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Abstract 
Three-parameter Weibull distribution is one of the preferable distribution 
models to describe product life. However, it is difficult to estimate its location 
parameter in the situation of a small size of sample. This paper presents a 
stochastic simulation method to estimate the Weibull location parameters 
according to a small size of sample of product life observations and a large 
amount of statistically simulated life date. Big data technique is applied to 
find the relationship between the minimal observation in a product life sam-
ple of size n (n ≥ 3) and the Weibull location parameter. An example is pre-
sented to demonstrate the applicability and the value of the big data based 
stochastic simulation method. Comparing with other methods, the stochastic 
simulation method can be applied to very small size of sample such as the 
sample size of three, and it is easy to apply. 
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1. Introduction 

To estimate product probabilistic life by means of inferential statistics approach, 
a large size sample of life data are usually required [1] [2] [3]. In the situation of 
small size of sample, both distribution type identification and distribution para-
meter estimation are difficult. Weibull distribution is widely applied to describe 
product life since its flexibility [4], as well as the fact that the shape parameter of 
a Weibull-distributed product life is mainly determined by failure mechanism. 
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Lots of experiences have demonstrated that the shape parameter values of the 
Weibull life distributions of the same kind of products with the same failure 
mode do not differ from each other considerably. 

Due to the difficulty to estimate the location parameter of the Weibull distri-
bution in small size of sample situations, the mostly applied is two-parameter 
Weibull distribution [5] [6] [7] [8] [9]. To estimate product life distribution in 
the situation of small size sample, H.K.T. Ng et al. studied three-parameter Wei-
bull distribution parameter estimation methods based on progressively Type-II 
right censored sample [10]. Abbasi et al. discussed an approach that takes the 
advantage of ANN, proposed a simple neural network that simultaneously esti-
mates the three parameters, exploiting the concept of moment method to esti-
mate Weibull parameters using mean, standard deviation, median, skewness and 
kurtosis [11].  

The situations that life distribution estimation has to be carried out according 
to small size sample of life observations will be more and more encountered in 
engineering, pertinent theories, methods and techniques have attracted ever in-
creasing investigations. This paper focuses on new principle and new method to 
estimate the location parameter of three-parameter Weibull distributed product 
life. 

2. On Weibull Location Parameter Estimation 

The probability density function of a three-parameter Weibull distribution W(β, 
η, γ) is 

( ) ( ) 1

exp ,
t tf t t

β β

β

β γ γ γ
ηη

−  −  −
= − ≥  

   
             (1) 

where, β, η and γ stand for the shape parameter, scale parameter and location 
parameter, respectively. 

2.1. On Weibull Shape Parameter 

For a Weibull distributed product life, the shape parameter is believed to be de-
pendent mainly on the underlying failure mechanism, and it is roughly a con-
stant for a certain kind of products operating in similar environments. For in-
stance, experience indicates that the range of the shape parameter of the Weibull 
distributed ball bearing life, failed in contact fatigue, is between 1.5 and 2.5. That 
makes a possibility to estimate the location parameter according to a small size 
of sample, since when the shape parameter is less than 2.5, the left tail of the 
Weibull distribution curve is not so flat, as shown in Figure 1. In the following 
ball bearing life distribution estimation, the shape parameter is taken as 2.0. 

2.2. On Weibull Location Parameter Estimation Approach 

A specific probability density function can be identified, and its parameters can be 
accurately estimated if a large size of sample is available. For a Weibull distributed  
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Figure 1. Weibull distributions with different shape parameters. 

 
life random variable, if ( ) ( ) ( )1 2, , , nt t t  are its n observations arranged in as-
cending order, the location parameter will be close to t(1) if n is large, especially 
in condition of the shape parameter is small (e.g., β ≤ 2.5).  

By means of the median rank estimator of a cumulative distribution function 
F(ti), a sample size np can be figured out with which the minimal observation t(1) 
can be taken as the estimator of the p × 100th percentile for a specific Weibull 
distribution.  

The general form of the median rank estimator is: 

( ) ( ) ( )2 1 ,2 ,0.5

ˆ , 1, 2, ,
1i

n i i

iF t i n
i n i F + −

= =
+ + −

             (2) 

where, i is the ordinal number of the individual life observations in ascending 
order; n is the size of the sample; ( )2 1 ,2 ,0.5n i iF + −  is a value with the upper tail area 
equaling to 0.5 from the F-distribution with the degrees of freedom 2(n + 1 − i) 
and 2i. 

This estimator is usually approximated as 

( ) ( )0.3ˆ 1,2, ,
0.4i

iF t i n
n
−

≈ =
+

                    (3) 

The percentile associated with t(1) can be estimated according to a sample 
containing n observations as  

1
1 0.3

0.4np
n
−

=
+

                          (4) 

The difference between the location parameter γ and the p1/n × 100th percen-
tile t(1,n) can be derived from the Weibull distribution function as 

( )1,

11 e
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np

βγ

η
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This equation, together with Equation (4), can be used in the situation of large 
size of sample. In the situation that only a small size of sample is available, a new 
method is required, as the median rank estimator is only meaningful in large size 
sample conditions.  

Evidently, the difference ( )1,nt γ−  is a function of the Weibull distribution 
parameter η and β. For a specific engineering problem, the Weibull shape para-
meter can be approximately assigned according to similar products. In the 
present paper, the shape parameter of the Weibull distribution of the ball bear-
ing life is assigned as 2.0. The scale parameter needs to be estimated through life 
data, and the estimator is location parameter dependent. Despite the coupling 
mechanism, suitable technique can be applied to get an approximate relationship 
between ( )1,nt γ−  and the associated sample size n. Through modifying the mi-
nimal observation in a sample of size n (denoted by t(1,n)), an estimator for location 
parameter γ can be constructed. Consequently, a reasonable three-parameter 
Weibull distribution can be obtained, that will be conservative, yet better than a 
conventionally estimated two-parameter Weibull distribution. 

For engineering applications, a sufficient large size of sample, such as the 
sample size n = 518, can be assigned by that the minimal observation t(1,518) can 
be taken as the Weibull location parameter γ. The sample size 518 makes t(1,518) 
corresponds to a very low cumulative probability 0.00135, that is the lower 
bound of the 6σ for the situation of Gauss distribution (the normal distribution).  

However, such a large size of sample is hard to obtain in engineering applica-
tion. Obviously, the less the sample size, the greater the difference between the 
location parameter and the minimal observation. For small size sample situa-
tions, the minimal observation has to be revised to be the estimated location pa-
rameter. To obtain a reasonable function to modify the minimal observation, 
Monte Carlo simulation technique is applied as below.  

The basic idea is that, for a given Weibull distribution W(β, η, γ), the possible 
difference between the location parameter γ and the minimal observation t(1,n) in 
an arbitrary sample of size n can be demonstrated by repeatedly Monte Carlo 
sampling, and a possible interval can be statistically figured out. Obviously, the 
more the sampling times, the higher the confidence level. Based on a great 
number of sampling, an upper envelope curve of the simulated date points can 
be used to conservatively describe the relationship between the possible maximal 
difference Δmax ( ( ){ }max 1, ,max n it γ∆ = − , 1,2, ,i m=  ) and sample size n. Where, 
t(1,n),i stands for the minimal observation in the ith sampling, m stands for the 
number of the trials. Based on such a relationship, an function can be con-
structed to modify the minimal observation t(1,n) into the estimated location pa-
rameter γ̂ . 

With a given Weibull distribution W(β, η, γ), it is easy to get observations 

1 2, , , nt t t  through Monte Carlo sampling. For a sample of size n, the difference 
between the minimal observation t(1,n) and the location parameter γ, i.e. ( ( )1,nt γ− ) 
is the value by which the minimal observation should be deducted to be taken as 
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the estimated location parameter, i.e., ( ) ( )( )1, 1,n nt t γ γ− − = . Demonstrated and 
discussed below are the simulation results for a Weibull distributed life random 
variable with β = 2.0, η = 1000, and γ = 2000, i.e. W(2.0, 1000, 2000).  

Shown in Figure 2 are a part of the simulation results of the minimal observa-
tions in different size of samples. For example, the 10 points with the abscissa of 
20 in Figure 2(a), i.e., the column consist of the 10 points corresponding to 
sample size n = 20, are the ten respective minimal observations generated by ten 
times of sampling of sample size of twenty, respectively.  

In detail, the three observations (t1, t2, t3) with the abscissa n = 3 are randomly 
taken from the Weibull distributed population in each trial. The minimum, de-
noted by t(1,3), is presented as a date point located at the vertical line with the ab-
scissa n = 3 in the graph, that will be used with other data points together to 
evaluate the possible difference between the Weibull location parameter and the 
minimal observation with respective to different sample sizes. 

The minimal sample life values represented by the ordinates of the individual 
points in Figure 2, which are the respective minimums in the individual samples 
of the respective trials, clearly show a tendency that when sample size becomes  
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(c) 

Figure 2. Simulated minimal life observations corresponding to different size of samples 
(n = 1, 2, …, 70, respectively) from W(2.0, 1000, 2000). (a) Results of the first group of 
the simulations; (b) Results of the second group of the simulations; (c) Results of the third 
group of the simulations. 
 
small, the minimal observation might be much greater than the location para-
meter; when the sample size is large enough, the minimal observation will not be 
greater considerably than the location parameter. To obtain a reasonable estima-
tion of the location parameter based on a small size sample of observations, the 
difference between the location parameter and the minimal observation has to 
be appropriately figured out. Owing to the stochastic characteristic of the mi-
nimal observation, a conservative decrement should be applied to accommodate 
the deviations yielded by the majority of observations, such as 99% of the obser-
vations. 

To get a conservative model to modify the minimal observation into the loca-
tion parameter, the upper boundary of the individual minimal observations 
from the different size of samples needs to be described by a suitable function. 
Many methods, including the variety of traditional methods and machine lean-
ing, can be used to fit the envelop line according to the simulated data. By trial 
and error, the following equation is constructed to describe the upper boundary: 

( ) ( )1max
1, 2 lg 70nt n βγ η= −                       (6) 

where, 70 is the sample size n0.01 in such a sample the minimum t(1,70) being cor-
responded to the first percentile of the random life as ( ) ( )1 0.3 70 0.4 0.01− + ≈ .  

The curve expressed by Equation (6) is drawn in Figure 3 together with the 
individual minimal observations generated by Monte Carlo sampling at different 
trials. Great number of simulation results show that almost all the minimal ob-
servations from the different size of samples are below this curve when the sam-
ple size n is three or larger. Therefore, the minimal observation should be mod-
ified by deducting ( ( )

max
1,nt γ− ) to become the estimated location parameter.  

Correspondingly, for a Weibull life probability density function with known  
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(a) 

 
(b) 

 
(c) 

Figure 3. Upper envelope curves (boundaries) of the minimal observations from W(2.0, 
1000, 2000). (a) The first group of the simulations and upper boundary expressed by Eq-
uation (6); (b) The second group of the simulations and upper boundary expressed by 
Equation (6); (c) The third group of the simulations and upper boundary expressed by 
Equation (6). 
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shape parameter and scale parameter, as well as n observations with the mini-
mum t(1,n), the location parameter can be estimated as 

( ) ( )11, 2 lg 70nt n βγ η= +                      (7) 

Equation (6) indicates that the location parameter revision amount  
( )12 lg 70n βη  is a function of the scale parameter, and the larger the scale pa-

rameter is, the larger the difference between the minimal observation and the 
location parameter for a given sample size. 

The underlying principle is that, for a given shape parameter, the larger the 
scale parameter, the larger the life dispersion, and the larger the difference be-
tween the minimal observation and the location parameter. For a particular 
Weibull location parameter estimation problem, a temporary scale parameter 
value larger than the true value can be used for Equation (6) and Equation (7) to 
get a conservative location parameter estimated. 

It is well known that, with known shape parameter and location parameter, 
the Weibull scale parameter can be estimated as 

( )( )11 ii
n t n

ββη γ
=

= −∑                       (8) 

where, ti stands for the ith observation in a sample, n stands for sample size. 
For a conservative location parameter estimation, temporarily use a location 

parameter equaling to t(1,n)/2 in Equation (8) when estimates the temporary value 
of the scale parameter for Equation (6) and Equation (7). Consequently, a scale 
parameter greater than the true value can be obtained. For instance, if the five 
observations from a Weibull distribution W(2.0, 1000, 2000) are 3136, 3070, 
2276, 2350 and 2191, respectively (generated by Monte Carlo sampling), a scale 
parameter can be estimated by Equation (8) as 1564 based on a temporary loca-
tion parameter value of 2191/2. With this scale parameter and the minimal ob-
servation 2191, a location parameter is eventually estimated by Equation (7) as 
398. 

Though such an estimated location parameter is much lower than the true value  
 

 
Figure 4. True distribution and those estimated by different methods. 
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Figure 5. Revision amount based on different scale parameters. 

 
of 2000, it still can yield a better estimation W(2.0, 2244, 398) for the product life 
than the conventional two-parameter Weibull distribution W(2.0, 2637, 0), as 
shown in Figure 4. 

Furthermore, the effect of the temporarily estimated scale parameter on the 
revision amount, i.e. ( )

max
1,nt γ− , can be clearly demonstrated by Equation (6). 

Shown in Figure 5 are the situations of scale parameters of 1000, 1500, and 2000, 
respectively, for the case of the true scale parameter of 1000. It illustrates that 
larger scale parameter applied in Equation (6) and Equation (7) yields smaller 
location parameter estimation. 

3. Conclusions 

A new method is presented to estimate the location parameter of a Weibull 
probability density function to describe product life distribution in the situation 
of a very small size of life sample. Simulated big data, generated by Monte Carlo 
sampling, is applied to identify the relationship between the Weibull location 
parameter and the minimal observation. A logarithmic model is established to 
modify the minimal observation into the estimated Weibull location parameter.  

The example to estimate the three-parameter Weibull life distribution of the 
ball bearing according to five life data illustrates that the three-parameter Wei-
bull life probability density function estimated with the new method differs from 
the two-parameter Weibull distribution conventionally estimated. Although it is 
far from the true distribution, such a result is still significant for product relia-
bility estimation, contrasting to the traditionally used two-parameter Weibull 
distribution.  

Acknowledgements 

This research is subsidized by the Natural Science Foundation of China “Re-
search on reliability theory and method of total fatigue life for large complex 
mechanical structures” (Grant No. U1708255). 

0

500

1000

1500

2000

2500

3000

0 20 40 60 80
D

ec
re

m
en

te
Sample size

Scale parameter = 1000
Scale parameter = 1500
Scale parameter = 2000

https://doi.org/10.4236/jamp.2021.99149


B. Qin et al. 
 

 

DOI: 10.4236/jamp.2021.99149 2354 Journal of Applied Mathematics and Physics 
 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] McLain, A.C. and Ghosh, S.K. (2011) Nonparametric Estimation of the Conditional 

Mean Residual Life Function with Censored Data. Lifetime Data Anal, 17, 514-532. 
https://doi.org/10.1007/s10985-011-9197-x  

[2] Soliman, A.A., Abd-Ellah, A.H. and Abou-Elheggag, N.A. (2012) Estimation of the 
Parameters of Life for Gompertz Distribution Using Progressive First-Failure Cen-
sored Data. Computational Statistics and Data Analysis, 56, 2471-248. 
https://doi.org/10.1016/j.csda.2012.01.025 

[3] Zhao, M., Jiang, H. and Liu, X. (2013) A Note on Estimation of the Mean Residual 
Life Function with Left-Truncated and Right-Censored Data. Statistics and Proba-
bility Letters, 83, 2332-2336. https://doi.org/10.1016/j.spl.2013.06.020  

[4] Elmahdy, E.E. (2015) A New Approach for Weibull Modeling for Reliability Life 
Data Analysis. Applied Mathematics and Computation, 250, 708-720. 
https://doi.org/10.1016/j.amc.2014.10.036  

[5] Jia, X., Wang, D. and Jiang, P. (2016) Inference on the Reliability of Weibull Distri-
bution with Multiply Type-I Censored Data. Reliability Engineering and System 
Safety, 150, 171-181. https://doi.org/10.1016/j.ress.2016.01.025  

[6] Ducrosadn, F. and Pamphile, P. (2018) Bayesian Estimation of Weibull Mixture in 
Heavily Censored Data Setting. Reliability Engineering and System Safety, 180, 453-462.  
https://doi.org/10.1016/j.ress.2018.08.008  

[7] Ahmed, A.O.M. and Bayesian, N.A.I. (2010) Estimator for Weibull Distribution 
with Censored Data Using Extension of Jeffrey Prior Information. Procedia Social 
and Behavioral Sciences, 8, 663-669. https://doi.org/10.1016/j.sbspro.2010.12.092  

[8] Al Sobhi, M.M. and Soliman, A.A. (2016) Estimation for the Exponentiated Weibull 
Model with Adaptive Type-II Progressive Censored Schemes. Applied Mathemati-
cal Modelling, 40, 1180-1192. https://doi.org/10.1016/j.apm.2015.06.022  

[9] Mweleli, R., Orawo, L., Tamba, C. and Okenye, J. (2020) Interval Estimation in a 
Two Parameter Weibull Distribution Based on Type-2 Censored Data. Open Journal 
of Statistics, 10, 1039-1056. https://doi.org/10.4236/ojs.2020.106059  

[10] Ng, H.K.T., Luo, L., Hu, Y. and Duan, F. (2012) Parameter Estimation of Three- 
Parameter Weibull Distribution Based on Progressively Type-II Censored Samples. 
Journal of Statistical Computation & Simulation, 82, 1661-1678. 
https://doi.org/10.1080/00949655.2011.591797  

[11] Abbasi, B., Rabelo, L. and Hosseinkouchack, M. (2008) Estimating Parameters of the 
Three-Parameter Weibull Distribution Using a Neural Network. European Journal 
of Industrial Engineering, 2, 428-445. https://doi.org/10.1504/EJIE.2008.018438  

 
 

https://doi.org/10.4236/jamp.2021.99149
https://doi.org/10.1007/s10985-011-9197-x
https://doi.org/10.1016/j.csda.2012.01.025
https://doi.org/10.1016/j.spl.2013.06.020
https://doi.org/10.1016/j.amc.2014.10.036
https://doi.org/10.1016/j.ress.2016.01.025
https://doi.org/10.1016/j.ress.2018.08.008
https://doi.org/10.1016/j.sbspro.2010.12.092
https://doi.org/10.1016/j.apm.2015.06.022
https://doi.org/10.4236/ojs.2020.106059
https://doi.org/10.1080/00949655.2011.591797
https://doi.org/10.1504/EJIE.2008.018438

	Characterizing the Relationship between Weibull Location Parameter and the Minimal Observation in a Small Size of Sample Based on Stochastic Simulation
	Abstract
	Keywords
	1. Introduction
	2. On Weibull Location Parameter Estimation
	2.1. On Weibull Shape Parameter
	2.2. On Weibull Location Parameter Estimation Approach

	3. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

