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Abstract 
The contribution deals with the optimization of a sequential preventive 
maintenance schedule of a technical device. We are given an initial time-to- 
failure probability distribution, model of changes of this distribution after 
maintenance actions, as well as the costs of maintenance, of a device acquisi-
tion, and of the impact of failure. The maintenance timing and, eventually, its 
extent, are the matter of optimization. The objective of the contribution is 
two-fold: first, to formulate a proper (random) objective function evaluating 
the lifetime of the maintained device relatively to maintenance costs; second, 
to propose a numerical method searching for a maintenance policy optimiz-
ing selected characteristics of this objective function. The method is based on 
the MCMC random search combined with simulated annealing. It is also 
shown that such a method is rather universal for different problem specifica-
tions. The approach will be illustrated on an artificial example dealing with 
accelerated lifetime after each maintenance action. 
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1. Introduction 

The maintenance objective is as a rule to increase the lifetime of maintained de-
vice and to reduce the maintenance costs simultaneously. As these two require-
ments are in fact contradictory, one has to consider a criterion combining them, 
using for instance relative cost to lifetime unit, or, on the contrary, the propor-
tion of effective lifetime to costs needed for the device acquisition and mainten-
ance, not neglecting costs caused by eventual device failure. 

The main contribution of the present study is the following: firstly, a quite 
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general model of optimal preventive maintenance problem is formulated, in-
cluding a rather universal scheme of sequential maintenance actions. Then, a 
procedure of numerical solution is proposed. It is based on the MCMC (Markov 
Chain Monte Carlo) method solving the stochastic optimization problem via 
controlled simulation of possible maintenance scenarios. Both these features of 
the approach are rather original (to author’s knowledge). The way of solution is 
demonstrated on artificial examples. 

There exists a number of works dealing with the optimal maintenance prob-
lems from different points of view. Some are closely connected with concrete 
applications; others are more theoretical; however, most of them can serve at 
least as an inspiration for solutions of real problems. It should be also the case of 
the present paper. In order to put this to a wider research context, let us here 
present a brief selection of references relevant to the theme. 

The paper [1] reviews computational approaches to maintenance scheduling. 
Several major categories are distinguished. One group of approaches is those uti-
lizing traditional optimization-based techniques, such as dynamic programming, 
yielding exact optimal solution. Another type of approach, taking into account 
stochastic aspects of the problem, deals with heuristic methods, including simu-
lated annealing, genetic algorithm, or guided randomized search methods. A 
similar overview of both the state of the art and directions of development is 
given in [2]. Both categorizations concern prevailingly to methods of solution; 
however, first, the problem description (model) has to be specified, concerning 
the lifetime distribution, possible actions, their consequences as well as costs. 

Sometimes, the schedule is given (allowing for certain tolerance); the objective 
is to optimize distribution and allocation of sources and people to carry out all 
required actions at proper time, see for instance [3]. In the present paper, on the 
contrary, the time schedule and, eventually, the extent of maintenance are to be 
optimized, while their impact and costs are given (though depending, naturally, 
on maintenance actions). Schematically, the setting is sketched in Figure 1 be-
low. As the lifetime (survival) of a device is random, characterized by its proba-
bility distribution, we deal with the problem of stochastic optimization. In gen-
eral cases, it could be rather difficult to find one optimal solution. Sometimes a 
unique solution does not exist, or the surface of objective function is flat around 
its optimum. Thus, the intensive simulation (under selected strategy) is a com-
mon way of how to find at least sufficiently sub-optimal solution (see also [4]). 

More complicated problem arises in connection with optimal maintenance in 
complex systems. A crucial task there is to describe the dependence among system 
components and their mutual impact. Such a description could be based on the  
 

 
Figure 1. Scheme of repeated maintenance actions. 
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7FTA analysis, which should contain also a model of dynamic reaction to events 
(defects, maintenances) of the system elements. One example of such an ap-
proach could be found in [5]. A nice literature overview concerning mainten-
ance decision objective functions is presented in [6]. The authors also discuss the 
gap between maintenance impact and costs, leading to a multi-criteria optimiza-
tion problem. A useful overview of problems connected with maintenance opti-
mization is given also in [7], it can serve as an inspiration to further deeper study 
of this area and offers also a number of relevant sources. 

Another set of models studied in optimal maintenance literature, see for in-
stance [8], considers also inspections of actual system state. Then the mainten-
ance is optimized in a sequential manner conditionally on the current prediction 
of system reliability. In the framework of our setting, inspections could be in-
cluded as a special maintenance action, then the optimal maintenance policy has 
to be recomputed sequentially, when a new information on actual lifetime dis-
tribution is provided. 

It is necessary to mention here also the models of imperfect repairs (we shall 
return to this theme in more detail in Section 3). The models are often based on 
the reduction of the hazard rate, either directly or indirectly (by shifting the vir-
tual age of the system). If the state of the system is characterized by its degrada-
tion, the repair degree can be connected with the reduction of the degradation 
level. However, here other problems arise. First, how the degradation should be 
characterized and evaluated. Actually, the degradation could be connected di-
rectly with the growth of cumulated hazard rate, i.e. with one of basic characte-
ristics of survival time probability distribution. There are numerous other possi-
bilities. One of standard approaches consists in describing the process of degra-
dation and repairs as a discrete (Markov or hidden Markov) chain on a finite set 
of states, see for instance [9]. However, the second problem is how to connect 
the state improvement with maintenance costs. This has to be settled as well. 

In the present study, the specification of device degradation is not solved, as, 
in fact, it could be as well characterized by cumulated hazard rate, i.e. given by 
lifetime probability distribution. The impact of a maintenance is then modeled 
via certain change of this distribution. The organization of the paper is the fol-
lowing: In Section 2 a sketch of general model of maintenance sequence and its 
impact is provided and the objective function of stochastic optimization prob-
lem is formulated. Then, Section 3 recalls several models of non-complete main-
tenance and its impact to future lifetime. One of them, namely the model of ac-
celerated ageing, is then described in more details. Its particular version is then 
specified to be used in concluding example. In Section 4, the method of numeri-
cal solution is described. It utilizes the random search via the Metropolis algo-
rithm combined with simulated annealing. It is, in Section 5, applied to a solu-
tion of the optimal maintenance in an artificial example. Finally, the conclusion 
discusses how the approach can be adapted to different more complicated va-
riants of the optimal maintenance problem. 
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2. Problem Formulation 

Figure 1 shows a general scheme of a sequence of maintenance actions. The 
symbols used there have the following sense: 

Notation: 
, 1, 2,jT j = —times of maintenance actions, to be optimized, 0 0T = . 

FT —time of failure (random), it depends on maintenances performed before 
its occurrence. 

, 1, 2,jX j = —survival times after j-th maintenance (random variables),  

0X —initial time to failure (random variable). 
, , 0,1, 2,j jF f j = —cumulative distribution functions and densities of jX . 

1j jF F= − —corresponding survival functions. 
, 1, 2,jC j = —cost of j-th maintenance, FC —cost of failure,  

AC —cost of device acquisition, 0 A FC C C= + , C—total costs. 

1, 1, 2,j j jT T jτ −= − = —time periods between maintenances. 

FZ T C= —random objective function. 
, 1, 2,jM j = —events, maintenance actions, F—event, failure. 

While the initial distribution of 0X , i.e. 0F , is assumed to be known, other 
distributions , 1, 2,jF j =   depend on maintenances, that is why the model of 
such a dependence should be specified. Moreover, in a general case also the costs 
of actions may depend on their extent. Further, as the problem is stochastic, we 
have to select an objective function, i.e. a corresponding random variable and its 
representative characteristics, e.g. its expectation, or its certain quantile. Let us 
first assume that all components and parameters of the scheme are fixed. Then it 
is possible, at least formally, to evaluate distribution of following random va-
riables, which might be of the interest: 

1) Distribution of the time to failure TF: In each interval ( )1, , 1, 2,j jT T j− =   
its distribution is given (conditionally, provided the device survives 1jT − ) by a 
probability density function ( )1jf t−  with ( )0, jt τ∈ , and, simultaneously, the 
probability that the device survives over jT  equals ( )1j jF τ− . Let us assume 
that there are exactly K maintenance times, fixed in advance (the device can but 
need not survive to them). Hence, when densities ( )jf t  are specified, we are 
able to derive distribution of lifetime FT . In particular, its expectation FET  
then equals:  
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2) Distribution of costs, C: It is discrete; if the failure occurs in interval 
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+=∏ , is the probability of survival 
over the last KT . 

3) Distribution of random variable FZ T C= , the time-to-failure to costs- 
to-failure. Again, when the model is specified, there is no problem to derive this 
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distribution from above. As it was already said, we might be interested in max-
imization of its certain quantile, however, in the present paper, we shall search 
for parameters maximizing its expectation. For given all model parameters, the 
expectation EZ has a form quite similar to (1), each term of (1) has to be divided 
by corresponding costs shown in point 2. For instance, when the number of 
planned maintenances is just K = 2, then  

 ( ) ( )
( )

( )
2

1 1 1 2 1 2
0 0 1 1 2

0 0 1

0
0

0 1 2

d1 d .
tf t t EXEZ tf t t F F

C C C C C C

τ
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τ τ
 +  + + = + +   + + +  

∫
∫   (2) 

It is seen that, in general case, the solution of the optimization task could be a 
rather demanding problem. Though the structure is sequential, it is not possible 
to solve the problem parts separately. For instance, it is rather difficult to find an 
optimal 2τ  as a function of 1τ . On the other hand, as shown above, for given 
all variables and parameters, the objective function can be evaluated. Hence, op-
timal parameters can be obtained by a convenient method of (randomized, pos-
sibly) search. 

2.1. Sketch of Optimization Procedure 

While a numerical example is solved in detail in Section 5, here the main fea-
tures of the solution approach are described. The objective is to find the confi-
guration of maintenance times { }, 1, 2,jT j =   (and, eventually, the mainten-
ance extent parameters) maximizing EZ. In the numerical example in Section 5 
the corresponding parameter (namely the parameter of time acceleration, α ) is 
fixed, in a more general case such parameters could also be the subject of optim-
al search, then, naturally, the costs of maintenances have to depend on them, 
too. 

The procedure starts from a reasonably chosen initial configuration and is 
searching for the best one, comparing their values EZ. It means that for each 
considered configuration corresponding EZ has to be computed. The way of 
search depends on selected search method. There exists a number of random 
search methods, each consisting, as a rule, of repeating two sub-steps: First, a 
new configuration is proposed, second, it is accepted or not. For instance, genet-
ic algorithms can propose a new configuration as a combination of already ac-
cepted, they store a whole set of best results. On the contrary, the method used 
here is based on the Metropolis algorithm. The method creates a (Markov) chain 
of configurations, at each step both the proposal distribution and the acceptance 
probability depend just on the actual state and proposed new state. The algo-
rithm accepts also non-optimal configurations, which helps the procedure to es-
cape from the regions of local extremes. In order to force the procedure to con-
verge to the global extreme, the method is combined with simulated annealing. 
Other details of the method are given in Section 4. As a rule, such a global search 
method should be started several times, in order to be more sure that really the 
global extreme has been approached. 
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When the search ends (and we hope that the optimal solution is achieved), it 
could be of interest to evaluate corresponding distributions of optimized variable 
Z, also of TF and C, eventually their other characteristics, e.g. selected quantiles. 

2.2. Illustrative Example 

The objective of the following example is just to illustrate the form of results, i.e. 
the evaluation of mentioned distributions and also the maintenance times opti-
mization, for a rather simple special case. Let the initial distribution of X0 be 
Weibull with parameters a = 100 (scale), b = 2 (shape), i.e. its characteristics are 

0 ~ 89EX , 0std ~ 46X . Further, let us for simplicity assume that this distribu-
tion remains the same after all maintenances (i.e. the maintenances are “com-
plete”), their maximal number is K = 10, inter-maintenance times are also the 
same, 55, 1,2,3, ,10j jτ = =  . Further, 0 10C = , all other 1, 1,2, ,10jC j= =  . 
Figure 2 shows distributions of all three variables, i.e. , ,FT C Z . Obtained cha-
racteristics of these variables (namely their expectations and standard deviations) 
then are: 191.11FET = , std 179.86FT = , 11.98EC = , std 3.36C = ,  

10.86EZ = , std 7.36Z = , median 9.66Z = . 
In fact, 55τ =  is approximately the optimal inter-maintenance interval in 

this simplified setting. For comparison, let us consider the same case as above, 
except that the number of maintenances is limited to only 3, on the other hand 
we optimized all 3 inter-maintenance times (using already the method of random  
 

 
Figure 2. Cumulative distribution function of time-to-failure T (above), the dotted curve there is 
the c.d.f. of Weibull(100, 2) r.v. X0. The distribution of total costs C is in the middle, cumulative 
distribution function of variable Z is below. 
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search described later in Section 4, however assuming just complete repairs at 
maintenance times). It was found that the maximum of EZ was attained approx-
imately for 1 2 3, , 41,50,66τ τ τ =  with 12.30EZ = , while median 11.94Z = . 

2.3. A Variant Model with Finite Time Horizon 

The time of model introduced in (1) has no upper bound, assuming that each fi-
nite lifetime can be exceeded with positive probability. While it holds theoreti-
cally, in practice it is not realistic. Therefore let us now assume that there is an 
upper time limit TR, given as a rule by the manufacturer, after which the device 
is innovated completely (or exchanged for new). The model is then slightly dif-
ferent. For instance, let us consider again fixed number K of planned mainten-
ances between 0 and TR. Let us recall that CA is the cost of the device acquisition, 
CF the cost of failure consequences, 0 A FC C C= + . Now, after a convenient 
re-arrangement, the expression for EZ is  
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       (3) 

where 1j j jT Tτ −= −  for 1,2, ,j K=  , 1K R KT Tτ + = −  is the time remaining to 

RT  after the last maintenance action. Thus, in general, except the maintenance 
times , 1, 2, ,jT j K=  , also their number K should be optimized. 

There are many model variants. For instance, one just slightly different from 
the setting considered here assumes the renewal after a given number of main-
tenances, similarly like in [10]. It means that K is given, at TK the device is inno-
vated, however the maintenance times Tm should be found optimally as well. 
Expression (3) is adapted easily to this case. The way of solution could be also 
quite similar to our solution here. 

In the numerical example above it was assumed that after a maintenance the 
device is as new. This is evidently unrealistic in many instances. The model (3), 
on the contrary, is more universal and considers changed distributions. That is 
why the next section is devoted to a brief presentation of commonly used models 
taking into account the maintenance impact. 

3. Models of Partial Repairs 

The renewal (or the “complete repair”) means that the device is repaired fully 
(or exchanged for a new one) and that, consequently, the successive random va-
riables—times to failure—are distributed identically and independently. On the 
contrary, the minimal repair means that the repair has no innovative effect (we 
can imagine just switching an electronic device off and on, to restart it). 

There are several natural ways how the models of complete repairs can be ex-
tended to repairs incomplete. Some authors, e.g. [11], speak in this context on 
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“Generalized renewal processes” meaning that after the maintenance and other 
interventions the distribution of time-to-failure is changed. One of basic contri-
butions is in [12]: Let 0F  be the distribution function of the time to failure of a 
new system. Assume that a maintenance reduces the virtual age. It could be 
modeled directly by switching from the actual age V  to Vδ ⋅ , with a parame-
ter [ ]0,1δ ∈  characterizing the degree of repair. Hence, the remaining lifetime 
is from this moment described by the distribution function  

( ) ( ) ( )1 0 0 , 0F t F t V F V tδ δ= + ≥ . 
In [12], several sub-models of imperfect repairs are then specified. Denote by 

nδ  the degree of the n-th repair, nT  the time survived after the last repair. 
Then in Model I the n-th repair cannot remove old damages, 1n n n nV V Tδ−= + ⋅ . 
On the contrary, the Model II allows for a reduction of the whole virtual age, 
namely ( )1n n n nV V Tδ −= ⋅ + . Notice that special cases contain the complete re-
pair model with 0nδ = , minimal repair model, 1nδ = , and frequently used va-
riant with constant degree δ . Naturally, there are many other approaches, e.g. 
considering a randomized degree of repair, the regressed degree (based on the 
system history), accelerated virtual ageing, change of hazard rate (i.e. its reduc-
tion as a rule) etc. A nice overview of models of partial maintenance can be 
found e.g. in [13]. 

Accelerated Failure Time Model 

In the rest of this paper, the specification of the model presented schematically 
in Figure 1 will use the Accelerated Failure Time (AFT) model assuming that 
after an event the subjective time speed is changed, as a rule accelerated. For-
mally, the maintenance returns the virtual age back to zero, however, the speed 
of ageing is then higher, by an accelerating parameter 1α > . In general, this 
parameter value, jα α= , can depend on maintenance action jM . Then, when 
the distribution function of the variable 1jX −  is ( )1jF t− , after the next j-th 
maintenance jM  the distribution function of jX  is ( ) ( )1j j jF t F tα−= ⋅  and 
its time starts from zero anew. Hence, for probability densities it means that 

( ) ( )1j j j jf t f tα α−= ⋅ ⋅ . 
In the sequel, it will be assumed that the initial lifetime distribution of 0X  is 

given and that the acceleration parameter α  is constant and known. It means 
that also the distributions of variables , 1, 2,jX j =   are known, they do not 
depend on maintenance timing. If we further assume that all maintenance costs 
are the same, 1, 1, 2,jC C j= =  , the problem description seems to be rather 
simple. Nevertheless, still the maintenance schedule optimization is not less dif-
ficult and needs a convenient numerical procedure. 

4. Method of Solution 

The method used here will be based on the Markov Chain Monte Carlo ap-
proach (MCMC, see for instance [14]) generating a chain of possibly sub-optimal 
solutions, and on its combination with the simulated annealing reducing varia-
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bility of accepted sequence of solution and “forcing” it to approach the optimum. 
In this framework, two variants of optimization can be considered. First, optimal 
times jT  are found for several fixed values K, then the optimal K from them is 
selected. The second method should be able to change K during the process of 
search. In the framework of the MCMC algorithms, the method is known as the 
reversible jumps MCMC. As the structure of corresponding algorithm is then 
more complicated, we shall use the first approach. 

Hence, let us assume that K is fixed, we search for optimal vector of mainten-
ance times ( )1, , KT T=T   from the subset  

{ }1 20 K
K RT T T T= < < < < < ⊂ R . The model sketch in Figure 1 as well as 

its description in (3) suggest that a reasonable method could consists in a se-
quential alternating of times jT . We shall follow the Metropolis algorithm. It 
starts from an initial configuration of T , e.g. selected equidistantly inside 
( )0, RT . At each step, one new component new

jT  is proposed, selected randomly 
in ( )1 1,j jT T− + , and accepted with probability  

 ( ){ }min 1,exp .new oldP EZ EZ= −                   (4) 

Hence we can control the distribution proposing new candidates, the most 
rough choice is the uniform distribution in ( )1 1,j jT T− + , a finer selection could 
be beta distribution, or another distribution limited to this interval, with the last 
accepted value old

jT  as its parameter (constrained Gauss distribution could be 
used as well). In every case, such a procedure innovating one component after 
another creates a Markov sequence of sets of times ( )nT , with limit distribution 
given by a probability density function proportional to ( )( )exp EZ T . The rule 
(4) accepts, with positive probability, also non-optimal values, therefore it is able 
to jump from a local maximum region. However, the objective is to find the 
global maximum of EZ. The method of simulated annealing suggests, instead of 
acceptance probability (4), to use its modification, namely  

 min 1,exp .
new oldEZ EZP
Temp

  − =   
   

                 (5) 

Then, the acceptance rule is controlled by a variable 0Temp >  (“temperature”), 
it is seen that when Temp  is close to zero, acceptance probability of non-optimal 
solutions (i.e. the cases new oldEZ EZ< ) is reduced and closer to zero as well. The 
success of simulated annealing application depends on the selection of rate of 
convergence of Temp  to zero. For instance, ( ) ( )~ 1 log 1Temp n n + , with n 
denoting the iteration loop number, suffices theoretically. However, for practical 
use it tends to zero too quickly, there does not exist a universal and exact rule 
how to adapt this rate to actual case. 

5. Numerical Example of Optimal Maintenance 

For numerical illustration we selected again the distribution of  
( )0 Weibull~ 100, 2X a b= = , final time of renewal was set to 300RT = . Notice 

that without any maintenance ( )0 300 ~ 0.00001P X > . Further, the accelera-
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tion parameter was 1.1α = . Thus, unlike in the illustrative example at the end 
of Section 2, the distribution changed, in the AFT model manner, after each ac-
tion. The objective was to find an optimal scheduling of maintenances, i.e. times 

1, , KT T  (or, equivalently, inter-maintenance periods 1, , Kτ τ ), and also op-
timal number K maximizing EZ, where random variable Z was now the propor-
tion of ( )min ,F RT T T=  to costs spent to T, including 0 A FC C C= +  if failure 
occurred before RT , or just AC  if device survived to RT . The expression for 
EZ is written in (3), the method of randomized search for optimal solution is 
sketched roughly above. As it was said there, optimal times jT  were found for 
different fixed K, then the best K was selected. 

In the first experiment the costs were set to 5, 1A jC C= =  for maintenances 
1,2, ,j K=  , the cost of failure impact 5FC = , too. Initial location of points 

, 1, 2, ,kT k K=   was regular inside ( )0, RT . Then, the iterative search followed 
the Metropolis algorithm described above, with N = 10,000 loops. In each loop 
the innovation of each point , 1, 2, ,kT k K=   was proposed sequentially, can-
didates were selected randomly uniformly from an interval inside ( )1 1,k kT T− +  
(where 0 0T = , 1K RT T+ = ). It means that computation contained together N K⋅  
steps. New point kT  was accepted along (5), with variable  

( ) ( )( )2exp 1Temp n c n= − ⋅ − . Here 1, ,n N=   was the number of loop, c was 
such that final ( ) 0.001Temp N =  (i.e. 8~ 7 10c −× ). Notice that such a choice 
yields an “S-curve” decreasing from 1 to 0 (for instance ( )5000 ~ 0.19Temp , in 
fact it is the survival function of Weibull distribution). Its shape allows for rough 
allocation of optimal configuration in the first part of iteration, making it more 
accurate in the second part. Simultaneously, also the width of proposal interval 
was decreased, which resulted in reduction of number of rejected proposals. 

The best result was found for 5K = . Optimal times of maintenance were 

1 5, , 53.9,108.3,162.7,2145.1,262.3T T = . Achieved maximal 11.7EZ = . Fig-
ure 3 shows the distribution of costs and the distribution of variable Z in optim-
al case. Then, Figure 4 presents, in its upper part, the trace of search for maxim-
al value of EZ, while its lower part shows how location of points kT  was con-
centrated around their optimal values. Both graphs display values from the 
second part of iteration, i.e. last 5000 loops, 25,000 iterations. It must be said that 
the shape of objective function around its optimum was rather flat, maximal 
values of EZ for selections 4K =  or 6K =  were just slightly smaller (by sev-
eral %), as well as the result for quite regular inter-maintenance periods. 

In order to explore a solution sensitivity, namely the change of optimal solu-
tion for different costs, in the second case we set 10, 1F jC C= =  for mainten-
ances, while 5AC =  remained unchanged. Now, in order to reduce the proba-
bility of rather expensive failure event, optimal number of maintenances was 
higher, namely 6K = , optimal times then  

1 6 55.00,106.82,156.84,205.22,241.47,2, 74.54,T T = , maximum of 9.17EZ = . 
On the contrary, the third case assumed that there were no additional failure 

expenses. We selected 0FC = , 0 10AC C= =  and 1jC =  for maintenances.  
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Figure 3. Probability distribution of total costs C (upper plot), circles correspond to costs with 
failure, the star sign at value 10 to costs of all maintenances plus CA (i.e. without failure). Below 
is the cumulative distribution function of variable Z. 

 

 
Figure 4. Upper plot shows the sequence of EZ, lower plot the histogram of accepted locations 
of times Tk. Both from the second half of iterations. 
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As expected, optimal number of maintenances was lower, namely 4K = , optimal 
maintenance times were 1 4, , 47.45,99.21,152.91,206.92T T = , and achieved 
maximum of EZ was 10.93. 

As shown in Figure 3, for given K and maintenance times T  it is possible to 
derive the distribution function of variable Z, therefore the task of maximization 
of its another characteristics (e.g. of a selected quantile) can be solved rather 
straightforwardly. Recall that the p-quantile of a random variable Z, ( )ZQ p , 
fulfils ( )( ) 1ZP Z Q p p≥ ≥ − . In other words, it means that Z is larger than its 
quantile value with guaranteed probability. Let us consider again the 1-st case, i.e. 
the case with 5A FC C= = . The maximal quantile problem was solved with the 
aid of the same algorithm as the search for maximal expectation. The result for 
maximal median of Z was not far from optimal solution for EZ, with  

( ) 11.239max medZ =  achieved now for 6K = . Then, for instance, the 25% 
quantile of Z was maximized for 7K = , optimal  

30.27,54.69,76.25,101.49,127.07,148.10,187.61=T  and achieved max  
( )0.25 7.239ZQ = . 

As the last example, let us consider a variant where two types of preventive 
maintenance are available. Let the parameters of the case be the same as above, 
namely the initial distribution being Weibull(100, 2), 5F AC C= = , 300RT = , 
and let there be a choice between two actions, the first accelerating the lifetime 
by 1 1.1α = , with cost 1 1C =  (i.e. as above), the second cheaper, with cost 

2 0.5C = , however with the lifetime accelerated more, with 2 1.2α = . The me-
thod of random search via the Metropolis algorithm with simulated annealing, 
proposing also types of actions, yielded an optimal solution consisting of 6K =  
maintenances in ( )0, RT  and combining both maintenance types. Namely, the 
procedure found a solution with 6K = , optimal sequence of times 51.83, 105.21, 
161.21, 212.10, 251.53, 279.43, corresponding maintenance action types were 2, 2, 
1, 1, 2, 2, achieved 11.91EZ = . This is more than in the case with just 1-st ac-
tion (results are above), and also when just the 2-nd type is used (in this case, 
maximal 11.42EZ =  was achieved, for 7K = ). 

6. Conclusions 

In the present paper, a rather general model of sequential maintenance actions, 
including their effects and costs, was sketched, and the problem of stochastic op-
timization of action times was formulated. Further, the method of numerical 
solution, in fact also rather general, was proposed. Different approaches to 
maintenance impact characterization were then described and discussed. Finally, 
in order to demonstrate the way of solution, the model was specified, the me-
thod applied and illustrated on an artificial example. 

The approach proposed in the present contribution can easily be adapted to 
different formulations of the maintenance problem. The modification can con-
cern to following aspects (among others): 

1) Modeling the reliability via different probabilistic distributions of time-to- 
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failure. For reliability of one unit, the standard choices are the Weibull (expo-
nential as well), or the log-normal, gamma, Gumbel and Gauss distribution; 
sometimes their combination is applied. However, even the empirical distribu-
tion based on lifetime data directly, i.e. yielding a stepwise reliability function, 
can be used. 

2) Impact of maintenance action is, in general, described via a change of fail-
ure rate. Two ways on how this could be formulated are presented in Section 3. 
Naturally, other descriptions are possible. 

3) Maintenance actions scheduling. Standardly, regular inter-maintenance pe-
riods are considered (as in [15]), in such a way this part of problem is simplified 
and one can concentrate to other aspects of optimal solutions (e.g. the extent of 
maintenance). It has to be said that the solution assuming constant periods 
could be, as a rule, close to the optimal solution without this assumption. Still, 
even a simple example in subsection 2.2 shows that there is a difference. 

4) Formal objective of optimization. Its choice depends on preferences. In the 
present contribution, the proportion of time-to-failure to spent costs is consi-
dered, its mean value taken as a criterion. Use of selected quantile is discussed, 
too. A variant approach considers multiple criteria (see, for instance, [16] com-
paring several scenarios). As a rule, in the end, it is necessary to select weights of 
each criterion and to optimize a combination of them. 

5) Optimization with constraints (for instance concerning the budget or other 
sources for maintenance actions). This is another, rather practical approach to 
multi-objective optimization, where an optimal solution is found in restricted 
space of “strategies”. Most of randomized optimization procedures (including 
the one presented here) can control its search to stay inside prescribed space (the 
simplest way consists in rejection of inadmissible configurations). 

6) Maintenance of a system of components, the theme of many studies. The 
key point of presented approach (see Figure 1) is the knowledge (i.e. a good 
model) of the time-to-failure probabilistic distribution of individual components 
before and after each maintenance action. Then, the distribution for the whole 
system failure can be recomputed, provided its proper scheme is given. Again, 
optimal times and also the type of actions should be selected, by the action type 
we mean here what component (and, eventually, to which degree) is to be main-
tained. 

In fact, in a system with parallel structure (including “K of N” system), the 
failures of individual components should be taken into account rather than the 
failure of the whole system. The system is still available after one component 
failure; however, its capacity is reduced during its repair, which causes addition-
al costs. Further, the number of redundant components could also be a matter of 
optimal choice (cf. [17]). 
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