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Abstract 

A proper k-edge coloring of a graph ( ) ( )( ),G V G E G=  is an assignment 

( ) { }: 1, 2, ,c E G k→   such that no two adjacent edges receive the same 
color. A neighbor sum distinguishing k-edge coloring of G is a proper k-edge 
coloring of G such that ( ) ( )

u e v e
c e c e

∈ ∈

≠∑ ∑  for each edge ( )uv E G∈ . The 

neighbor sum distinguishing index of a graph G is the least integer k such 
that G has such a coloring, denoted by ( )GχΣ′ . Let  

( )
( )
( )

2
max |

E H
mad G H G

V H

  = ⊆ 
  

 be the maximum average degree of G. 

In this paper, we prove ( ) ( ){ }max 9, 1G GχΣ′ ≤ ∆ +  for any normal graph G 

with ( ) 37
12

mad G < . Our approach is based on the discharging method and 

Combinatorial Nullstellensatz. 
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1. Introduction 

All graphs mentioned in this paper are undirected, finite and simple. For a graph 
G, we denote its vertex set, edge set, maximum degree, minimum degree by 
( )V G , ( )E G , ( )G∆ , ( )Gδ , respectively. Let ( )GN v  be the set of neigh-

bors of the vertex v in G, and ( ) ( )G Gd v N v=  be the degree of v in G. The  

average degree of a graph G is defined as 
( )
( )

2 E G
V G

. The maximum average de-
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gree ( )mad G  of G is the maximum of the average degrees of its subgraphs. 

A proper k-edge coloring of a graph ( ) ( )( ),G V G E G=  is an assignment 
( ) { }: 1, 2, ,c E G k→   such that ( ) ( )1 2c e c e≠  for any two adjacent edges 1e  

and 2e . Let c be a proper k-edge coloring of G. We use ( )f v  to denote the 
sum of colors of the edges incident to v. If ( ) ( )f u f v≠  for each edge  

( )uv E G∈ , then c is called as a neighbor sum distinguishing k-edge coloring or 
an nsd-k-coloring of G for short. The neighbor sum distinguishing index of a 
graph G is the least integer k such that G has an nsd-k-coloring, denoted by 

( )GχΣ′ . By ( )S v , we denote the set of colors taken on the edges incident to v, 
i.e. ( ) ( ) ( ){ }|S v c uv uv E G= ∈ . The proper k-edge coloring c is a neighbor set 
distinguishing k-edge coloring, if ( ) ( )S u S v≠  for each edge ( )uv E G∈ . Let 

( )a Gχ′  be the smallest value k such that G has a neighbor set distinguishing 
k-edge coloring. It is easy to observe that G has a neighbor sum(or set) distin-
guishing edge coloring if and only if G does not contain isolated edges. A graph 
with no isolated edges is called as a normal graph. Then ( ) ( )aG Gχ χΣ′ ′≥  for 
any normal graph by definition. 

In 2002, Zhang et al. [1] introduced the concept of the neighbor set distin-
guishing edge coloring and posed the following conjecture. 

Conjecture 1.1 ([1]) If G is a connected normal graph with at least 6 vertices, 
then ( ) ( ) 2a G Gχ′ ≤ ∆ + . 

Hatami [2] proved ( ) ( ) 300a G Gχ′ ≤ ∆ +  by probabilistic method for normal 
graph G with ( ) 2010G∆ > . Akbari et al. [3] showed that ( ) ( )3a G Gχ′ ≤ ∆  for 
any normal graph. Wang et al. [4] improved this bound to that ( ) ( )2.5a G Gχ′ ≤ ∆  
for any normal graph. 

The neighbor sum distinguishing edge coloring was introduced by Flandrin et 
al. [5]. They determined the neighbor sum distinguishing index of graph classes 
including paths, trees, cycles, complete graphs and complete bipartite graphs, 
and posed the following conjecture. 

Conjecture 1.2. ([5]) If G is a connected normal graph with at least 3 vertices 
and 5G C≠ , then ( ) ( ) ( ) 2G G GχΣ′∆ ≤ ≤ ∆ + . 

Flandrin et al. [5] proved that ( ) ( )7 4
2
G

GχΣ

∆ − 
′ ≤  

 
 for each connected 

normal graph G with maximum degree ( ) 2G∆ ≥ . Wang and Yan [6] improved this 

bound to 
( )10 2
3
G∆ + 

 
 

. Bonamy and Przybylo [7] showed that ( ) ( ) 1G GχΣ′ ≤ ∆ +  

for planar graph with ( ) 28G∆ ≥ . Dong et al. [8] studied the connections be-
tween neighbor sum distinguishing index and maximum average degree, and 

proved that if G is a normal graph with ( ) 5
2

mad G <  and ( ) 5G∆ ≥ , then  

( ) ( ) 1G GχΣ′ ≤ ∆ + . Later, Gao et al. [9] showed that if G is a normal graph with 

( ) 8
3

mad G <  and ( ) 5G∆ ≥ , then ( ) ( ) 1G GχΣ′ ≤ ∆ + . Hocquard and Przybylo 

[10] proved that ( ) ( ) 1G GχΣ′ ≤ ∆ +  for any normal graph G with ( ) 3mad G <  
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and ( ) 6G∆ ≥ . Wang et al. [11] proved that if G is a normal graph with 

( ) 37
12

mad G <  and ( ) 7G∆ ≥ , then ( ) ( ) 2G GχΣ′ ≤ ∆ + . Recently, Wang et al. 

[12] proved that if G is a normal graph with ( ) 10
3

mad G <  and ( ) 8G∆ ≥ , 

then ( ) ( ) 2G GχΣ′ ≤ ∆ + . 

In this paper, we improve the result given by Wang et al. [11] and obtain the 
following result: 

Theorem 1.1. Let G be a normal graph. If ( ) 37
12

mad G < , then  

( ) ( ){ }max 9, 1G GχΣ′ ≤ ∆ + . 

Corollary 1.2. Let G be a normal graph. If ( ) 37
12

mad G <  and ( ) 8G∆ ≥ , 

then ( ) ( ) 1G GχΣ′ ≤ ∆ + . 

2. Preliminaries 

To prove our main result, we need to introduce some notations. A vertex v is 
called a k-vertex (a k + -vertex, or a k − -vertex, respectively) if ( )d v k=   
( ( )d v k≥ , or ( )d v k≤ , respectively). A vertex v is called a leaf if ( ) 1d v = . 

At first, we introduce several lemmas. 
Lemma 2.1. ([11]) Suppose that k and n are positive integers with k n≤ , iS  

is a set of integers with i iS l n= ≥ , 1,2, ,i k=  . Let  
( ){ }1 | ,k

k i i i i jiT x x S x x i j
=

= ∈ ≠ ≠∑ , then 2
1 1k

k iiT l k
=

≥ − +∑ . 
Lemma 2.2. ([13]) Let F be an arbitrary field, and let ( )1, , nP P x x=   be a 

polynomial in [ ]1, , nF x x . Suppose the degree ( )deg P  of P equals 1
n

ii k
=∑ , 

where each ik  is a non-negative integer, and suppose the coefficient of  
1

1
nkk

nx x  in P is non-zero. Then if 1, , nS S  are subsets of F with i iS k> , 
there are 1 1, , n ns S s S∈ ∈  so that ( )1, , 0nP s s ≠ . 

Lemma 2.3. ([14]) Let 

( ) ( )
2

1 2
11

, , ,
n

n i j k
ki j n

P x x x x x x
=≤ < ≤

 = −  
 
∑∏

 
be a polynomial in n variables, where 2n ≥ . Let ( )1 2

1 2
nnn n

P nC x x x  denote the 
coefficient of 1 2

1 2
nnn n

nx x x  in P, then 

( )1 3 4
1 2 3 4 1 1.n n n n

P nC x x x x x− − −
− =

 

3. Proof of Theorem 1.1 
3.1. Unavoidable Configuration 

In this paper, we will prove Theorem 1.1 by contradiction. Let  
( ){ }max 9, 1K G= ∆ + . Let G be a counterexample of theorem 1.1 such that 

( ) ( )V G E G+  is the smallest. Obviously, G is connected. Let H be a normal 
subgraph of G. By the minimality of G, H has an nsd-K-coloring c using the col-
or set { }1,2, , K . 
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Remark 1. Let ( )u V G∈ . Suppose that u is adjacent to a 2-vertex v with 
( ) { },GN v u w=  and ( ) 4Gd w ≤ . If G G vw′ = −  admits an nsd-K-coloring c 

such that ( ) ( )c uv f w≠ , then there are at least 3 3 1 1 1K − − − − ≥  colors availa-
ble for vw. Hence we can get an nsd-K-coloring of G. Hence, in the following 
discussion, we will omit the proof of recoloring or coloring of vw, and just show 
that G G vw′ = −  has an nsd-K-coloring c with ( ) ( )c uv f w≠ . 

Let H be the graph which is obtained by removing all the leaves of G. Let 
( )kd v  ( ( )k

d v+ , ( )k
d v− ) be the number of neighbors of v with degree k (at 

most k, at least k) in H. 
Claim 3.1. The graph H has the following properties: 
(1) ( ) 2Hδ ≥ . 
(2) If ( ) 4Hd u ≤ , then ( ) ( )G Hd u d u= . 
(3) If uvw  is a path in H such that ( ) 2Hd v = , ( )2 4Hd w≤ ≤ , then  
( ) ( )G Hd u d u= . 

Proof: (1) This statement follows from [8]. 
(2) Assume to the contrary that ( ) ( )G Hd u d u d> = . Let  
( ) ( ) 1G Hd u d u l− = ≥ . Then u in G is adjacent to d 2+-vertices 1 2, , , du u u  and 

l leaves 1 2, , , lv v v . 
Suppose that 1l = . Let 1G G uv′ = − . Then ( )G KχΣ′ ′ ≤  by the minimality 

of G. The colors in ( ){ } ( ) ( ){ }|1 |1i ic uu i d f u f u i d≤ ≤ − ≤ ≤  are forbidden 
for 1uv . So we have at least 2 8 1K d K− ≥ − ≥  available colors for 1uv . There-
fore, we can get an nsd-K-coloring of G, a contradiction. 

Suppose that ( )2 l G d≤ ≤ ∆ − . Let { }|1iG G uv i l′ = − ≤ ≤  and iS  denote 
the feasible color set which iuv  can use for each 1 i l≤ ≤ . Then iS K d≥ −  col-
ors available for iuv . By Lemma 2.1, ( ) 2 1lT l K d l≥ − − + . Let  
( ) ( ) ( )2 1 1f l l K d l l K d l= − − + = − − + . Note that  

( ) 1 1K d l G d l− − ≥ ∆ + − − ≥ . If 4l ≥ , then ( ) 1 4f l l≥ + > . If 2 3l≤ ≤ , 
then 9 4 3 2K d l− − ≥ − − ≥  and ( ) 2 2 1 4f l ≥ × + > . Thus, we can show that 
( ) 4f l > . Hence we can get an nsd-K-coloring of G, a contradiction. 
(3) According to Claim 3.1 (2), we have ( ) ( ) 2G Hd v d v= =  and  
( ) ( )G Hd w d w= . Assume to the contrary that ( ) ( )G Hd u d u d> = , this means 

that there exist at least one leave 1v  adjacent to u in G. Let G G vw′ = − . Then 
G′  has an nsd-K-coloring c by the minimality of G. If ( ) ( )c uv f w≠ , we can 
get an nsd-K-coloring of G by Remark 1, a contradiction. If ( ) ( )c uv f w= , 
then we exchange the colors of 1uv  and uv , and get an nsd-K-coloring of G by 
Remark 1, a contradiction.   

A 2-vertex is called bad if it is adjacent to a 2-vertex; weak if it is adjacent to a 
3-vertex or a 4-vertex; good if it is adjacent to two 5+-vertices; deficient if it is 
bad or weak. Let ( )2bd u  ( ( )defd v , ( )2gd u ) be the number of bad 2-vertices 
(deficient vertices, good 2-vertices) adjacent to u in H. 

Claim 3.2. Suppose that u is a weak 2-vertex in H. Let ( ) { }1 2,HN u u u= , 
where ( )1 3Hd u =  or 4. 

(1) If ( )1 3Hd u = , then ( )15
2d u+ = . 
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(2) If ( )1 4Hd u = , then ( )14
3d u+ = . 

Proof: (1) By Claim 3.1 (2), ( ) ( )1 1 3G Hd u d u= =  and ( ) ( ) 2G Hd u d u= = . 
Let ( ) { }1 , ,GN u u x y= . Assume to the contrary that ( ) 4Hd x ≤ . According to 
Claim 3.1 (2), ( ) ( ) 4G Hd x d x= ≤ . Let { }1 1,G G uu u x′ = − . Then G′  has an 
nsd-K-coloring by the minimality of G. It is easy to see that there are at least 

3 3 1 1 1K − − − − ≥  available colors for 1u x . So we can extend the coloring to G 
by Remark 1, a contradiction. 

(2) By Claim 3.1 (2), ( ) ( )1 1 4G Hd u d u= =  and ( ) ( ) 2G Hd u d u= = . Let  
( ) { }1 , , ,GN u u x y z= . Assume to the contrary that ( ) 3Hd x ≤ . By Claim 3.1 (2), 
( ) ( ) 3G Hd x d x= ≤ . Let { }1 1,G G uu u x′ = − . Then G′  has an nsd-K-coloring 

by the minimality of G. There are at least 2 2 2 1 2K − − − − ≥  available colors 
for 1u x . So we can obtain an nsd-K-coloring of G by Remark 1, a contradiction. 
  

If uxy  is a path of H such that ( ) 2Hd y =  and ( ) 3Hd x = , then u is called 
the source vertex of y, y is called sink vertex of u. We use ( )s u  to denote the 
number of sink vertices of u. By Claim 3.2 (1), we know that ( ) ( )3s u d u≤ . 

Claim 3.3 Let ( )u V H∈  with ( )Hd u d= . Let 1, , du u  be the neighbors 
of u in H. 

(1) If 2d = , then ( )4
1d u− ≤ . 

(2) If 3d = , then ( )3
1d u− ≤ . 

(3) If 5d ≥ , then ( )2 1bd u ≤ . 
(4) If 5d = , then ( )2 2d u ≤ . 

(4.1) If ( ) 1defd u = , then ( ) 0s u = . 
(4.2) If ( )2 2d u = , then ( ) 1defd u ≤ . 
(4.3) If ( )2 2d u =  and ( ) 1defd u = , then ( )3 0d u = . 

(5) If 6d = , then ( ) 1defd u ≤ . 
(5.1) If ( ) 0defd u =  and ( )2 5gd u ≥ , then ( )3

5d u− =
. 

(5.2) If ( ) 1defd u = , then ( )2 1gd u ≤ . 
Proof: (1) Assume to the contrary that u is adjacent to two 4--vertices 1u  and 

2u . By Claim 3.1 (2), ( ) ( ) 2G Hd u d u= =  and ( ) ( )G i H id u d u=  for 1,2i = . 
Suppose that ( )1 2u u E G∉  (If ( )1 2u u E G∈ , we can prove it similarly). Let  
G G u′ = − . Then G′  has an nsd-K-coloring c by the minimality of G. It is easy 
to show that the colors in  

( ) ( ){ } ( ) ( ) ( ){ } ( ){ }1 1 1 1 2| |G Gc u w w N u f w f u w N u f u′ ′∈ − ∈   are forbidden 
for 1uu . So we have at least 3 3 1 2K − − − ≥  available colors for 1uv . Then we 
can get an nsd-K-coloring of G by Remark 1, a contradiction. 

(2) Assume to the contrary that u is adjacent to two 3--vertices 1u  and 2u . 
By Claim 3.1 (2), ( ) ( ) 3G Hd u d u= =  and ( ) ( )G i H id u d u=  for 1,2i = . Let  

{ }1 2,G G uu uu′ = − . Then G′  has an nsd-K-coloring c by the minimality of G. 
The colors in ( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }1 1 1 3 2 3, | ,Gc u w f w f u w N u c uu f u c uu′− ∈ −  
are forbidden for 1uu . So we have at least 2 2 1 1 3K − − − − ≥  available colors 
for 1uu . Next, there are at least 2 2 2 2 1K − − − − ≥  colors available for 2uu . 
Hence we have ( )G KχΣ′ ≤ , a contradiction. 
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(3) Assume to the contrary that u is adjacent to two bad 2-vertices 1u  and 

2u . By Claim 3.1 (2), we have ( ) ( ) 2G i H id u d u= =  for 1,2i = . 
Case 1: ( )1 2u u E G∈ . 
Let 1 2G G u u′ = − . The colors in  
( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 2, , ,f u c uu f u c uu c uu c uu− −  are forbidden for 1 2u u . So there 

are at least 4 5K − ≥  available colors for 1 2u u . Hence, we can extend this co-
loring to G, a contradiction. 

Case 2: ( )1 2u u E G∉ . 
Let ( ) { },G i iN u u w=  for 1,2i = . By Claim 3.1 (2), ( ) ( ) 2G i H id w d w= =  

for 1,2i = . By Claim 3.2 (1), 1 2w w≠  and ( )1 2w w E G∉ . Let  
( ) { },G i i iN w u v=  for 1,2i = . 

Case 2.1: 1 2v v v= = . 
Let { }1 1 2 2,G G u w u w′ = − . Then G′  has an nsd-K-coloring c by the minimali-

ty of G. Note that ( ) ( )1 2c uu c uu≠  and ( ) ( )1 2c vw c vw≠ . If ( ) ( )1 1c uu c vw=  
(similarly for ( ) ( )2 2c uu c vw= ), then we switch the colors of 1uu  and 2uu . It 
is worth noting that ( ) ( )1 1f u f w≠  and ( ) ( )2 2f u f w≠  for this new nsd-K- 
coloring c′  of G′ . The colors in  

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1, , ,c uu f u c uu c vw f v c vw′ ′ ′ ′− −  are forbidden for 1 1u w . So we 
have at least 1 1 1 1 5K − − − − ≥  available colors for 1 1u w . Similarly, there are at 
least 5 colors available for 2 2u w . Hence we have ( )G KχΣ′ ≤ , a contradiction. 
If ( ) ( )1 1c uu c vw≠  and ( ) ( )2 2c uu c vw≠ , then ( ) ( )i if u f w≠  ( 1,2i = ). 
Now we can extend this coloring to G with the similar discussion as above, a 
contradiction. 

Case 2.2: 1 2v v≠ . 

Let { } { }1 1 2 2 1 2,G G u w u w w w′ = − + . Now we will show that ( ) 37
12

mad G′ < . In 

fact, let H ′  be the subgraph of G′ . If ( )1 2w w E H ′∉ , then H G′ ⊆  and 

( ) 37
12

mad H ′ < . So suppose that ( )1 2w w E H ′∈ . If at most one of 1 1w v  and 

2 2w v  belongs to ( )E H ′ , say ( )1 1w v E H ′∈  if it exists, then 2H H w′= − , is 

the subgraph of G. Note that 
( )
( )

2 37
12

E H
V H

< . Therefore,  

( )
( )

( )( )
( )

( )
( )

( )
( )

37 22 12 2 2 3712
121 1 1

V HE HE H E H
V H V H V H V H

++′ +
= = < <

′ + + +
. If ( )1 1w v E H ′∈  

and ( )2 2w v E H ′∈ , then { }1 2,H H w w′= −  is the subgraph of G. Note that 

( )
( )

2 37
12

E H
V H

< . Therefore,  

( )
( )

( )( )
( )

( )
( )

( )
( )

37 62 32 2 6 3712
122 2 2

V HE HE H E H
V H V H V H V H

++′ +
= = < <

′ + + +
. Thus, we obtain 

that G′  is a graph with ( ) 37
12

mad G′ <  and  
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( ) ( ) ( ) ( )E G V G E G V G′ ′+ < + . Then G′  has an nsd-K-coloring c by the 

minimality of G. Note that ( ) ( )1 1 2 2c w v c w v≠  by ( ) ( )1 2f w f w≠ . Then we 
can achieve an nsd-K-coloring of G with the similar discussion as Case 2.1. 

(4) Assume to the contrary that u in H is adjacent to three 2-vertices 1 2,u u  
and 3u . By Claim 3.1 (2), it holds that ( ) ( ) 2G i H id u d u= =  for { }1,2,3i∈ . 
Let ( ) { },G i iN u u w=  for each { }1,2,3i∈ . Assume that u in G is adjacent to l 
leaves 1 2, , , lv v v  with 0l ≥ . 

Case 1: 0l = . 
Then ( ) ( ) 5G Hd u d u= = . Let { }| 1, 2,3iG G uu i′ = − = . Then G′  has an 

nsd-K-coloring by the minimality of G. It is easy to see that there are at least 
2 1 1 5K − − − ≥  colors available for iuu  ( { }1,2,3i∈ ). By Lemma 2.1,  

25 3 3 1 7 5× − + = > . So we can color 1uu , 2uu  and 3uu  properly such that 
( ) ( )if u f u≠  for each 1 5i≤ ≤ , a contradiction. 
Case 2: 1l = . 
Let { }1 1 2 3, , ,G G uv uu uu uu′ = − . Then G′  has an nsd-K-coloring by the mi-

nimality of G. It is evident that there are at least 2 1 1 5K − − − ≥  colors availa-
ble for iuu  ( { }1,2,3i∈ ) and at least 2 7K − ≥  colors available for 1uv . By 
Lemma 2.1, 27 5 3 4 1 7 5+ × − + = > . So we can color 1uv , 1uu , 2uu  and 3uu  
properly and obtain an nsd-K-coloring of G, which is a contradiction. 

Case 3: 2l ≥ . 
Let { } { }( )1| 1, 2, ,iG G uv i m uu′ = − =   . Then G′  has an nsd-K-coloring 

by the minimality of G. We use colors 1 1, , ,m mx x x +  to color 1 1, , ,muv uv uu . 
Let iS  and 1mS +  devote the available color set for iuv  (1 i m≤ ≤ ) and 1uu , 
respectively. Now we consider the following polynomial: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

5 1 5

1 1
1 1 21 1 2

1 5

1 1
1 1 2

, ,

.

m l

m i j i t k n
i t s ki j m n

m l

i t k m
i t m k

P x x x x x c uv c uu f u

x c uv c uu x f u

+

+
= = + =≤ < ≤ + =

+

+
= = + =

 = − + + − 
 

 ⋅ + + − − 
 

∑ ∑ ∑∏ ∏

∑ ∑ ∑



 
Let 

( ) ( )
41

1 1
1 11 1

, , .
m m

m i j i i
i ii j m

Q x x x x x x
+

+
= =≤ < ≤ +

   = −    
   
∑ ∑∏

 
Suppose that 2l = . Let 2m = . Notice that ( )1 2 7 3 5S S K= ≥ − − ≥  and 

( )3 7 3 1 1 3S K≥ − − − − ≥ . By computations, we obtain that  

( ) ( )4 3 4 3
1 2 3 1 2 3 3 0P QC x x x C x x x= = ≠ . According to Lemma 2.2, we can choose  

i ix S∈  (1 1i m≤ ≤ + ) such that ( )1 1, , 0mP x x + ≠ . That is, we can get an 
nsd-K-coloring of G, a contradiction. 

Suppose that 3l ≥ . Let 3m = . It is evident that for each 1 i m≤ ≤ , we have 
( )( )4 5i GS K d u≥ − − ≥  and ( )( )1 4 1 1 3m GS K d u+ ≥ − − − − ≥ . By computa-

tions, we obtain that ( ) ( )4 3 2 2 4 3 2 2
1 2 3 4 1 2 3 4 1 0P QC x x x x C x x x x= = − ≠ . According to 

Lemma 2.2, we can choose i ix S∈  (1 1i m≤ ≤ + ) such that ( )1 1, , 0mP x x + ≠ . 
That is, we can get an nsd-K-coloring of G, a contradiction. 

(4.1) Assume to the contrary that u in H is adjacent to one deficient vertex 1u  
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and has one sink vertex x. Let ( ) ( )2 G Gu N x N u∈  . Then by the definition of 
sink vertex, we have ( )2 3Hd u = , ( ) 2Hd x = . By Claim 3.1, it holds that 

( ) ( ) 5G Hd u d u= = , ( ) ( )1 1 2G Hd u d u= = , ( ) ( )2 2 3G Hd u d u= =  and  
( ) ( ) 2G Hd x d x= = . Suppose that ( ) { }1 1,GN u u w= . Let 1G G uu′ = − . Then 

G′  has an nsd-K-coloring by the minimality of G. We erase the colors on edges 

1 1u w  and 2u x . There are at least 4 1 4K − − ≥  available colors for 1uu . Thus, 
we can color properly the edge 1uu  such that ( ) ( )if u f u≠  for { }3,4,5i∈ . 
Then we can get an nsd-K-coloring of G by Remark 1, a contradiction. 

(4.2) Assume to the contrary that u in H is adjacent to two deficient vertices 

1u  and 2u . By Claim 3.1, it holds that ( ) ( ) 5G Hd u d u= = ,  
( ) ( ) 2G i H id u d u= =  and ( ) ( ) 4G i H id w d w= ≤  ( 1,2i = ). Suppose that  
( ) { },G i iN u u w=  for each 1,2i = . Let { }1 2,G G uu uu′ = − . Then G′  has an 

nsd-K-coloring by the minimality of G. We erase the colors on edges i iu w  for 
1,2i = . There are at least 3 1 5K − − ≥  available colors for 1uu . So we can col-

or 1uu . Next, we have at least 4 1 4K − − ≥  colors available for 2uu . Thus, we 
can color properly the edge 2uu  such that ( ) ( )if u f u≠  for { }3,4,5i∈ . 
Then we can get an nsd-K-coloring of G by Remark 1, a contradiction. 

(4.3) Assume that u in H is adjacent to one deficient vertex 1u , one good 
2-vertex 2u  and one 3-vertex 3u . By Claim 3.1, it holds that ( ) ( ) 5G Hd u d u= = , 

( ) ( ) 2G i H id u d u= =  ( 1,2i = ) and ( ) ( )1 1 4G Hd w d w= ≤ . Suppose that  
( ) { },G i iN u u w=  for each 1,2i = . Let { }| 1, 2,3iG G uu i′ = − = . Then G′  has 

an nsd-K-coloring by the minimality of G. Firstly, we erase the colors on edge 

1 1u w . Then there are at least 2 1 6K − − ≥  available colors for 1uu  and at least 
2 1 1 5K − − − ≥  available colors for 2uu , and at least 2 2 2 3K − − − ≥  colors 

available for 3uu . By Lemma 2.1, 26 5 3 3 1 6 5+ + − + = > . So we can color 1uu , 

2uu  and 3uu  properly and obtain an nsd-K-coloring of G by Remark 1, which 
is a contradiction. 

(5) Assume that u of H is adjacent to two deficient vertices 1u  and 2u . By 
Claim 3.1, it holds that ( ) ( ) 6G Hd u d u= = , ( ) ( ) 2G i H id u d u= =  and  

( ) ( ) 4G i H id w d w= ≤  for 1,2i = . Suppose that ( ) { },G i iN u u w=  for 1,2i = . 
Let { }1 2,G G uu uu′ = − . Then G′  has an nsd-K-coloring by the minimality of 
G. We erase the colors on edges i iu w  ( 1,2i = ). Then there are at least  

4 1 4K − − ≥  available colors for iuu . By Lemma 2.1, 24 2 2 1 5 4× − + = > . So 
we can color 1uu  and 2uu  properly such that ( ) ( )f u f v≠  for  

( ) { }1 2,Gv N u u u∈ − . Hence, we obtain an nsd-K-coloring of G by Remark 1, a 
contradiction. 

(5.1) Assume to the contrary that u in H is adjacent to five good 2-vertices 

1u , 2u , 3u , 4u , 5u  and one 3− -vertex 6u . By Claim 3.1 (2), it holds that  
( ) ( )G i H id u d u=  for each 1 6i≤ ≤ . Assume that u in G is adjacent to l leaves 

1 2, , , lv v v  with 0l ≥ . 
Suppose that 0l = . Then ( ) ( ) 6G Hd u d u= = . Let { }1 2,G G uu uu′ = − . Then  

G′  has an nsd-K-coloring by the minimality of G. When ( ) ( )
6

2G

G
d u

∆ 
= ≤  

 
, 
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i.e. ( ) 11G∆ ≥ , we know that there are at least ( )4 1 1 5 6K G− − − = ∆ − ≥  col-

ors available for iuu  ( 1,2i = ). By Lemma 2.1, 26 2 2 1 9 6× − + = > . So we can 
color 1uu  and 2uu  properly such that ( ) ( )if u f u≠  for each 1 6i≤ ≤ , a 

contradiction. When ( ) ( )
6 1

2G

G
d u

∆ 
= ≥ + 

 
, then ( )1 2 5 1G+ + + > ∆ + . So 

we have ( ) ( )if u f u≠  for each 1 5i≤ ≤ . There are at least 4 1 1 3K − − − ≥  

available colors for iuu  ( 1,2i = ). By Lemma 2.1, 23 2 2 1 3 1× − + = > . Thus, we 
can color properly the edges 1uu  and 2uu  such that ( ) ( )6f u f u≠ , a contradic-
tion. 

Suppose that 1l ≥ . Let 1G G uv′ = − . Then G′  has an nsd-K-coloring by the 

minimality of G. When ( ) ( )
6

2G

G
l d u

∆ 
+ = ≤  

 
, i.e. ( ) 2 11G l∆ ≥ + , it is evi-

dent that there are at least ( )6 1 6 1K l l− + − − ≥ +  colors available for 1uv . So 
we get an nsd-K-coloring of G, a contradiction. When  

( ) ( )
6 1

2G

G
l d u

∆ 
+ = ≥ + 

 
, then ( ) ( )1 2 5 1l G+ + + + > ∆ + . So we have 

( ) ( )if u f u≠  for each 1 5i≤ ≤ . There are at least ( )( )1 1 1GK d u− − − ≥  

available colors for 1uv . Then we get an nsd-K-coloring of G, a contradiction. 

(5.2) Assume that u of H is adjacent to a deficient vertex 1u  and two good 
2-vertices 2u  and 3u . By Claim 3.1, it holds that ( ) ( ) 6G Hd u d u= = ,  

( ) ( )1 1 4G Hd w d w= ≤  and ( ) ( ) 2G i H id u d u= =  for each 1 3i≤ ≤ . Let  
( ) { },G i iN u u w=  for 1 3i≤ ≤ . Let { }| 1, 2,3iG G uu i′ = − = . Then G′  has an 

nsd-K-coloring by the minimality of G. We erase the colors on edges 1 1u w . For 
each 1 3i≤ ≤ , we use ix  to color iuu . Let iS  be the available color set for 

iuu . Then 1 3 1 5S K≥ − − ≥  and 2 3 3 1 1 4S S K= ≥ − − − ≥ . Now we consid-
er the following polynomial: 

( ) ( ) ( ) ( )

( ) ( )

3 3 6

1 2 3
1 41 3 1

6 3 6

1 44

, ,

.

i j i k n n
i ki j n

i k n
i kn

P x x x x x x c uu x f u

x c uu f u

= =≤ < ≤ =

= ==

 = − + − − 
 

 ⋅ + − 
 

∑ ∑∏ ∏

∑ ∑∏
 

Let 

( ) ( )
33 3 3

1 2 3
1 11 3 1

, , .i j i n i
i ii j n

Q x x x x x x x x
= =≤ < ≤ =

  = − −  
  
∑ ∑∏ ∏

 
By matlab, we obtain that ( )4 3 2

1 2 3 2 0PC x x x = ≠ . According to Lemma 2.2, we 
can choose i ix S∈  (1 3i≤ ≤ ) such that ( )1 2 3, , 0P x x x ≠ . Thus, we get an nsd- 
K-coloring of G by Remark 1, a contradiction.   

Remark 2. Note that if ( ) ( )
1

2G

G
d u

∆ 
≥ + 
 

, then  

( )( ) ( ) ( )1 2 1 1 2 1
2G

G
d u G

∆ 
+ + + − ≥ + + + > ∆ + 

 
  . So ( ) ( )if u f u≠  when 
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( ) 2G id u =  for any proper edge coloring of G. 

Claim 3.4. Let ( )u V H∈  with ( )Hd u d= . Suppose that ( )7 1d G≤ ≤ ∆ − . 
(1) ( )2 1d u d≤ − . 

(2) If 
( )
2
G

d
∆ 

≤  
 

, then ( ) 0defd u = . 

(3) If 
( )

1
2
G

d
∆ 

≥ + 
 

, then ( ) 1
2def
dd u  ≤ −  

. 

(3.1) If ( ) 1defd u = , then ( )2 3d u d≤ − . 

(3.2) If ( ) 1
2def
dd u  = −  

, then ( )2 1gd u ≤ . 

Proof: (1) Assume to the contrary that u in H is adjacent to d 2-vertices 

1, , du u . By Claim 3.1 (2), we have ( ) ( ) 2G i H id u d u= =  for each 1 i d≤ ≤ . 
Assume that u in G is adjacent to l leaves 1 2, , , lv v v . 

Suppose that 0l = . Then ( ) ( )G Hd u d u d= = . Let G G u′ = − . Then G′  

has an nsd-K-coloring by the minimality of G. If 
( )

7
2
G

d
∆ 

≤ ≤  
 

. Then  

( ) 2 1G d∆ ≥ − . There are at least ( )1 1 1K G− − ≥ ∆ −  colors available for iuu  

(1 i d≤ ≤ ). By Lemma 2.1, ( )( ) ( )21 1 2 1G d d d d d∆ − − + ≥ − + > . So we can 

color iuu  properly such that ( ) ( )if u f u≠  for each 1 i d≤ ≤ . So we get an 

nsd-K-coloring of G, a contradiction. So suppose that 
( )

1
2
G

d
∆ 

≥ + 
 

. By Re-

mark 2, ( ) ( )if u f u≠  (1 i d≤ ≤ ) for any proper edge coloring of G. Note that 

there are at least ( )1 1 1K G d− − = ∆ − ≥  available colors for iuu  (1 i d≤ ≤ ). 
Hence, we get an nsd-K-coloring of G, a contradiction. 

Suppose that 1l ≥ . Let 1G G uv′ = − . Then G′  has an nsd-K-coloring by the 

minimality of G. If 
( )
2
G

d l
∆ 

+ ≤  
 

, i.e. ( ) 2 2 1G d l∆ ≥ + − , then there are at 

least ( )1 1K d l d l− + − − ≥ +  colors available for 1uv . So we get an nsd-K- 

coloring of G, a contradiction. If 
( )

1
2
G

d l
∆ 

+ ≥ + 
 

, then  

( ) ( )if u f u≠  for each 1 i d≤ ≤  for any proper coloring of G by Remark 2. 

Note that there are at least ( )( )1 2GK d u− − ≥  available colors for 1uv . Hence, 

we get an nsd-K-coloring of G, a contradiction. 
(2) Assume that u of H is adjacent to a deficient vertex 1u . Let  

( ) { }1 1,GN u u w= . By Claim 3.1, it holds that ( ) ( ) ( )
2G H

G
d u d u d

∆ 
= = ≤  

 
, 

( ) ( )1 1 2G Hd u d u= =  and ( ) ( )1 1 4G Hd w d w= ≤ . Let 1G G u′ = − . Then G′  
has an nsd-K-coloring by the minimality of G. There are at least  

( ) ( ) ( )
2 1 1 2 2 1

2
G

K d G
∆ 

− − − ≥ ∆ − + ≥ 
 

 available colors for 1uu . Hence, we 
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can get an nsd-K-coloring of G by Remark 1, a contradiction. 

(3) Assume to the contrary that u in H is adjacent to 
2
d 
  

 deficient vertices 

1 2
2

, , , du u u 
  

 . Let ( ) { },G i iN u u w=  for each 1
2
di  ≤ ≤   

. By Claim 3.1, it holds 

that ( ) ( )G Hd u d u d= = , ( ) ( ) 2G i H id u d u= =  and ( ) ( ) 4G i H id w d w= ≤  for 

1
2
di  ≤ ≤   

. Let | 1, 2, ,
2i
dG G uu i  ′ = − =    

 . Then G′  has an nsd-K-color- 

ing by the minimality of G. We erase the colors on edges i iu w  for each 

1
2
di  ≤ ≤   

. There are at least ( )1 1
2 2 2
d d dK d G d      − − − ≥ ∆ − + ≥ +            

 

available colors for iuu  (1
2
di  ≤ ≤   

). By Lemma 2.1,  

2

1 1 1
2 2 2 2 2
d d d d dd          + × − + = + > −                    

. So we can color iuu  properly 

such that ( ) ( )if u f u≠  for each 1 i d≤ ≤ . Hence, we get an nsd-K-coloring of 
G by Remark 1, a contradiction. 

(3.1) Assume that u of H is adjacent to ( )2d −  2-vertices 1 2, , du u −  such 

that 1u  is a deficient vertex. Let ( ) { },G i iN u u w=  for 1 2i d≤ ≤ − . By Claim 

3.1, it holds that ( ) ( )G Hd u d u d= = , ( ) ( )1 1 4G Hd w d w= ≤  and  

( ) ( ) 2G i H id u d u= =  for each 1 2i d≤ ≤ − . Let { }| 1, 2, , 2iG G uu i d′ = − = − . 
Then G′  has an nsd-K-coloring by the minimality of G. Firstly, we erase the 
colors on edge 1 1u w . For each 1 2i d≤ ≤ − , we use ix  to color iuu . Let iS  
be the available color set for iuu . Then ( )1 2 1 2 1S K G d≥ − − = ∆ − ≥ −  and 

2 1 1 2iS K d≥ − − − ≥ −  ( 2 2i d≤ ≤ − ). Now we consider the following poly-
nomial: 

( ) ( ) ( ) ( )
2

1 2 2
1 11 2 1

, , , .
d d d

d i j i k n
i k di j d n d

P x x x x x x c uu f u
−

−
= = −≤ < ≤ − = −

 = − + − 
 
∑ ∑∏ ∏

 

Let 

( ) ( )
22

1 2 2
11 2

, , , .
d

d i j i
ii j d

Q x x x x x x
−

−
=≤ < ≤ −

 = −  
 
∑∏

 

By Lemma 2.3, we obtain that ( )2 3 5 6
1 2 3 4 3 1 0d d d d

Q dC x x x x x− − − −
− = ≠ . Thus, we 

get an nsd-K-coloring of G by Remark 1, a contradiction. 

(3.2) Assume to the contrary that, u in H is adjacent to ( 1
2
d  +  

) 2-vertices 

1
1

2

, , du u +  

  such that 1
1

2

, , du u −  

  are deficient vertices. Then 
2
du 
  

 and 

1
2
du +  

 are good 2-vertices by Claim 3.4 (3). Let ( ) { },G i iN u u w=  for each 

1 1
2
di  ≤ ≤ +  

. By Claim 3.1, it holds that ( ) ( )G Hd u d u d= = ,  
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( ) ( ) 2G i H id u d u= =  for 1 1
2
di  ≤ ≤ +  

. Consider that  

| 1, 2, , 1
2i
dG G uu i  ′ = − = +    

 . Then G′  has an nsd-K-coloring by the mi-

nimality of G. We erase the color on edge i iu w  for each 1 1
2
di  ≤ ≤ −  

. There 

are at least ( )1 1 1 2
2 2 2
d d dK d G d      − − − − ≥ ∆ − + + ≥ +            

 available colors 

for iuu  ( 1 1
2
di  ≤ ≤ −  

), at least 1 1 1 1
2 2
d dK d    − − − − − ≥ +        

 available 

colors for iuu  ( , 1
2 2
d di    = +      

). By Lemma 2.1,  

2

2 1 2 1 1 1 1
2 2 2 2 2 2
d d d d d dd                 + − + + − + + = > − −                                  

. So we can 

color iuu  properly such that ( ) ( )if u f u≠  for each 1 i d≤ ≤ . Thus, we get 
an nsd-K-coloring of G by Remark 1, a contradiction.   

Claim 3.5. Let ( )u V H∈  with ( ) ( ) 7Hd u G= ∆ ≥ . If ( ) 1defd u =  and  
( ) ( )2 1d u G= ∆ − , then ( ) ( )3

1d u G− = ∆ − . 
Proof: Assume that u of H is adjacent to ( )G∆  3−-vertices ( )1, , Gu u∆  such 

that 1u  is a deficient vertex and ( )2 1, , Gu u∆ −  are 2-vertices. By Claim 3.1, it 
holds that ( ) ( )G i H id u d u= . Suppose that ( ) { },G i iN u u w=  for each 
1 1i d≤ ≤ − . Let 1G G uu′ = − . Then G′  has an nsd-K-coloring by the minimality  

of G. Since ( )( ) ( ) ( )( ) ( )
1

1 2 1 2 1
2

G G
G G

∆ ∆ −
+ + + ∆ − = > ∆ + , then we can  

get ( ) ( )if u f u≠  for each ( )1 i G≤ ≤ ∆ . Firstly, we erase the color on edge 

1 1u w . There are at least ( )( )1 1 1K G− ∆ − − ≥  available colors for 1uu . Thus, 
we obtain an nsd-K-coloring of G by Remark 1, a contradiction.   

3.2. Discharging Process 

In order to complete the proof of Theorem 1.1, we use the discharging method. 

For this aim we first define the original charge function ( ) ( ) 37
12Hw u d u= −  for 

each ( )u V H∈ , then 

( )
( )

( )
( ) ( ) ( )37 37 0.

12 12H
u V H u V H

w u d u V H mad G
∈ ∈

   = − ≤ − <   
   

∑ ∑
 

We will design several discharging rules and reassign the charges according to 
the rules below. Let w∗  be the final charge. We will show that for each  

( )u V H∈ , ( ) 0w u∗ ≥ . This leads to the following contradiction: 

( )
( )

( )
( )0 0

u V H u V H
w u w u∗

∈ ∈

≤ = <∑ ∑
 

and it shows the nonexistence of G. 
We define the discharging rules as follows: 
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(R1) Every 5+-vertex gives 13
12

 to each adjacent bad 2-vertex; 15
24

 to each 

adjacent weak 2-vertex; 13
24

 to each adjacent good 2-vertex. 

(R2) Every source vertex gives 11
48

 to its sink vertex. 

(R3) Every 4-vertex gives 11
24

 to each adjacent 2-vertex. 

(R4) Every 4+-vertex gives 1
24

 to each adjacent 3-vertex. 

Now we are going to show ( ) 0w v∗ ≥  for each ( )u V H∈ . Let ( )u V H∈  

with ( )Hd u d= . By Claim 3.1 (1), 2d ≥ . 
(1) 2d = . According to Claim 3.3 (1), u is adjacent to at least one 5+-vertex. 

First, suppose that u is a bad 2-vertex. Then by (R1), ( ) 37 132 0
12 12

w u∗ = − + = . 

Next, suppose that u is a weak 2-vertex. If u is adjacent to a 3-vertex, then u has 

two source vertices. By (R1) and (R2), ( ) 37 15 112 2 0
12 24 48

w u∗ = − + + × = . If u is 

adjacent to a 4-vertex, then by (R1) and (R3), ( ) 37 15 112 0
12 24 24

w u∗ = − + + = . 

Finally, suppose that u is a good 2-vertex, by (R1), ( ) 37 132 2 0
12 24

w u∗ = − + × = . 

(2) 3d = . According to Claim 3.3 (2), u is adjacent to at least two 4+-vertex. 

Then by (R4), ( ) 37 13 2 0
12 24

w u∗ = − + × = . 

(3) 4d = . If u is adjacent to 2-vertex, then by Claim 3.2 (2), ( )4
3d u+ = . By 

(R3), ( ) 37 11 114
12 24 24

w u∗ = − − = . If u is not adjacent to 2-vertex, then by (R4), 

( ) 37 1 34 4
12 24 4

w u∗ ≥ − − × = . 

(4) 5d ≥ . It is trivial that ( ) ( )3s u d u≤ . Hence we have: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 3

2 2 3

37 13 15
12 12 24

13 11 1
24 48 24

37 15 11 13 13 .
12 24 24 24 48

b def b

g

def b g

w u d d u d u d u

d u s u d u

d d u d u d u d u

∗ ≥ − − − −

− − −

≥ − − − − −

    (1) 

(4.1) 5d = . According to Claim 3.3 (4), ( )2 2d u ≤ . By Claim 3.3 (3), 
( )2 1bd u ≤ . 

Suppose that ( )2 2d u = . By Claim 3.3 (4.2), ( ) 1defd u ≤ . Furthermore, if 

( ) 1defd u = , then ( )3 0d u = . Suppose that ( ) 1defd u = . Then ( )3 0d u = , 

( )2 1bd u ≤  and ( )2 1gd u = . Thus, ( ) 37 15 11 13 75
12 24 24 24 24

w u∗ ≥ − − − − =  by (1). 

Suppose that ( ) 0defd u = . Then ( )2 0b defd u d≤ = , ( )2 2gd u =  and  

( )3 3d u = . Thus, ( ) 37 13 13 15 2 3
12 24 48 48

w u∗ ≥ − − × − × =  by (1). 
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Suppose that ( )2 1d u = . If ( ) 1defd u = , then ( ) 0s u =  and ( )2 1bd u ≤  by 

Claim 3.3 (3) (4.1). Thus, ( ) 37 15 11 1 25 4
12 24 24 24 3

w u∗ ≥ − − − − × = . If ( ) 0defd u = , 

then ( )2 0b defd u d≤ = , ( )2 1gd u =  and ( )3 4d u = . Thus,  

( ) 37 13 13 75 4
12 24 48 24

w u∗ ≥ − − − × =  by (1). 

Suppose that ( )2 0d u = . Then ( ) 37 13 95 5
12 48 16

w u∗ ≥ − − × =  by (1). 

(4.2) 6d = . According to Claim 3.3 (5), ( ) 1defd u ≤ . 

Suppose that ( ) 1defd u = . Then we have ( ) ( )2 1b defd u d u≤ = . By Claim 3.3 

(5.2), ( )2 1gd u ≤ . Thus, ( ) 37 15 11 13 13 56 4
12 24 24 24 48 24

w u∗ ≥ − − − − − × =  by (1). 

Suppose that ( ) 0defd u = . If ( )2 5gd u ≥ , then ( )3
5d u− = . We have  

( ) ( )2 0b defd u d u≤ = . Thus, ( ) 37 13 56 5
12 24 24

w u∗ ≥ − − × =  by (1). If  

( )2 4gd u ≤ , then ( ) 37 13 13 56 4 2
12 24 48 24

w u∗ ≥ − − × − × =  by (1). 

(4.3) 7d ≥ . By Claim 3.3 (3), ( )2 1bd u ≤ . 
(4.3.1) Suppose that ( ) 13G∆ ≥ . 

Suppose that 
( )

7
2
G

d
∆ 

≤ ≤  
 

. Then by Claim 3.4 (1) and (2), we have 

( )2 1d u d≤ −  and ( ) 0defd u = . Then ( ) ( )2 0b defd u d u≤ =  and  

( )2 1gd u d≤ − . Thus, ( ) ( )37 13 13 11 451 0
12 24 48 24 16

w u d d d∗ ≥ − − − × − = − > . 

Suppose that 
( ) ( )1 1
2
G

d G
∆ 

+ ≤ ≤ ∆ − 
 

. Since ( ) 13G∆ ≥ , we have 7d ≥ . 

Then by Claim 3.4 (3), we have ( ) 1
2def
dd u  ≤ −  

. If ( ) 1
2def
dd u  = −  

, then 

( )2 1gd u ≤ , ( )2 1bd u ≤ . Thus,  

( ) 37 15 11 13 131
12 24 2 24 24 48 2

35 17 83 35 17 1 83 53 349 0
48 48 2 24 48 48 2 2 24 96 96

d dw u d d

d dd d d

∗       ≥ − − − − − − × −            
   = − − ≥ − + − = − >     

 by (1). If  

( ) 2
2def
dd u  ≤ −  

, then ( )2 3d u d≤ −  and ( )2 1bd u ≤ . Thus,  

( ) 37 15 11 13 132 3 2 3
12 24 2 24 24 2 48

11 1 123 11 1 1 123 5 125 0
24 12 2 48 24 12 2 2 48 12 48

d dw u d d

d dd d d

∗       ≥ − − − − − − − + − ×            
   = − − ≥ − + − = − >     

 by (1). 

Suppose that ( ) 13d G= ∆ ≥ . By Claim 3.5, we know ( ) ( ) 1defd u G≤ ∆ − . If 

( ) ( ) 1defd u G= ∆ − , then ( ) ( )3
1d u G− = ∆ − . Thus,  

( ) ( ) ( )( ) ( )37 15 11 3 351 0
12 24 24 8 12

w u G G G∗ ≥ ∆ − − ∆ − − = ∆ − >  by (1). If  
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( ) ( )1 2defd u G≤ ≤ ∆ − , then by (1), we have  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

2 2 3

2 2 2

37 15 11 13 13
12 24 24 24 48

37 15 11 13
12 24 24 48
37 15 11 13 3 172 2 0
12 24 24 48 8 6

def b g

b

w u G d u d u d u d u

G d u d u G d u

G G G

∗ ≥ ∆ − − − − −

≥ ∆ − − − − ∆ −

≥ ∆ − − ∆ − − − × = ∆ − >

. If  

( ) 0defd u = , then ( ) ( ) ( ) ( )37 13 11 37 0
12 24 24 12

w u G G G∗ ≥ ∆ − − ∆ = ∆ − > . 

(4.3.1) Suppose that ( )8 12G≤ ∆ ≤ . We have 
( )

7 1
2
G

d
∆ 

≥ ≥ + 
 

. Accord-

ing to Claim 3.4 (3) and Claim 3.5, the derivation process is completely analog-
ous to 4.3.1. 

4. Conclusion 

In this paper, we have studied neighbor sum distinguishing index of sparse 
graphs. However, there are still many graphs which are not covered here. So, for 
further research, we will consider the neighbor sum distinguishing edge coloring 
of planar graphs. 
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