23.6 21.5 17.9 10.8 5.9 4.2 2.6 0.8 

Range 120.3 137.6 131.3 108.9 86.2 54.4 21.7 15.3 8.5 1.8 

 

 

Figure 6. Distribution of 1 n
p  peak efficiency as a function of 1 3 n

p p  peak effi-

ciency ratio for grouped hot particles n indicated in the legend. 
 
Figure 7, replotted from Figure 3. To construct the lower bound, we took the 
points of minimum and maximum values of 1 3 np p  for each n-particle set 
(they are unrelated to the Min and Max points in Figure 1). These are the blue 
points in Figure 7. Equation (11) was then fitted to the Min-Max points, con-
strained by the passage through the Grand average point, which resulted in an 
orange curve in Figure 7. It is seen that most of the points from Figure 6 are 
encompassed by the two fits: 1-particle model curve and Min-Max curve.  

In order to use the model for any number of hot particles possibly present in 
the sample, one needs to interpolate between the two curves in Figure 7. The 
reason for that is that when p1/p3 is close to the Grand average, we likely have a 
more homogeneous sample containing more hot particles, so the interpolation 
weights p1 towards Min-Max curve. On the contrary, when p1/p3 is away from  
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Figure 7. Various fits to 1 n

p  vs. 1 3 n
p p  data for 152Eu: 1-particle model (black 

curve), Min-Max (orange curve). 
 
the Grand average, we likely have an inhomogeneous sample containing a 
smaller number of hot particles (or only 1), so the interpolation weights p1 to-
wards 1-particle curve. 

For the interpolation, we applied the SDT technique developed elsewhere [1] 
[14]. The equations are identical to the ones presented in [1] and will not be re-
peated here. As a result of the interpolation, the most optimal p1 can be obtained 
abbreviated as pinterp. The performance of the interpolation can be adjusted by 
the mean and sigma parameters of the signal in SDT: μsignal, σsignal. The Bias for 
the n-particle model is given by 

( ) ( )Bias % 100 1 .interpnp p= −                    (16) 

As an example, the Bias Average, Std Dev, and Range for a particular 
n-particle model fit to (E1, E3) case are given in the lower section of Table 3. 
There is only one fit for all groups of hot particles. There is no absolute mini-
mum here and the model parameters, μsignal, σsignal, are adjusted manually to 
achieve desired data objectives. One noticeable property of the n-particle model 
is that the Average Bias is not zero for most particle groups. This causes syste-
matic Bias in the results. A chosen data objective was to have this systematic Bias 
within the range of ±5% for as many hot particle groups as possible. As can be 
seen from Table 3, this objective is satisfied for all particle groups, except for 1 
particle, where the Average Bias is 14.9%. We attribute this to the fact that the 
Grand average point lays quite away from the 1-particle model calibration, 
which can be seen in Figure 3, Figure 6, and Figure 7. 

The significant advantages of the n-particle model are in the reductions of Bi-
as Range and Bias Std Dev compared with the homogeneous calibration, as 
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demonstrated in Table 3. We fitted the n-particle model to the 3 combination of 
gamma peaks studied: (E1, E3), (E2, E3), and (E1, E2). Then we calculated the 
Improvement factors from the homogeneous calibrations, as described in Sec-
tion 3. The Improvement factors for Bias Range are depicted in Figure 8. They 
decrease from about a factor of 8 to about a factor of 2 as the number of hot par-
ticles in a group increases. The slight increase at 64 particles is attributed to a 
sharper transition in the interpolation from 1-particle model to Min-Max, as 
described above Equation (16). The improvement factors for Bias Range vary 
between 5 and 2 (Figure 9). One feature seen in Figure 8 and Figure 9 is that  
 

 
Figure 8. Bias range improvement factors of n-particle model from homogeneous model 
for various combinations of peaks from 152Eu indicated in the legend. 
 

 
Figure 9. Bias Std Dev improvement factors of n-particle model from homogeneous 
model for various combinations of peaks from 152Eu indicated in the legend. 
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there are only minor differences between the 3 cases of peaks studied. This is in 
contrast to the observation in Figure 5 for 1-particle model, where Improvement 
factors depended significantly on the energies of gamma peaks. 

5. Non-Equal Particles 

The n-particle model assumes that all particles have the same activities. It was 
observed that hot particles from nuclear accidents exhibit a distribution of sizes 
often consistent with lognormal [3]. Then, an assumption of constant specific 
activity implies lognormal distribution of activities as well. This situation results 
in even more inhomogeneity than for equal particles, because a few very hot par-
ticles dominate the activity of the sample. 

Non-equal particles can be easily simulated within the present data set by po-
sitioning several equal particles in the same location. Since the derived n-particle 
model interpolates the efficiencies between 1 particle and the homogeneous 
sample, it should be independent of a specific assumption about the number or 
location of the particles. Therefore, it should accommodate non-equal particles 
as well.  

To test this hypothesis, we created three cases of non-equal particles. In the first 
case, we have 2 particles, one is assumed twice as radioactive as the other. Therefore, 
the average peak efficiency from Equation (13) is ( )1 22 2 3p p p= + . We have 
used 2 equal particles from the MC set of 2048 and created a group of 2 non-equal 
particles. We have 1024 such groups to perform statistics on. For the second case, we 
repeated 1st particle 4 times, 2nd particle 2 times, and took the 3rd and 4th particles as 
is. The average peak efficiency is ( )1 2 3 44 4 2 8p p p pp = + + + . We thus have 
512 such groups. In the third case 18

8 36kkp kp
=

= ∑ , with 256 groups. 
Following this, the Bias of the homogeneous calibration was calculated from 

Equation (15) for each of the non-equal particle cases. By applying the n-particle 
model as in Section 3, the Bias was calculated from Equation (16). Then the Im-
provement factors of the n-particle model from the homogeneous model were 
calculated and are depicted in Figure 10. For the Bias Range, the Improvement 
factor decreased from almost 5 to over 3, whereas for the Bias Std Dev from 
about 3.5 to 3. These values are close to those for 2, 4, and 8 equal particles. 
Therefore, the n-particle model works for non-equal particles as well.  

6. Discussion 

Voluminous environmental or food samples for gamma spectrometry measure-
ments in the laboratory can be quite inhomogeneous. The inhomogeneity is typ-
ically caused by the presence of hot particles, where radioactivity is contained 
within micrometer-size particles originating from nuclear reactor accidents and 
fires, nuclear explosions, or dirty-bomb explosions. Hot particles are often re-
fractory and difficult to homogenize. Mechanical mixing only repositions the 
hot particles in the sample without homogenizing them. However, gamma spec-
trometers are typically calibrated using either homogeneous physical standards  
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Figure 10. Improvement factors of Bias range and Bias Std Dev provided by the 
n-particle model from the homogeneous model for three cases of non-equal hot particles 
studied. 
 
or by MC methods assuming uniform distribution of radioactivity, which results 
in a homogeneous or bulk effective efficiency ph. Applying ph to inhomogeneous 
samples can lead to significant Bias of measured activity. One approach to ad-
dress this is by remixing and remeasuring the sample at least several tens of 
times. The statistics of large number of mixings will result in a relatively accurate 
mean activity, however, the dispersion evaluated by means of a standard devia-
tion can be large and increase as inhomogeneity increases. This implies that a 
single measurement of inhomogeneous sample can likely lead to inaccurate ac-
tivity determination, which can differ from a true activity by several times. 

In this investigation, we succeeded in developing a method to reduce this dis-
persion. If a radionuclide has several prominent gamma peaks i which result in 
measured counting rates Ri, the radionuclide activities determined from those 
peaks are equal to Ahi = Ri/phi, where phi is effective homogeneous efficiency for 
peak i. If the sample is homogeneous, all Ahi should be equal to within experi-
mental uncertainties. Significant differences between Ahi indicate inhomogenei-
ty. Since the counting rates are proportional to the effective efficiencies, it fol-
lows that the ratio of two peak counting rates (or peak areas) is proportional to 
the ratio of effective true efficiencies pi/pj. Therefore, the latter is a measure of 
inhomogeneity. This is key to the principle of the peak-ratio method. 

In order to quantify the peak-ratio method, we derived the equation showing 
that pi is a power function of pi/pj, including coincidence-summing corrections. 
We verified the new method by MC simulation. A sample of soil in 1-L cylin-
drical container was assumed measured on a 48% efficient p-type Ge detector. 
We simulated random locations of 2048 hot particles in the sample, one particle 
at a time, and calculated their effective efficiencies and efficiency ratios for three 
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gamma peaks of 152Eu: E1 = 121.8 keV, E2 = 344.3 keV, and E3 = 1408.0 keV. 
The simulated functions p1 vs. p1/p3, p2 vs. p2/p3, and p1 vs. p1/p2 were fitted with 
the derived equation resulting in the 1-particle calibration model. This model 
was applied to calculate Bias of the fitted curve from true values of pi for each 
particle, in terms of Bias Range and Bias Std Dev. Then the Improvement factors 
were calculated for the Bias measures with respect to the Bias measures assum-
ing homogeneous calibrations. Spectacular Improvement factors were deter-
mined for the peak-ratio method in the presence of 1 particle in the samples. 
The improvement factors decreased from about 30 to 20 to 10 when moving 
from E1/E3 to E2/E3 to E1/E2 calibrations. Therefore, the larger the difference 
between the energies of the two peaks, the better the Improvement factor is, at 
least for a single particle present in the sample. 

However, this method does not aim at detecting exactly 1 hot particle in the 
sample. 

Therefore, identical individual particles were combined into n-particle groups 
in steps of 2, which resulted in the n-particle model. For each group, the average 
effective peak efficiencies i np  and their ratios were calculated. It was ob-
served that i np  vs. i j n

p p  curves were lower than that for the 1-particle. 
In order to overlap all grouped MC data, the Minimum and Maximum values of 
pi/pj were extracted for each n, which resulted in the Min-Max calibration curve 
constrained by passing through the Grand average point. The n-particle calibra-
tion curve was interpolated between 1-particle and Min-Max curves, using SDT, 
leading to the most optimal effective efficiency pinterp, for every n. Then the Bias 
Range and Bias Std Dev of pinterp from that of true efficiency <pi>n was calculated 
as well as the Improvement factors from the homogeneous efficiency. The Im-
provement factors varied from 8 to 2 for the Bias Range and from 5 to 2 for the 
Bias Std Dev when increasing the number of hot particles in the group. In com-
parison with the 1-particle model, the Improvement factors are lower, and their 
dependence on gamma energy is much less. 

We also tested the model for non-equal particles. We simulated 3 groups of 
non-equal hot particles and found that the n-particle model provided expected 
Improvement factors from the homogeneous calibration. Therefore, this model 
is independent of the number, location, and size distribution of hot particles. 

The application of our calibrated n-particle model to determine radionuclide 
activity can be as follows. The ratio of two peak areas or counting rates of the ra-
dionuclide is determined from the measured gamma spectrum. Using this ratio, 
the effective peak efficiency pi is calculated from the pi vs. pi/pj interpolated cali-
bration curve. Then, the radionuclide activity is calculated as the Ai = Ri/pi. Our 
calculated Improvement factors suggest that, in a single measurement of a ran-
dom sample, the n-particle model is expected to deliver activity result several 
times closer to true activity than that calculated using bulk homogeneous model. 
In this way, n-particle model satisfies the stated goal of reducing dispersion in 
gamma spectrometry of inhomogeneous samples. One parameter the n-particle 
model cannot provide is the standard deviation of inhomogeneity itself. Actual-
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ly, it would, if the number and distribution of hot-particles was known, which is 
not available from a single measurement. 

The advantage of the n-particle model is that can be applied to a mixture of 
radionuclides, as long as each radionuclide has at least two gamma peaks easily 
measurable in the gamma spectrum. Table 1 lists several radionuclides to which 
n-particle model can be applied. There are some limitations attributed to gamma 
energies and intensities. One such case is 137Cs, which has a 32.1-keV x-ray and a 
661.7-keV gamma ray emitted by its progeny, 137Ba. The low-energy x-ray is eas-
ily attenuated in the sample, so the sample size has to be smaller than 1 L (in our 
configuration on Figure 1), and Ge detector sensitive to low-energy photons to 
observe required effects. Similarly, the usage of 32-keV peak was found useful 
only to matrix depth of 2 cm for in-situ gamma spectrometry [9]. Also, 60Co (not 
listed in Table 1) is not an optimal case for peak-ratio method because the at-
tenuation of the two high-energy gamma rays emitted at 1173.2 keV and 1332.5 
keV in the sample is similar. This might not provide sufficient variability in the 
ratio of their counting rates as a function of inhomogeneity. 

In the previous investigation [1], we developed a similar model of handling 
inhomogeneity in gamma spectrometry of voluminous samples based on the 
peak-to-total ratio, p/t. Unlike the peak-ratio model developed here, the p/t 
model could only be used for single radionuclides, such as 137Cs or 60Co. It also 
delivered lower Improvement factors than the peak-ratio model. The reason for 
that is a much wider distribution of 1-particle p/t values than the distribution of 
1-particle pi/pj values. The narrow distribution of the latter has a disadvantage, 
however, in causing the Grand average point laying away from it. This compli-
cated the interpolation process for n-particle model and caused the Average Bias 
to deviate from zero. Nevertheless, it was possible to adjust Average Bias to 
within ±5% for all cases, except for 1 particle (the p/t model had Average Biases 
within ±5% for all cases including that of 1 particle). The 5% systematic Bias ap-
pears acceptable when comparing Bias of several hundred % due to inhomo-
geneity. Since in real samples chances of having exactly 1 hot particle are small, 
the n-particle model can have a useful application. If it was known that there was 
exactly 1 particle in the sample, then the 1-particle model was shown to perform 
exceptionally well. 

Both the peak-ratio model presented here and the peak-to-total model [1] 
were applied to specific counting geometry and sample matrix composition and 
density. For other geometries and matrices, the models require additional fits, 
which can result in significant computational effort. However, the trends, espe-
cially for a fixed geometry and varied sample matrix and density, are expected to 
be similar, so only a reasonably limited number of calibration cases would need 
to be calculated, and the ones in between-interpolated. 

7. Conclusion 

A new calibration method was developed to address inhomogeneity in volumin-
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ous samples measured by gamma spectrometry, caused by the presence of hot 
particles. The method is based on the counting-rate ratio of two gamma peaks 
from a measured radionuclide. With appropriate calibration using Monte Carlo 
simulation, the peak-ratio method can determine radionuclide activity several 
times closer to the true value than the traditional calibration assuming homoge-
neous sample, by performing only a single measurement. The peak-ratio method 
has been shown to be independent of the number, location, and size distribution 
of hot particles. This method can be applied to a mixture of radionuclides in the 
sample and complements previously developed peak-to-total method to correct 
for inhomogeneity in gamma spectrometry. The models proposed here could be 
verified by experiments in which one or more artificially created hot particles of 
known activities could be randomly mixed in the matrix studied. 
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