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Abstract 

In this paper, a new integrable variable coefficient Toda equation is proposed 
by utilizing a generalized version of the dressing method. At the same time, 
we derive the Lax pair of the new integrable variable coefficient Toda equa-
tion. The compatibility condition is given, which insures that the new Toda 
equation is integrable. To further analyze the character of the Toda equation, 
we derive one soliton solution of the obtained Toda equation by using separa-
tion of variables. 
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1. Introduction 

Integrable variable coefficient equations describe the real world in many fields of 
physical and engineering sciences. Many researchers are devoted to discussing 
these equations by utilizing different methods ref. [1]-[6]. In ref. [7] [8], Dai and 
Jeffrey extended the dressing method to a generalized version for solving nonli-
near evolution equations associated with matrix spectral problems and variable 
coefficient cases, in which a key is that variable coefficient dressing operators are 
transformed to different variable coefficient ones. By using the generalization, 
we have studied integrable variable coefficient coupled Hirota equation in ref. 
[9]. In ref. [10] [11], integrable variable coefficient Manakov model and cylin-
drical NLS equation are discussed in detailed, respectively. In ref. [12], we de-
veloped the generalized dressing method to the discrete system and an integrable 
variable coefficient Toda equation is researched. Recently, the dressing method 
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is extended to a matrix Lax pair for Camassa-Holm equation in ref. [13], in 
which interactions between soliton and cuspon solutions of the system are stu-
died. The dressing method as nonlinear superposition in Sigma models has been 
researched by Dimitrios Katsinis et al. in ref. [14]. Multi-lump solutions of KP 
equation with integrable boundary are discussed in ref. [15] by using the genera-
lized dressing method. Nabelek et al. in ref. [16] studied Kaup-Broer system and 
derived its solutions. 

In the present paper, we extend the generalized dressing method to discrete 
operators similar to ref. [12]. Through direct calculations, we derive a new in-
tegrable variable coefficient Toda equation 

( )( )1
, 1 e 1 0,n n

yy n tt n n χ χχ χ − −− − ∆ − − =                 (1.1) 

where, the coefficient is related to n, 1E E−∆ = − . Equation (1.1) is an extension 
of the well known two-dimensional Toda equation. We will construct one soli-
ton solution of (1.1). 

The present paper is organized as follows. In Section 2, we obtain a new in-
tegrable variable coefficient Toda equation based on the generalized dressing 
method. In Section 3, as an application, we derive one soliton solution of (1.1) by 
utilizing the separation of variables. 

2. Integrable Variable Coefficient Toda Equation 

In this section, we first summarize the variable coefficient version of the dressing 
method. We extend the generalized version of the dressing method to discrete 
systems and derive different integrable cylindrical Toda lattice equations by 
choosing different operators. 

First, we consider three linear differential difference operators ref. [12] 
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Similar to the generalized dressing method application to continuous system, 
we introduce the triangular factorization about the operator “ F ”  

( ) ( )1 ,−
+ −+ = + +I F I K I K                   (2.2) 

where I  is the identity operator, ( ), , , 0n m t y+ =K  for m n<  and  
( ), , , 0n m t y− =K  for m n> . It is assumed that 

( ) ( )
0 0

sup , , , , sup , , , ,m m
m n m n

K n m t y F n m t yψ ψ
∞ ∞

±
= =

< ∞ < ∞∑ ∑  

for all 0n > −∞ . For convenience, we denote ( ) ( ), , , ,F n m t y F n m= ,  
( ) ( ), , , ,K n m t y K n m± ±= . The discrete Gelfand-Levitan-Marchenko (GLM) eq-

uation can be obtained from (2.2), which reads in ref. [12] 
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( ) ( ) ( ) ( ), , , , 0.
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F n m K n m K n s F s m
∞

+ +
=
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We introduce two differential-difference operators 1M  and 2M  defined by 

1 ,t y n= ∂ + ∂ −M E                       (2.4) 

1
2 ,t y n −= ∂ − ∂ +M E                      (2.5) 

where E  is the shift operator of the discrete variable n, defined by  
( ) ( )k f n f n k= +E , k Z∈ , t and y are continuous variables. 

The dressing operators 1N  and 2N  can be derived from the relations  

( )( ) ( )( )1 1, , 0,n m n m+ ++ − + =N I K I K M             (2.6) 

( )( ) ( )( )2 2, , 0.n m n m+ ++ − + =N I K I K M             (2.7) 

Similar to a theorem ref. [7] for continuous systems, it can be proved that 1N  
and 2N  are differential-difference operators. For sake of simplicity, we denote 

( ) ( ), ,n m n m+ =K K . 
We write the dressing operators  

1 1 1,= +N M D                        (2.8) 

2 2 2 .= +N M D                       (2.9) 

Acting on function nϕ  on (2.6) and with aid of (2.8), which is reduced to  
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from which, comparing coefficient of nϕ , we have  

( ) ( ) ( )1 1, , , 0.t yK n n K n n D K n n D+ + + =             (2.10) 

Letting 1
2 1D d E−= , with aid of (2.7) and (2.9), we have  
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from which, comparing coefficient of 1nϕ − , we have  

( ) ( ) ( )1 11, 1 , 1, 1 0,nK n n nK n n d K n n d− − − + − − + =        (2.11) 

and we derive 
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                 (2.12) 

The following theorem in ref. [7] is an extension of original dressing method, 
which can yield a wide range of integrable variable-coefficient nonlinear evolu-
tion equations. 
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Theorem: If the operators 1M  and 2M  satisfy a relation 

[ ]1 2 1 1 2 2, ,ρ ρ= +M M M M                   (2.13) 

where 1 2,ρ ρ  are arbitrary functions of , ,x y n , then their corresponding 
dressing operators will satisfy the relation  

[ ]1 2 1 1 2 2, .ρ ρ= +N N N N                    (2.14) 

Proof: According to (2.6), (2.7) and (2.13), we can give simple proof as fol-
lows through simple calculation. In fact,  
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Actually, variable-coefficient Toda equations are obtained from (2.14). From 
(2.14), we derived 

( )( )1
1 1 1 11 0,t yd d n d E D−+ + + − =               (2.15) 

( )1 1 1 11 0.y tD D nEd n d− − + − =                (2.16) 
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              (2.17) 

then the above Equations (2.15) and (2.16) are reduced to  

( )( ), , 1 1 0,n y n t nv v n n u− − ∆ − − =               (2.18) 

( ), , 1 0.n y n t n n nu u u v v −+ + − =                 (2.19) 

According to (2.19), we assume that  
1

, ,e , ,n n
n n n t n yu vχ χ χ χ− −= = +                (2.20) 

then (2.18) is reduced to a new integrable variable coefficient Toda equation  

( )( )1
, , 1 e 1 0.n n

n yy n tt n n χ χχ χ − −− − ∆ − − =            (2.21) 

Let y tξ = + , y tη = − , then the above equation is reduced to a new 2 + 1 
dimensional Toda lattice equation  

( )( )1
,4 1 e 1 0.n n

n n n χ χ
ξηχ − −− ∆ − − =              (2.22) 

The above equations are new and different to classical Toda lattice equation in 
ref. [17] [18] [19] [20] [21]. Because the coefficient of equation is related to n, 
this is an important physical meaning.  

3. Explicit Solution of Integrable Variable Coefficient Toda  
Equation 

In this section, we shall use the generalized dressing method to construct explicit 
solutions of the variable coefficient Toda Equation (2.21). Using the relation 
[ ] [ ]1 2, 0, , 0M F M F= = , we have 
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( ) ( ) ( ) ( ) ( ), , 1, 1 , 1 0,t yF n m F n m nF n m m F n m+ − + + − − =       (3.1) 

( ) ( ) ( ) ( ) ( ), , 1, 1 , 1 0.t yF n m F n m nF n m m F n m− + − − + + =       (3.2) 

Assume that (3.1) and (3.2) have N-soliton solutions in the form of separation 
of variables  

( ) ( ) ( )
1

, , , , , ,
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moveover, we suppose that  
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Substituting (3.3) and (3.4) into the GLM (2.3) yields that  

( ) ( ) ( )T1
1 2 1 2, , , , , , , ,N NK n n f f f L g g g−= −              (3.5) 

where L is defined by  

( ) ( ), , , , , 1 , ,jl jl j l
s n

L g t y s f t y s j l Nδ
∞

=

= + ≤ ≤∑  

and jlδ  is Kronecker’s delta. 
In what follows, we will obtain one soliton solution of (2.21). First, we give 

separation of variables solutions for 1N =  in (3.3) and (3.4), 

( ) ( )0
1 1 1 1 1, e e , , e .pt qy nw mw mwF m n f g K m n k g kη+ + += = = =      (3.6) 

From (3.5), we derive  
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with ,p chw q shw= = − , using (2.17), we have  
( )

( ) ( )

00 0

0 00

2 22 2 2 4 22

2 1 2 2 4 1 222

1 e e e e .
1 e e e e

pt qy n wpt qy nw pt qy nww

n pt qy n w pt qy n wpt qy nww
u

ηη η

η ηη
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    (3.8) 

Under transformation 1e n n
nu χ χ− −= , we derive one soliton solution of (2.21) 

( )0 1 2ln .n nu u uχ χ= −                     (3.9) 
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