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Abstract 
Expressions are obtained for the shortened Maxwell’s equations simulating 
the evolution of the ultrashort pulses propagating in anisotropic dipole-active 
crystals in stimulated Raman scattering (SRS) by polaritons. The developed 
theory considers the case of cubic crystals which become anisotropic due to 
the deformation of the dielectric constant by the linearly polarized pump 
wave. The pump field is approximated by a linearly polarized plane electro-
magnetic wave. The possibility of simultaneous propagation of pulses on both 
different frequencies (pump and Stokes) and different polarization (simul-
tons) is theoretically shown. It is also shown that the expression for the gain 
factor g in SRS is consistent with the experimental results for the spectra of 
ZnS. 
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1. Introduction 

In general, the pulses (including solitons) are randomly polarized. However, it is 
desirable to have pulses with a certain (better yet, predominantly defined polari-
zation). It stands to a reason that the polarization could also be a carrier of the 
information about processes that took place during the interaction. Especially it 
is important in the case of optical fibers [1]. One of the features of the propaga-
tion of solitons in the randomly birefringent optical fibers is that they are ran-
domly polarized whereas there is a need for the solitons with well-defined pola-
rization. In [1], it was both theoretically and experimentally shown that in spe-
cial cases when circular birefringence was induced when the fibers were twisted, 
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the random linear birefringence was mitigated. In [2], it was shown that an in-
duced process of modulational instability may be exploited for the generation of 
THz train of vector dark solitons. The technique of frequency-resolved optical 
gating was used to completely characterize the intensity and phase of the dark 
solitons. In the above article, the authors analyzed the experiments that showed 
that with dual-frequency orthogonal polarization, one may achieve the simulta-
neous suppression of modulational instability. The second nonlinear phenome-
non that is significant for the generation of ultrashort optical pulses is stimulated 
Raman scattering (SRS). In [3], by using a nanosecond laser as the pump source, 
polarization modulation instability (PMI) and SRS were experimentally investi-
gated in an optical fiber. It was shown that such investigation on the PMI gain in 
the As2S5 optical fiber may provide a reference for the development of fiber am-
plifiers and fiber lasers. The detailed analysis of the polarization of the solitons 
generated by PMI was provided in [4] in which was found that the circular pola-
rization of the pump pulse in the twisted fiber produces circularly polarized so-
litons with a high grade of polarization whereas in the fiber without twisting, the 
soliton polarization was random. The calculation of a polarization-dependent 
effective SRS gain factor considering the random birefringence character of the 
fiber and the relative mismatch between the continuous pump and the signal 
was carried out in [5]. There were also achievements in the theory of solitons 
and SRS [6]. The numerical simulation of the transient stimulated Raman scat-
tering based on using the inverse scattering transform technique is reported in 
[7]. A new type of solitons—dissipative Raman solitons—was found based on 
the nonlinear Ginzburg-Landau equation in [8]. In past years, there was also sig-
nificant progress related to the development of the micro-resonators which con-
vert laser light into a series of ultrashort pulses traveling around the resonator’s 
circumference [9]. These pulses can propagate while maintaining their shape, 
therefore, becoming solitons. One of the promising applications of solitons is, of 
course, spectroscopy. The comparative investigation of characteristics of spon-
taneous and stimulated Raman scattering (SRS) in different alkali-earth tungstate 
and molybdate crystals at both high and low-frequency anionic group vibrations 
was presented, for example, in [10]. It has been found that, among these crystals, 
the SrMoO4 and SrWO4 crystals are the most perspectives for SRS generation on 
both stretching and bending modes of internal anionic group vibrations with the 
strongest SRS pulse shortening under synchronous laser pumping. The signifi-
cant progress in applying the methods of SRS and CARS (Coherent Anti-Stokes 
Raman Spectroscopy) in recent years was achieved in biology and medicine 
[11]-[17]. For example, in [11] it was reported a new procedure for align-
ment-free frequency modulation SRS utilizing polarization encoding since the 
SRS microscopy is a powerful method for imaging molecular distributions based 
on their intrinsic vibrational contrast. The successful application of polariza-
tion-sensitive SRS imaging in treating skin, nail, and fungal infections was re-
ported in [18].   

https://doi.org/10.4236/jamp.2021.99139


V. Feshchenko, G. Feshchenko 
 

 

DOI: 10.4236/jamp.2021.99139 2195 Journal of Applied Mathematics and Physics 
 

However, in our opinion, there is a need for studying the processes of the 
generation of solitons in nonlinear processes with predetermined polarization 
that would allow generating the stable ultrashort pulses traveling through the 
medium not only at different frequencies but different polarization (for example, 
the soliton at one frequency but with two perpendicular polarizations). Such 
creation of ultrashort stable pulses could significantly increase the resolution of 
SRS microscopy of imaging of the molecular vibrations. In this paper, we theo-
retically considered the formation of solitons of such type in transient SRS by 
polaritons [19]-[24]. Also, in our article principal attention was paid to a calcu-
lation and analysis of the gain of both stationary SRS and spontaneous Raman 
scattering. We considered the case of nonstationary SRS in cubic crystals and 
showed that the theory developed is consistent with experimental results.  

2. Basic Principles and Equations 

In this paper, we carry out our analysis assuming that the pump field is a linearly 
polarized plane electromagnetic wave. It is also assumed that the nonlinear me-
dium takes the form of a layer bounded by the planes z = 0 and z = L. The pump 
wave 

( ) ( ), exp . .z
l l l l lt A i k z t c cω = − + E r e                  (1) 

propagates along the z-axis. The subscripts l, s, and p henceforth denote the 
pump (laser), Stokes, and polariton wave fields; ω  are the frequencies, n and 
k  are the refractive indices and the wave vectors in the unpumped medium, 
and e  are the real unit vectors of electromagnetic fields. The medium is non-
magnetic and transparent at frequencies ,l sω . We use the Stokes and polariton 
fields in the form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1,2

1,2,3

, exp . .,

, exp . .,

s s s s s

p p p p

t A i t c c

t A i t c c

µ µ

µ

σ σ

σ

ω

ω

=

=

 = ⋅ − + 

 = ⋅ − + 

∑

∑

E r e k r

E r e W r
           (2) 

where: ( )
s s
µ ⊥e k , ( ) ( )1 2

s s⊥e e , s s sk q n= , s sq cω= , l s= −W k k , ( )1,2
p ⊥e W , 

( ) ( )1 2
p p⊥e e , ( )3

p W
=

We , p l sω ω ω= − .  

The longitudinal component of the Stokes wave can be neglected, but this 
cannot be done for the polariton wave in the phonon region. It has been shown 
in [25] that with a further advance into this region all three amplitudes ( )

pA σ  
first become comparable, after which ( )3

pA  becomes dominant, provided, of 
course, the excitation of the longitudinal waves is allowed by the selection rules. 
The phase shift of the polariton wave is determined by the vector W  and not 
by pk  ( p p pk q ε= , p pq cω= , p p piε ε ε′ ′′= +  is the dielectric constant at 
the frequency pω ).       

The fields ,s pE  are interrelated via the nonlinear part of the polarization 
( ), tP r . The latter quantity has at the frequencies , ,l s pω  the following forms  
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exp . .
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exp . .
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z
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              (3) 

where ( ) ( ) ( ), ,j ki
l l s p l ijk s pe e eµ σµσχ χ ω ω= , ( ) ( ) ( ), , ,j ji m

l l s s l l ijkm l s se e e eµ µµµγ γ ω ω ω′′ = − , 
( ) ( ) ( ), ,i kj

s s l p s ijk l pe e eµ σµσχ χ ω ω= − , ( ) ( )( )
, , ,i j k m

s s s l l s ijkm p l le e e eµµµ µγ γ ω ω ω′ = − . 
The shortened equations for the amplitudes ( ),

, ,l s pA µ σ  are obtained from Max-
well’s equations by the standard procedure [26] and take the form  

( ) ( ) ( ) ( )( )*21 ,
cos

l s l
l s p l s s lz z

l l l

A A
i A A A A A

z tv cn
µ σ µ µµσ µµω

χ γ
θ

′′∂ ∂ π
+ = +

∂ ∂
       (4) 

( )

( )

( )

( ) ( )
( ) ( )( )221
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s s s

s l p s l sz z
s s s

A A
i A A A A

z tv cn

µ µ
σ µµσ µµ
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ω
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θ
′∗ ′∂ ∂ π
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∂ ∂

,    (5) 

1,2,3σ =  
( )

( )
( ) ( ) ( )

( ) ( )

( )

3
2 2

2
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2
2
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( ) ( )

1 2 3 *
1 2 3

3 3
3 *2* 2 3 *
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2
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∂
+ − = π

∂

          (7) 

Note, that in (4) 1,2σ = . 
Given the strong absorption we have [25]  

( )( )
( )

( )( )
( )

1 1 2 2*
2

p p p
p p p

A A
W A A W k

z tc

σ σ
σ σω− −∂ ∂

≈ −
∂ ∂

 , 

and we can, therefore, neglect in (6) and (7) the terms with the derivatives after 
which these equations yield  

( ) ( ) ( )
( ) ( )

* * 2 *

3 * 3 * *

4 ,

4 , , 1, 2.

p p s l p

p p s l p p

A A A

A A A W q

σ µµσ

µµ

χ µ ε

χ ε µ σ

= π −

= − π = =
             (8)  

Substituting the obtained expressions in (6) and (7), we arrive at a system of 
two differential equations for ( )

,l sA µ  

( ) ( ) ( ){ }2 *21 ,
cos

l l l
l s l l s s lz z

l l l

A A
i A A A A A

z tv cn
µ µ µµσ µµω

γ γ
θ

′′∂ ∂ π
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∂ ∂
       (9) 

( )

( )

( )
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( ) ( ){ }2 221 ,
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A A
i A A A A
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∂ ∂
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where  
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3

2 * *4 p p
s s

p p

µσ µ
µσ µσ χ χ

γ χ
µ ε ε

 
= π −  − 

, 
3

24 p p
l l

pp

µσ µ
µσ µσ χ χ

γ χ
εµ ε

 
= π −  − 

, p p piε ε ε′ ′′= + , 

( ) ( )20 2 2 2 2 2 2 2
p p f f f p f p f p

f
s v v v v v vε ε γ ′ = + − − +  ∑ , 

( )22 2 2 2 2
p f f f p f p f p

f
s v v v v vε γ γ ′′ = − − +  ∑ ,  

fs  is the oscillator strength of the o-f transition. 

3. Asymptotic Solutions: Polarization Solitons  

To do that we bring the system (9, 10) to unitless form.  

 ( ) ( ) ( ){ }2 *1 ,l l
l l s l l s s lz

l

A A
i A A A A A

z tv
µ µ µµσ µµβ γ γ ′′∂ ∂

+ = +
∂ ∂

 

    

 



 

         (11) 
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( ) ( ) ( ){ }2 21 .s s
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A A
i A A A A
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µ µ µµσ µµ
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β γ γ

ν
′′∂ ∂
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∂ ∂

 

   

 







      (12) 

where z z
l lv v c= , ( ) ( )

0s sA A Aµ µ= , 0l lA A A= , 0z z z= , 0t t τ= , 0 0z cτ= , 
( ) ( ) ( )( )02 cos z
s s s sz cnµ µ µβ ω θ= π , 2

0s s Aµσ µσγ γ= , 2
0s s Aµµ µµγ γ′ ′= , ( ) ( )z z

s sv v cµ µ= , 
( )02 cos z

l l l lz cnβ ω θ= π , 2
0l l Aµσ µσγ γ= , 2

0l l Aµµ µµγ γ′ ′= , 0τ  is the characteristic 
time related to the laser field (pump). 
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s s l s s l s s l sz
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A A
i A A A A A A
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∂ ∂

 

     

  







 (15) 

We are looking for stationary solutions as 

( ) ( ) ( ) ( )1, 21,2
1, 2, e s si

s s sA z t B ξξ Φ≡


 



  and ( ) ( ) ( ), e li
l lA z t B ξξ Φ≡



 



         (16) 

where zt zξ ν≡ −




 ; zν  is the velocity of simultaneously propagating waves at 

the frequencies ,l sω ; , 1, 2l s sB  and , 1, 2l s sΦ  are the real amplitudes and phases of 
the waves, respectively. Such a standard procedure of presenting the complex 
amplitudes of waves in terms of real and imaginary parts results in duplication 
of the system of (13)-(15): 

( )12 21
1 2

d
sin ,

d
l

l l l l s s l
B

B B Bβ κ γ γ
ξ
= − − Φ  



                (17) 

( ) ( ) ( )1 11 2 2 22 2 12 21
1 2 1 2

d
cos ,

d
l

l l l l s l l s l l s sB B B Bσ σβ κ γ γ γ γ γ γ
ξ
Φ  = + + + + + Φ       



 (18) 
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( ) ( )1 1 12 21
2

d
sin ,

d
s

s s s l s
B

B Bβ κ γ
ξ

= Φ 



                    (19) 

( ) ( )2 2 21 22
1

d
sin ,

d
s

s s s l s
B

B Bβ κ γ
ξ

= − Φ 



                   (20) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1 1 2 21 11 2 22 2

1 1 2 212 2 21 22 1

1 2

d
d

cos ,

s s s s s s s s l

s s
s s s l s s s l

s s

B

B B
B B

B B

σ σβ κ γ γ β κ γ γ
ξ

β κ γ β κ γ

Φ  = + − + 

 
+ − Φ 
 

     



   

          (21) 

where ( )z z z
l l lv v v vκ ≡ −     , ( ) ( ) ( )( )1,2 1,2 1,2z zz z

s s sv v v vκ ≡ −     , 1 2s sΦ ≡ Φ −Φ .  
We are looking for the solitary (asymptotic) solution for solitons at ,l sω  as 

following:  
2 2 2

1 2
2 2 2

1 2

,l s s

l s s

B B B
Q

λ λ λ
= = =                          (22) 

where ( )2 12 21
l l l l lλ β κ γ γ≡ − −   , ( ) ( )1 12 12

1s s s sλ β κ γ≡    and ( ) ( )2 22 21
2s s s sλ β κ γ≡ −   . 

The introduction of Q allows to reduce the system of nonlinear equations 
(17)-(22) to 

2d sin ,
d
Q Q
x
= Φ                             (23) 

( )d cos ,
d

Q m n
x
Φ

= + Φ                          (24) 

where x αξ=  , 2
1 22 l s sα λ λ λ≡ ,  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 21 11 2 22 2
s s s s s s s s lm σ σβ κ γ γ β κ γ γ λ ≡ + − +        

( ) ( )( ) ( ) ( )( )1 1 2 212 21 22 1

1 2

s s
s s sl s s sl l

s s

n
λ λ

β κ γ β κ γ λ
λ λ

 
≡ − 
 

    , m m α≡ , n n α≡ . The 

space-time evolution of the normalized intensities is shown in Figure 1. 
 

 
(a) 
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(b) 

 
(c) 

Figure 1. The space-time evolution of the normalized intensities of the pump and Stokes 
pulses for: (a) 1.0m =  and 1.0n = , (b) 1.0m =  and 0.01n = , and (c) 1.0m =  and 

0.1n = , respectively. 

4. Gain Factor gµ   

Now we show that the system of Equations (14) and (15) is consistent with the 
experimental results presented, for example, in [27]. To do that we first bring the 
system of Equations (14) and (15) to unitless form and change the variables z, t 
to variables z , z

st z vτ = −   (we assume that ( ) ( )1 2z z z
s s sv v v≈ ≈    and consider 
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the preset-pump approximation):  
( )

( ) ( ) ( ){ }2 2s
s s l s s l s

A
i A A A A

z

µ
µ µ µµσ µµβ γ γ ′′∂

= +
∂



   

 



,          (25) 

where ( ) ( )
0s sA A Aµ µ= , 0l lA A A= , 0z z z= , 0t t τ= , 0 0z cτ= ,  

( ) ( ) ( )( )02 cos z
s s s sz cnµ µ µβ ω= π Θ , 2

0s s Aµσ µσγ γ= , 2
0s s Aµµ µµγ γ′ ′= , ( ) ( )z z

s sv v cµ µ= , 

0τ  is the characteristic time related to the laser field (pump). 
The theoretical consideration of the gain factor for SRS by polaritons is based 

on the modeling of the quasi-stationary solutions of the coupled wave equations 
for the different polarizations of the Stokes (for the complete analysis see [25]). 
Therefore, we seek the solutions of (25) in the form ( ) ( )expsA B zµ

µ κ=

 , assum-
ing Bµ  and κ  to be independent of z. We then obtain the system of algebraic 
equations for Bµ . Choosing in a plane perpendicular to a two-dimensional 
coordinate system with axes along the unit vectors, we represent the equations 
for Bµ  in the form of a tensor relation  

B i Bµµ µ µκ′ ′∆ = − , 1,2µ =                      (26) 

where ( ) ( )2

s l s sAµ µµ µσ
µµ β γ γ′

′∆ = +

  . 
Equating the determinant of the system (26) to zero, we obtain the solutions 

for κ   

( ) ( )2
11 22 11 22 12 214 2iκ  = ∆ + ∆ ± ∆ −∆ + ∆ ∆  

.           (27) 

We will need the explicit expressions for the tensors χ  and γ . They can be 
found within the framework of the microscopic theory in the dipole approxima-
tion based on the perturbation theory states [25]. The resultant expressions are 

  ( ) ( ) ( ) ( ), , f k
ijk l p ijk l p ij f f p

f

N P Fν
ν

ν
χ ω ω χ ω ω α ω− = − + ∑



       (28) 

( ) ( ) ( )
0

1 fv fv
ijkm ik jm f p ijkm

f
F

v ν
γ α α ω γ= +∑ 



,                (29) 

where ( ) ( )2 22f t f p pF iω ω ω ω γω≈ − +  .   
The summation in (28) and (29) is over all dipole-active phonons, the fre-

quencies of which are equal 2f fiω γ−  , where fγ  are the attenuation con-
stants. For example in a cubic crystal, the dipole-active phonons are triply dege-
nerate [25] so that the number of the mutually degenerated oscillations we in-
troduce the index ν  ( νe  is a triad of real unit vectors denoting the vibrations 
along the edges of the unit cube. Furthermore, fv fP ν=P e  is the dipole moment 
of the transition 0-fv for the unit cell with its volume 0v ; ( )fv

ijα  is the tensor of 
the phonon spontaneous scattering per cell [28]; 0N V v=  is the number of 
cells in the crystal. The tensor ijkχ   represents the contribution to ijkχ  the re-
mote electronic states. The tensor ijkmγ   determines the contribution due to the 
electronic states as well. It is convenient to represent the tensors ijkχ  (28) and 

ijkmγ  (29) in the simplified form as follows  
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( ) ( )

( )

( ) ( )

( )

20 2 2 2 2 2 2 2

22 2 2 2 2

20 2 2 2 2 2 2 2

2 2 2

, ,

,

, ,

ijk ijk ijk ijk ijk f f f p f p f p
f

ijk f f f p f p f p
f

f
ijk ijk ijk ijk ijk f f p f p f p

f

f
ijkm f f p f p

i v v v v v v

v v v v v

i v v v v v v

v v v v

χ χ χ χ χ χ γ

χ χ γ γ

γ γ γ γ γ γ γ

γ γ γ

 ′ ′′ ′= + = + − − +  

 ′′ = − − +  

 ′ ′′ ′= + = + − − +  

′′ = − −

∑

∑

∑
2 2 2 ,f p

f
vγ +  ∑

   (30)  

where ( ) ( )1 21 2 22f l f f fhc v s vχ σ− −= π , ( ) ( )2 48f
f l fhcv vγ σ= π , fσ  is the 

Raman differential cross-section per unit cell 0v  (cm−1/sr).  
We introduce the principal axes of the tensor 1µµ

∆  as a whole. If we denote 
its principal values as µ∆  we obtain from (26) iµ µκ = ∆ . Finally, we introduce 
the gain 2g Reµ µκ=  which can be expressed as      

( )
( )

22
0

2 2 2 22 2

8
4 , 1,2

cos
p p p pl s l

l s p pp p

K K s L Lz I
g M

c n n s

µ µ µ µ
µ µ

ε ε ε εω ω
µ

θ ε εε ε

  ′ ′′ ′′ ′− − ′ ′′ ′′ ′+π   = π + − =  ′ ′′+′ ′′ − +   

(31) 

where ( )2

1,2
K K iKµσ

µ µ µ
σ

χ
=

′ ′′= = +∑ , ( )23L L iLµ
µ µ µχ ′ ′′= = + , 2 2l l lI cn A= π  

is the pump intensity, M µ  are the principal values of the tensor ( )
s
µµγ

′′′ , θ  is the 
scattering angle (the angle between lk  and sk  ( ( )

s sn nµ ≈ , ( )cos cosz
s

µθ θ )).   
Formula (31) denotes two gain coefficients for Stokes waves polarized along 

( )
s
µe . 
To verify (31), we were using the parameters of crystals widely used in optical 

display and storage, optical communication network, optical detection, etc. such 
as ZnO [29]-[35] and ZnS [36] [37] [38] [39]. Figure 2 shows the intensity as a 
function of the polariton frequency in zinc blende ZnS in the range 200 - 400 
cm−1. The red dots represent the experimental points [27]. 

 

 
Figure 2. The graph of intensity (in arbitrary units) versus the polariton frequency (in 
1/cm) in ZnS in the range 200-400 1/cm. 

5. Conclusion 

In this paper, we theoretically showed that in the case of nonstationary SRS by 
polaritons, there is a possibility of occurrence of simultaneously propagating ul-
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trafast stable pulses (simultons) not only at different frequencies but with dif-
ferent polarizations as well. This can be used in optoelectronics when creating 
polarization filters. 
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