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Abstract 
One of the methods of mathematical analysis in many cases makes it possible 
to reduce the study of differential operators, pseudo-differential operators 
and certain types of integral operators and the solution of equations contain-
ing them, to an examination of simpler algebraic problems. The development 
and systematic use of operational calculus began with the work of O. Heavi-
side (1892), who proposed formal rules for dealing with the differentiation 
operator d/dt and solved a number of applied problems. However, he did not 
give operational calculus a mathematical basis; this was done with the aid of 
the Laplace transform; J. Mikusiński (1953) put operational calculus into al-
gebraic form, using the concept of a function ring [1]. Thereupon I’m sug-
gesting here the use of the integration operator dt to make an extension for 
the systematic use of operational calculus. Throughout designing and analyz-
ing a control system, we need to treat the functionality of the system with re-
spect to time. The reaction of the system instructs us how to stable it by am-
plifiers and feedbacks [2], thereafter the Differential Transform is a good tool 
for doing this, and it’s a technique to frustrate difficulties we may bump into, 
also it has the methods to find the immediate reaction of the system with re-
spect to infinitesimal (tiny) time which spares us from the hard work in find-
ing the time dependent function, this could be done by producing finite se-
ries. 
 

Keywords 
Operational Calculus, Time Domain, Differential Domain, Serieses,  
Difference to Differential Equation 

 

1. Introduction 

The Differential Transform shifts differential system from time plane to Carte-
sian plane that depends on the operator dt, this new presentation makes it easier 
to be solved. The Differential Transform is very useful in solution of problems 
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for linear ordinary differential equations [3], analyzing electric systems [4] and 
solving physical problems [5]. 

Here we define the Differential Transform as a theme and present several 
examples and calculate the Transform for the basic functions. It may be regarded 
as a nice exercise from the mathematical point of view, also it might have some 
applications to engineers. 

In this article we’ll attempt to interpret the Differential Transform by pre-
senting its definition and properties. The examples accompanying, demonstrate 
the convenient usage of this transform and improve understanding its concept. 

The uniqueness of this Transform refers to the direct inversion which gives 
the series of the functions. The inversion is easy and in case of a complicated 
function produces a finite series of the function which will be regarded as its ab-
breviation. 

The main advantages of this Transform are in Digital Signal Processing (DSP) 
[6] where a difference equation of a filter could be treated the same as a differen-
tial equation. 

2. The Main Theorem 

Here is the essence of the Differential Transform presented by this definition: 
Let the Differential Transform of ( )tf  be denoted as ( )tdf  and define it as  

( ) ( )
0

1 dt
tdf e f d

dt

τ

τ τ
−∞

= ∫                        (0) 

where the operator dt  represents the integrator 
0

t

dt∫ .  

3. The Properties 

In our all next discussion we’ll regard ( ) ( )dt tG df=  and ( )sF  the Laplace Trans-
form [7] of ( )tf . 

3.1. Integrating 

For ( ) ( ) ( )0
0

t

t tf f dt f′= +∫  the Differential Transform is 

( ) ( ) ( )0t tdf df dt f′= +                         (1) 

3.2. Differentiating 

The Differential Transform of ( ) ( )t t
df f
dt

′ =  is 

( )
( ) ( )0 0

dt
t

t

df f df
df

dt dt

−
′ = =                      (2) 

3.3. Linearity 

Simply by switching ( ) ( )dt tG df=  from t to the ct, c = constant  

( ) ( ) ( )ctct cdtddf G G= =                        (3) 
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3.4. Splitting 

For complex functions ( ) ( )dt tG df=  the ( )( ) ( )Real Reald f G=  and the  

( )( ) ( )Imaginary Imaginaryd f G=                   (4) 

3.5. Limiting 

( ) ( )0 0f G=                            (5) 

3.6. Shifting 

Having ( ) ( )dt tG df=  with t τ≥  we get ( ) ( )
dt

t dtdf G e
τ

τ

−

− = .                (6) 

3.7. Convolution 

If ( ) ( ) ( )t t tdh df dtdy=  then 

( ) ( ) ( ) ( ) ( )
0

t

t th f t y t f y dτ τ τ−= ∗ = ∫                 (7) 

3.8. Low Shaking 

( )

n n
n n

tt
d dd t f d df
dt ddt

 
= 

 
                      (8) 

nd df
ddt

 is the n-th derivation of df  dependent to ddt . 

3.9. Inverse Low Shaking 

( ) 0 0

0 0 0

t
dtt dt dttf df

d dt ddt df ddt
t dt

 
  ′= = 
 
 
∫ ∫ ∫                 (9) 

0

dt

df ddt′∫  is the integral of df ′  dependent to ddt . 

3.10. High Shaking 

( )

n n
n n

tt
d dd t f d df
dt ddt

 
= 

 
                      (10) 

n
n
t

d d df
ddt

 is the n-th derivation of n
td df  dependent to ddt . 

3.11. Inverse High Shaking 

( )
0 0

1 1t dt

td f dt dfddt
t dt

 
= 

 
∫ ∫                      (11) 

0

dt

dfddt∫  is the integral of df  dependent to ddt . 
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3.12. Particular Low Shaking 

( )( ) ( )
n

n n n
t tt

dd t f d d df
ddt

=                     (12) 

n
n
t

d d df
ddt

 is the n-th derivation of n
td df  dependent to ddt . 

4. Implementation Examples 

Now let’s consider DT as an abbreviation for Differential Transform and make 
some DT’es using the properties: 

1) Knowing that 
0

t

t dt= ∫  leads to 

( )d t dt=                          (13) 

2) Let ( )

2

2t
tf = , ( )tf t′ =  following Equation (1) 

2

02

tt tdt= ∫  and its DT 
would be: 

2
2

2 t
td dtdt d

 
= = 

 
 ⇒  

2
2

2 t
td d

 
= 

 
               (14) 

3) Let ( )

3

3!t
tf = , ( )

2

2!t
tf ′ =  and following Equation (1) 

3 2

03! 2!

tt t dt= ∫  and its 
DT would be: 

3 2
2 3

3! 2! t t
t td d dt d dt d

   
= = =   

   
 ⇒  

3
3

3! t
td d

 
= 

 
           (15) 

4) Proceeding so on using Equation (1) we’ll come ( ) !

n

t
tf
n

= , ( ) ( )
1

1 !

n

t
tf

n

−

′ =
−

 

with 
3 2

03! 2!

tt t dt= ∫  its DT would be 

( )
1

1

! 1 !

n n
n n
t t

t td d dt d dt d
n n

−
−  

= = =    −   
 ⇒  

!

n
n
t

td d
n

 
= 

 
       (16) 

5) Substituting Equation (12) in Equation (2) ( )tf t= , ( ) 1tf ′ =  so 1 d t
dt

=  
its DT would be 

( ) ( ) ( ) 00 01 1
tdtd t f dtd

dt dt dt
− −

= = = =  ⇒  ( )1 1d =         (17) 

6) The DT of a constant c, using Equation (16) and (3) is  

( ) ( )1 1d c cd c c= = ⋅ =  ( )d c c=                   (18) 

7) Now we can make ( )td e , 
2 3

1
2 3! !

n
t t t te t

n
= + + + + +  n →∞  so  

( ) ( ) ( )
2 3

1
2 3! !

n
t t t td e d d t d d d

n
     

= + + + + +     
     

  ⇒  

( ) 2 31t n
t t t td e d d d d= + + + + +  

Here we have a finite series sum cause dt  is infinitesimal 

( ) 1
1

td e
dt

=
−

                         (19) 
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8) The DT of ( ) ( )cos siniwte t i tω ω= +  is ( ) ( )cos siniwtde d t id tω ω= +  and 
by applying 

Linearity, Equation (3), on ( ) 1
1

td e
dt

=
−

 via replacing t with i tω  gives:  

2 2 2 2 2 2

11 1 1
1 1 1 1 1

iwt t t

i t t t t t

i d d
de i

d i d d d dω

ω ω
ω ω ω ω

+
= = = = +

− − + + +
 

now splitting (Equation (4)) gives ( ) 2 2

1cos
1 t

d t
d

ω
ω

=
+

 and the imaginary part 

( ) 2 2sin
1 t

dtd t
d

ωω
ω

=
+

                      (20) 

9) Let’s calculate the DT of tte  by shaking (Equation (11)):  

( )
( )21 1

t td dt dtd te dt dtde dt
ddt dt dt

′ = = = −  −
. 

5. The DT of Some Basic Function Is Shown in Table 1  

See Table 1.  

6. Solving Differential Equations 
6.1. First Order Differential Equation 

Differential equations of the form mf nf x′ + =  with the initial ( )0f a= . 

df ′  as to Equation (2) is 
( )0df f df a df adf

dt dt dt dt
− −′ = = = −  and the DT of 

mf nf x′ + =  is 

df am m ndf dx
dt dt

− + =  

( )df m ndt dxdt ma+ = +  ⇒  

dxdt madf
ndt m

+
=

+
                       (21) 

Example: solve tf f e−′ + =  with the initial ( )0 0f = . 
We’ll substitute 1, 1, , 0tm n x e a−= = = =  in Equation (20): 

1 0
1

tde dtdf
dt

− + ⋅
=

+
 and since 1

1
tde

dt
− =

+
 we obtain 

( )21
dtdf

dt
=

+
. 

Now looking in Table 1 we’ll found that ( )
t

tf te−= . 

6.2. Second Order Differential Equation 

Differential equations of the form kf mf nf x′′ ′+ + =  with the initials  

( ) ( )0 , 0f a f b′= =  df ′  as to Equation (2) is 
( )0df f

df
dt
−

′ =  and df ′′  is  

( ) ( ) ( )
2

0 0 0

t

df f df f f dt
df

dt d
′ ′ ′− − −

′′ = = . 
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Table 1. The DT’es of the basic function. 

 The function The Differential Transform Where 

1 ( )tf  ( ) ( )
0

1 dt
tdf e f d

dt

τ

τ τ
∞ −

= ∫   

2 ( ) ( ) ( ) ( ) ( )
0

t

th t f t y t f y dτ τ τ−= ∗ = ∫  ( ) ( ) ( )t t tdh df dtdy=   

3 ( )tf τ− , t τ≥  
( )

dt
te df

τ
−

  

4 ( )ate f t−  1
1 1

dtG
dat dat

 
 + + 

, G df=   

5 unit impulse ( )tδ  1 dt   

6 !nt n  n
td   

7 Constant: C C  

8 te α−  ( )1 1 d tα+   

9 ( )sin tω  ( )21 td t dωω +   

10 ( )cos tω  ( )21 1 tdω+   

11 ( )sinh tω  ( )21 td t dωω −   

12 sinht tω  ( )
2

22

2
1

t

t

d
d
ω

ωω −
  

13 ( )cosh tω  ( )21 1 tdω−   

14 cosht tω  ( )
2

22

1
1

t

t

ddt
d

ω

ω

+

−
  

15 n tt e α−  ( ) 11 nn
td dtα +

+   

16 sint tω  ( )
2

22

2
1

t

t

d
d
ω

ωω +
  

17 sin t tω  ( )arctan d t dtω   

18 cost tω  ( )
2

22

1
1

t

t

ddt
d

ω

ω

−

+
  

19 1 cos t
t
ω−  

2ln 1 td
dt

ω+
  

20 sinte tα ω−  2 2 1
nt

dt
d dtω

ω
α+ +

 i
ni e θα ω ω+ =  

21 coste tα ω−  2

1
2 1

nt

dt
d dtω

α
α

+
+ +

 2 2
nω α ω= +  

22 ( )sin
sin

te t
α

θ ω
θ

−

−  2

1
2 1

ntd dtω α+ +
 ( )arctanθ ω α=  

23 ( )1 sin
sin

te t
α

ω θ
θ

−

− +  
2

2 2 1
n

n

t

t n

d
d d t

ω

ω α ω+ +
 cosnα ω θ=  

24 ( )cost
ne tαω ω θ− −  

2

2 2 1
n

n

t

dt
d dtω

ω α
α
+

+ +
 ( )sinnω ω θ=  
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The DT of kf mf nf x′′ ′+ + =  becomes  

2 2
t t

df a b df ak k k m m ndf dx
dt dt dtd d

− − + − + =  

( )2 2
t tdf k mdt nd dxd ka kbdt madt+ + = + + +  

( )2

2
t

t

dxd ma kb dt ka
df

nd mdt k
+ + +

=
+ +

                  (22) 

Example: solve 0f f′′ + =  with the initials ( ) ( )0 4, 0 1f f ′= = − . 
We’ll substitute 1, 0, 1, 0, 4, 1k m n x a b= = = = = = −  in Equation (21): 

( )
2 2 2

0 0 1 4 4
1 1 1t t t

dt dtdf
d d d

+ − +
= = −

+ + +
 

Now looking in Table 1 we’ll found that 

( ) ( ) ( )4cos sintf t t= − . 

7. Electrical Circuits 

Here we transferred the electrical circuit elements to the differential domain as 
shown in Figure 1. 
 

 
Figure 1. The transformed circuits the differential domain. 
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7.1. RC Circuit 

The transformed circuit in Figure 2 is shown in Figure 3. 
The circuit is fed with ( )v t v=  DC volts and we need to find ( )i t  using 

Kirchoff’s law: 

( ) ( ) ( ) 0
0

1 t

v t Ri t i t dt q
c
 

= + + 
 
∫  so 01 q

dv Rdi didt
c c

= + +  

0 0
1

1

q qv v
c cdi
dt tRR d
c RC

− −
= = ⋅

+ +
 ⇒  ( )

0
t

RC

qv
ci t e

R
−

−
= . 

7.2. RL Circuit 

Applying the above steps to the circuit in shown in Figure 4: 

( ) ( ) ( )dv t Ri t L i t
dt

= +  ⇒  the DT is 0 0di i ididv v Rdi L Rdi L L
dt dt dt
−

= = + = + −  

0 0
0

1

1 1

Rd tv L i dt L i dtv v Ldi i
R RR L d R L dt R L dt R d t d t
L L

+
= = + = ⋅ +

+ + + + +
 

 

 

Figure 2. RC circuit. 
 

 

Figure 3. The DT of the circuit in Figure 2. 
 

 

Figure 4. RL circuit. 
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( ) 0 01
R R Rt t t
L L Lv v vi t e i e i e

R R R
− − −   = − + = + −       

 

( ) 0

R t
Lv vi t i e

R R
− = + − 

 
. 

8. Physical Problems 
Harmonic Motion 

The differential equation of the physics harmonic motion discribed in Figure 5. 

0ma kx+ =  

where the m is the mass, a x′′=  is the acceleration, k is the spring constant, 

0A x=  is the amplitude with the initials ( ) ( ) 00 , 0 0x A x v′= = = . 

The DT of 0mdx kdx′′ + =  where 0
2 2 2
t t t

dx x dx Adx
d d d
−′′ = = −  is  

2 2 0
t t

dx Am m kdx
d d

− + =  ⇒  2 0tmdx mA kdxd− + =  giving 
21 t

Adx
k d
m

=
+

 and 

by Linearity (Equation (3)) 2
2 11 kt t

m

A Adx
k dd
m

= =
++

 ( ) cos kx t A t
m

 
=   

 
. 

9. Conversion between Laplace Transform (LT) [7] and  
Differential Transform (DT) 

1
1

dt

G F
dt  

 
 

=  and 1
1

s

F G
s  

 
 

=  

1) Let’s convert the DT of ( ) ( )sintf t=  to LT: 

2sin
1 t

dtG df d t
d

= = =
+

 therefore 1 2 2

1
1 1 1

111s

sF G
s s s

s

 
 
 

= = =
+ +  

 

 

 

 

Figure 5. Harmonic motion. 
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2) Let’s convert the LT of ( )
t

tf e−=  to DT: 

( )
1

1sF
s

=
+

 so 1
1 1 1 1

1 11dt

G F
dt dt dt

dt

 
 
 

= = =
++

 

10. The DT Inversion 

The inversion of ( )tdf  is ( )tf , it means that we transfer the function from the 
differential domain to the time domain. 

1) Inversion via Convolution (Equation (6)). 

Example: Find ( )f t  if 212 1t

dtdf
d dt

=
− − +

. 

( )( ) ( ) ( )
( )

2

3 4 3 4

1 1
1 3 1 4 1 3 1 412 1t

t t t t

dt dtdf dt
dt dt d t d td dt

de dtde d e e− −

= = =
+ − + −− − +

= = ∗
 

see Table 2. 

( )
( )

7
43 4 3 4 7 4 4 3

0
0 0

1 1
7 7 7

tt
ttt t t t t t

t
ef e e e e d e e d e e e

τ
ττ ττ τ

−
−− − − −= ∗ = = = = −

−∫ ∫  

( )
4 31 1

7 7
t t

tf e e−= − . 

 
Table 2. Series of some basic functions. 

 The function The series 

1 ( )tf  nA  

2 teα  α  

3 tte  n 

4 teβα  nαβ  

5 tteα  nnα  

6 ( )0sin tω  0 sin
2

n nπω  
 
 

 

7 ( )0cos tω  0 cos
2

n nπω  
 
 

 

8 ( )
0

t

ttf d∫  1nA − , 1 0n − ≥  

9 ( )
0 0

t tm m

t ttf d d∫ ∫  , m times integration n mA − , 0n m− ≥  

10 ( )
0

1 t

ttf d
t ∫  1

1 nA
n +

 

11 ( )( )
0

t

ttf t d∫  1
nA

n
 

12 ( )
m

m
m
t

dt f t
d

, m times derivation 
( )

!
! n

n A
n m−
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2) The direct inversion 
We know from algebra that the sum of the series  

( ) 2 3

0
1k

k
r x x x x x

∞

=

= = + + + + ⋅⋅⋅∑  for 1x <  is ( )( ) 1
1

sum r x
x

=
−

, and will 

regard this formula as “The sum formula”. 

Hence ( ) 2sin
1 t

dtd t
d

=
+

 the sum formula is 2 4 6
2

1 1
1 t t t

t

d d d
d

= − + − +
+

   

and ( )2 4 3 5
2sin 1

1 t t t t
t

dtd t dt d d dt d d
d

= = − + − = − + −
+

   now inverting this 

equation gives 
2 4 6

sin 1
2! 4! 6!
t t tt = − + − + . 

2) A good exercise is to invert ( ) 24

1
1 t

df t
d

=
−

 according to the sum formula 

( ) 24 48
24

1 1
1 t t

t

df t d d
d

= = + + + ⋅⋅⋅
−

, and the series of ( )f t  becomes  

( )
24 48

1
24! 48!
t tf t = + + + . 

Notice that dealing with the series of ( )tf  is easier than dealing directly with 

( )tf  specially when we are working with values of t near the zero.  

Means that the function behaves like ( )
24 48

0 1
24! 48!t

t tf t
→

≈ + +  and under these 

conditions the finite series of the function could be regarded as its abbreviation 

and we can be satisfied with ( )
24 48

* 1
24! 48!
t tf t = + + . 

3) A function of variable approaching the zero i.e. the infinitesimal function 
of ( )f t  is ( ) ( )*

0t
f t f t

→
= . 

Recall that: ( )
3 5 7

sin
3! 5! 7!
t t tg t t t= = − + − +  ⇒  ( )*

0sin tg t t t
→

= = . 

Example: To find ( )*f t  where ( ) ( )
( )
1

1

n

m

adt
df t

bdt

+
=

+
 and 0t →  we can re-

place ( )1 nadt+  with 1 andt+  and 
( )

1
1 mbdt+

 with 1 amdt−  and get  

( ) ( )( ) ( )* 21 1 1 tdf t andt bmdt an bm dt abnmd= + − = + − − ,  

( ) ( )* 21 0.5f t an bm t abnmt= + − − . 

11. Solving Differential Equations via Series Method 
11.1. Taylor Series Form [8] 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 3

2! 3!

!

n
n

f a f a
f x f a f a x a x a x a

f a
x a

n

′′ ′′′
′= + − + − + − +

+ − +





 

And for a = 0: 

( ) ( ) ( ) ( ) ( ) ( )
2 3 4

0 0 0 0 0
2! 3! 4!
x x xf x f f x f f f′ ′′ ′′′ ′′′′= + + + + +  
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The DT of Tylor series: 

( ) ( ) ( ) ( ) ( )2 3 40 0 0 0 0x x xdf f f dx f d f d f d′ ′′ ′′′ ′′′′= + + + + +        (23) 

( )

0

n
n t

n
df K d

∞

=

= ∑  

where the series 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 , 0 , 0 , 0 , 0 , , 0n
nK f f f f f f′ ′′ ′′′ ′′′′=   

11.2. The Differentiation of f Derived from the DT of Taylor Series 

( ) ( ) ( ) ( ) ( ) ( )2 30
0 0 0 0 n

x x x n t

df f
df f f d f d f d A d

dx
−

′ ′ ′′ ′′′ ′′′′= = + + + + =  

( ) ( ) ( ) ( ) ( ) ( ){ }0 , 0 , 0 , 0 , , 0n
nA f f f f f′ ′′ ′′′ ′′′′=   

( ) ( ) ( ) ( ) ( ) ( )2
2

0 0
0 0 0 n

x x n t
x

df f f dx
df f f d f d B d

d
′− −

′′ ′′ ′′′ ′′′′= = + + + =  

( ) ( ) ( ) ( ) ( ){ }0 , 0 , 0 , , 0n
nB f f f f′′ ′′′ ′′′′=   

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

3

5 2

0 0 0

0 0 0

x

x

n
x x n t

df f f dx f d
df

d

f f d f d C d

′ ′′− − −
′′′ =

′′′ ′′′′= + + =

 

( ) ( ) ( ) ( ) ( ) ( ){ }50 , 0 , 0 , , 0n
nC f f f f′′′ ′′′′=   

The general form of linear differential equations order m is ( )
( ) ( )m

m tA f x t=  
with the initial conditions  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }10 , 0 , 0 , 0 , 0 , , 0m
mK f f f f f f −′ ′′ ′′′ ′′′′=   

And ( )
0 !

n

n
n

tx t B
n

∞

=

= ∑ . So we can perform the DT for the equation: 

0 0 01 1 2
0 1 2 32 2 3 3 2

0 11
1

t t t tt t t t t

mm
m tm m m

tt t t

K K KK K Kdf df dfA df A A A
d d d dd d d d d

K KKdfA d dx
dd d d

−
−

   
+ − + − − + − − −   

      


+ + − − − − =
 

 

 

In series method solution the initials series for 1n m> −  0nK =  so it doesn’t 
effect finding. 

The solution ( )
0 !

n

nt
n

tf A
n

∞

=

= ∑  0,1,2, ,n = ∞  that we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }10 , 0 , 0 , 0 , 0 , , 0 ,m
nA f f f f f f −′ ′′ ′′′ ′′′′=    and will start find-

ing nA  for n m≥  so the relevant DT donated RTD is: 
1 2 3

0 1 2 3
m m m m m
t t t t m tA d df A d df A d df A d df A df d dx− − −+ + + + + =       (24) 

11.3. Deriving Series from the DT of Taylor Series 

Having 
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( )

0

n
n t

n
df K d

∞

=

= ∑ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 , 0 , 0 , 0 , 0 , , 0n
nK f f f f f f′ ′′ ′′′ ′′′′=   

( )nm
t n m t

n m
G d df C d

∞

−
=

= = ∑                      (25) 

where 0n mC − =  for ( ) 0n m− < . 

And recalling (Equation (7)) ( )

m m
m m

tt
d dH d t f d df
dt ddt

 
= = 

 
. 

Gives 

( )
( )!

!
n

n t
n m

nG K d
n m

∞

=

=
−∑                      (26) 

Example 11.3.1: solve 0f f′′ + =  with the initials ( ) ( )0 4, 0 1f f ′= = −  
0df df′′ + = . 

The solution would be of the form ( )
0 !

n

nt
n

tf A
n

∞

=

= ∑  so we should find ?nA = . 
1) Regular method:  

( ) ( )
2

0 0
0t

t

df f f d
df

d
′− −

+ =  →  ( ) ( ) 20 0 0t tdf f f d d df′− − + =  

( ) ( ) ( )21 0 0t tdf d f f d′+ = +  →  ( ) ( )
2

0 0
1

t

t

f f d
df

d
′+

=
+  

→  2

4
1

t

t

d
df

d
−

=
+

 … (sol1) 

And the DT inversion of df: ( ) ( ) ( )4cos sinf x t t= − . 
2) Seriese method: the relevant transform RTD of the differential equation is 

→ 2 0td df df+ = . 
And as to Equation (24). 2 0n n

n t n tA d A d−+ =  →  2n nA A −= − . 
The initials gives 0 4A = , 1 1A = −  →  2 0 4A A= − = − , 3 1 1A A= − = . 
Example 11.3.2: Solve 2 tt f f e′′ + = . 

We recall that 
0 0 0!

n
t t n n

t n t
n n n

te de d C d
n

∞ ∞ ∞

= = =

= → = =∑ ∑ ∑  for 1nC = . 

The solution would be of the form ( )
0 !

n

nt
n

tf A
n

∞

=

= ∑  and we should find 
?nA = . 

According to Equation (25): 
( )

! 1
2 ! n n n

n A A C
n

+ = =
−

 so 2

1
1nA

n n
=

− +
,  

0 2

1 1
0 0 1

A = =
− +

, 1 2

1 1
1 1 1

A = =
− +

, 2 2

1 1
32 2 1

A = =
− +

, 3 2

1 1
73 3 1

A = =
− +

, 

  

Therefore we find ( ) 2
0

1
!1

n

n

tf t
nn n

∞

=

= ∗
− +∑ . 

11.4. Table 2 Gives the Series of Some Basic Functions  

Concerning That ( ) ∑
n

nt
n

tf A
n0 !

∞

=
=  

See Table 2. 
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12. A New Interpretation for Z Transform 

We can shift between the Z transform [9] and differential transform by substi-
tuting 1

td Z −= . 
Hence we resolve a difference equation [10] of digital filter via Z transform 

and getting the solution as a series ny . Means that the difference equation isn’t 
other than a differential equation of a physical filter and it’s solution is 

( )
0 !

n

nt
n

tf y
n

∞

=

= ∑ . 
Example: Consider the difference equation 1 2 7n ny y+ − =  with the initial 

0 3y = . 
Applying Z transform ( ) ( )

73 2
1z z

zzY z Y
z

− − =
−

 →  ( )
10 7

2 1z
z zY

z z
= −

− −
 gives 

10 2 7n
ny = ∗ − . 
Actually this is the solution of the differential equation 2 7f f′ − =  which is: 

( ) ( )
0 0

10 2 7
! !

n n
n

nt
n n

t tf y
n n

∞ ∞

= =

= = ∗ −∑ ∑  

and from Table 2: ( )
210 7t t

tf e e= − . 

13. Finalization 

We can learn from this paper that the Differential Transform is not a replace-
ment for the existing methods, it could be useful in treating differential problems 
and for deriving the series of the solution. Here we found that difference equa-
tion which represents a digital filter could be treated the same as a differential 
equation of a physical filter. And a high potential is still embodied in this Trans-
form. 
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