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Abstract 
Motivation: We study the asymptotic-type dynamics of various real pointlike 
objects that one models by a variety of differential equations. Their response 
to an external force one defines solely by the trajectory of a single point. Its 
velocity eventually stops changing after cessation of the external force. The 
response of their acceleration to the long-term external force is slow and pos-
sibly nonlinear. Objective: Our objective is to present technique for making 
simplified models for the long-term dynamics of pointlike objects whose mo-
tion interacts with the surroundings. In the asymptotic-type long-term dy-
namics, the time variable ( ),mt t∈ +∞  and 0mt >  is large, say mt +∞ ! 
Method: We apply Taylor series expansion to differential equations to model 
the acceleration of pointlike object whose response to the long-term external 
force is not instantaneous and possibly nonlinear. Results: We make simpli-
fied models for the long-term dynamics of pointlike objects by Taylor poly-
nomials in time derivatives of the external force. Application: We interpret 
the relativistic Lorentz-Abraham-Dirac equation as an equation for modeling 
the long-term dynamics, where 0mt t≥  . This interpretation resolves the 
conceptual and usage controversy surrounding its troublesome application to 
determine the trajectory of a radiating charged particle, thus contributing to 
the development of more adequate modeling of physical phenomena. 
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1. Introduction 
1.1. Models in Theoretical Physics 

The subject we consider belongs to the modeling approach in theoretical phys-
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ics ... “whose goal is to understand specific phenomena by developing either a 
mathematical or computational model. You begin this by choosing phenomena 
to study. Then you choose an approach to representing the phenomena; can you 
represent it as particle? a field? or some continuous distribution of matter? Then 
you choose a mathematical formulation .... You then adapt your approach to the 
mathematical formulation, thus developing a mathematical representation of 
your phenomena. You then use physical, mathematical, and/or computational 
arguments and methods to make predictions in the form of tables, plots, and/or 
formulas. By studying these results in different circumstances, you can extend 
our understanding of the phenomena. This is the most direct method of doing 
theoretical physics; it is a straight application of mathematical or computational 
methods. It is certainly the most structured way of doing theoretical physics ... A 
body of models linked by physical argument, derivation methods, and/or com-
puter simulations constitutes a physical theory ... The first step in understanding 
any physics is to try to simplify the situation by removing all complications and 
then by working out all of the consequences of the situation. The particle is this 
kind of simplification. For such a simple explanation, it is very rich in principles 
and consequences. Once we have studied many simple ideas, we need to make 
them more realistic by reintroducing some of the complications that we re-
moved in the process of simplification.” see G. E. Hrabovsky [1]. 

Feynman’s advice [2]: “I think equation guessing might be the best method to 
proceed to obtain the laws for the part of physics which is presently unknown ... 
The problem is not to find the best or most efficient method to proceed to a 
discovery, but to find any method at all.” 

Thus, we put forward the method for making simplified, serial models 
(S-models):  

1) Considering a phenomenon, we chose the fundamental model that we will 
simplify; 

2) Modifying it by inserting an auxiliary parameter for expansion by the Tay-
lor series, 

3) The S-models we make up of the Taylor polynomials, omitting auxiliary 
parameter. 

There are three illustrative examples of such simplified, serial modeling:  
a) Given physical phenomenon described by a complicated scalar function ( )f t , 

we insert two auxiliary parameters λ  and 0t , and use the Taylor series 

( )( ) ( ) ( ) ( )0 0 0 00 !
nn

nf t t t f t t t nλ λ∞

=
 + − = − ∑           (I.1) 

with 1λ =  to formulate the following two-term S-model 

( ) ( ) ( ) ( )( )1
0 0 0lf t f t f t t t≡ + − .                 (I.2) 

This linear model is simpler than ( )f t  and suggests two, yet simpler one-term 
models: 

( ) ( )0cf t f≡  and ( ) ( ) ( )1 0pf t f t≡ .              (I.3) 
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• Note that ( )f t  may not be equal to its Taylor series even if the series con-
verges! 

b) Given the convolution integral 

( ) ( ) ( )dy t f t x t t t
∞

∞−
′ ′ ′= −∫ ,                  (I.4) 

we use the Taylor series expansion of ( )x t tλ ′− . The first m + 1 terms provide 
the S-model 

( ) ( ) ( )0
m n

m ny t a x t≡ ∑ ,                    (I.5) 

where na  are constants that are defined by the moments of ( )f t  specified by 
equation (I.4). 

c) We can interpret the partial differential equations as the simplified serial 
models obtained from the Boltzmann integro-differential transport equations, 
see [[3], Sect.4.3.1]. 
• As noted by Dirac, “A great deal of my work is just playing with equations 

and seeing what they give …” “A good deal of my research in physics has 
consisted in not setting out to solve some particular problem, but simply 
examining mathematical equations of a kind that physicists use and trying to 
fit them together in an interesting way, regardless of any application that the 
work may have. It is simply a search for pretty mathematics. It may turn out 
later to have an application. Then one has good luck.” see [5]. 

• Simplified, serial models are convenient for detailed study of phenomena. 
Selecting a particular element of the fundamental model for inserting the 
auxiliary parameter, we concentrate our attention on the specific aspect of 
the considered phenomenon. 

• A wide variety of fundamental models implies the same S-model! Thus, one 
can collate a variety of simplified models without knowing the actual funda-
mental model.  

It makes sense to consider initially various simplified models for a phenome-
non in order to infer eventually its fundamental model, see [4]. 

1.2. Subjects 

In 2012, we presented modeling of the long-term, asymptotic dynamics of a 
point-like object where ( ),mt t∈ +∞  and mt  is large, (arXiv: 1205.2920 [physics. 
gen-ph]). There we introduced some elements and concepts that we will now 
clarify with simple examples. In this paper, we consider simplified, serial models 
of the long-term dynamics, of a particular type of rigid bodies whose motion in-
teracts with the surrounding medium. We name them “pointlike objects” (POs) 
and define them: 

1) A PO is a classical extended real object that is moving through a medium. 
The response of PO to an external force is specified solely by the trajectory of a 
single point, which we name “the PO-position”. Therefore, the POs are a sort of 
rigid bodies. 

2) The external force determines the acceleration of the PO-position. 
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3) The PO-velocity eventually stops changing after the cessation of the exter-
nal force. 

4) So far, one has modeled the dynamics of a PO by using so-called “point 
mass”, whose acceleration one has specified by Newton’s second law of motion, 
dividing the force acting on the point mass by its mass, its sole kinetic constant. 
However, a PO may be actually a very complicated real object such as a satellite, 
train, ship, chain, particle ..., thus we may oversimplify the situation by using a 
point mass to model its dynamics. Therefore, we approach this question by con-
sidering simplified serial models of the long-term, PO dynamics (LT-dynamics 
for short) for a small and slowly changing external force ( )F tλ λ  with a varia-
ble auxiliary parameter 0λ ≥ . Expanding the LT-dynamics in powers of λ , we 
obtain with 1λ =  simplified, serial models: the Taylor polynomials in terms of the 
external force ( )F tλ λ  and its derivatives, which we name “the LT-formulas”. 

In Section 2, we consider the damped harmonic oscillator driven by the small 
and slowly changing external force ( )F tλ λ  with auxiliary parameter λ  in 
order to calculate illustrative S-models for LT-dynamics where ( ),mt t∈ +∞  and 

mt  is large, say mt +∞ . As the fundamental model, we introduce a special 
type of Newton’s second law formula for acceleration of PO, which we name the 
N-formula, where ( )0,t∈ +∞ . It generalizes Newton’s second law by explicitly 
specifying the PO-acceleration by a possibly nonlinear transform of the external 
force. We calculate the N-formula for the driven damped harmonic oscillator 
from its differential equation of motion. By the expansion of this N-formula in 
powers of λ , we obtain the corresponding LT-formulas, the Taylor polyno-
mials in time derivatives the external force ( )F tλ λ . These LT-formulas suggest 
that by eliminating iteratively the higher time derivatives of the trajectory from 
the PO differential equation of motion, we can calculate the corresponding 
LT-formulas up to any order of λ , without solving the differential equation. 

In Section 3, we consider S-models for the LT-dynamics of PO whose motion 
interacts with the surrounding medium. We calculate iteratively exemplary 
LT-formulas without solving the relevant differential equations: i) the Riccati 
differential equation for velocity at the quadratic drag force, ii) a second-order 
cubic nonlinear differential equation for the driven damped oscillator, and iii) 
the Lorentz-Abraham-Dirac relativistic differential equation. 

In Section 4, we draw coclusion and comment on: 
1) Specific S-models for the LT-dynamics. 
2) Dynamic properties of PO, which serial models for relativistic LT-dynamics 

imply. 
3) Applications of LT-formulas for predicting the long-term acceleration de-

pendence of PO on the external force and its time derivatives: this dependence 
determines the relative significance of kinetic constants of the PO equation of 
motion for the LT-dynamics. 

4) Figure 1 shows the block cycle diagram that illustrates the relations be-
tween the introduced concepts and techniques. 
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• Since physical theories employ mathematical models to describe and predict 
physical phenomena, our knowledge depends on the models available to that 
end. To increase their scope we use the Taylor series expansion in order to 
introduce simplified, serial models. Using the first few terms of a Taylor se-
ries, these models provide some information about difficult and complex 
problems. In this paper, we use them to describe the long-term dynamics of a 
special type of rigid bodies at small and slowly changing external forces. 

2. LT-Dynamics of the Driven Damped Harmonic Oscillator 

To illustrate the mathematical framework of the proposed S-models for of the 
LT-dynamics, we will now consider the S-models for the LT-dynamics of the 
damped harmonic oscillator that is driven by an external force ( )F tλ λ  with its 
magnitude and rate of change determined by the auxiliary parameter 0λ > . 

2.1. N-Formula for the Driven Damped Harmonic Oscillator 

We calculate the N-formula from the differential equation of motion for the 
particular kind of PO. This PO is based on the point mass that is moving along 
the x-axis under the influence of the external force ( )f t , ( )0 0f = , and in-
itially at rest at ( )0 0x = . The point mass is attached to the zero-length spring with 
the force constant 0k ≥ , and slowed down by the frictional force with the 
non-negative viscous damping coefficient c such that c > 0 when 0km ≠ . Thus, 
the PO-position ( )x t  satisfies 0t∀ ≥  the differential equation of motion for 
the driven damped harmonic oscillator: 

( ) ( )2 1mx cx kx f+ + =  with ( ) ( )d d , 0,1,2,nnx t x n≡ =         (1) 

where the kinetic constant m specifies the PO inertial force, whereas the kinetic 
constants c and k specify the interaction between the surrounding medium, and 
PO-velocities’ and PO-position respectively. Therefore the PO-trajectory 

( ) ( ) ( )
0

d
t

x t z t f t t t′ ′ ′= −∫  if , , 0m c k >               (2) 

with the Green function 

( ) ( ) ( ) ( )1
2 2

0 0 01 exp sin 1z t m t tζ ω ζω ζ ω
−

≡ − − −           (3) 

0 k mω =  is named “the un-damped angular frequency”, and 02c mζ ω=  
is named “the damping ratio”. The PO-acceleration as a function of the external 
force ( )f t  is given by the following linear N-formulas: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 11 1
0

d
t

x t m f t m z t kf t t cf t t t− −  ′ ′ ′ ′= − − + − ∫  if , , 0m c k > ;  (4) 

( ) ( ) ( ) ( ) ( )2 2
0

1 – exp d
t

x t m f t cm ct m f t t t− − ′ ′ ′= − −∫  if 0, 0, 0m c k> ≥ = ;  (5) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1

0

11 2 exp d
t

x t c f t kc kt c f t t t− − ′ ′ ′= − − −∫  if 0, 0, 0m c k= > ≥ ; (6) 

They transform the external force into PO-acceleration by integral operators; 
cf. the N-formulas (16), (17), and (18). 
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When the external force ( ) 0f t =  1t t∀ ≥ , the PO equation of motion (1) 
implies: 

( ) ( ) ( )2
1 0 0exp sin 1x t a t tζω ζ ω ϕ= − − +  if , , 0m c k > ;       (7) 

( ) ( ) ( )1
2 expx t a ct m= −  if 0, 0, 0m c k> ≥ = ;           (8) 

( ) ( )3 expx t a kt c= −  if 0, 0, 0m c k= > > ;            (9) 

where the four constants 1 2 3, ,a a a  and ϕ  are determined by ( ) 1,0f t t t< < .  
Thus, after the cessation of the external force ( )f t  the PO-velocity ( ) ( )1x t  

eventually stops changing, and the properties of the external force ( )f t  within 
every finite period of time have negligible effects on the PO-velocity ( ) ( )1x t  as 
t → +∞  because the PO differential equation of motion (1) is linear. If 0c < , 
then there is self-acceleration. 
• To further illustrate the relationship between linear N-formulas and linear 

PO equations of motions we calculate N-formula for a PO made out of two 
connected point masses of equal mass 0m ≥ , which are located on the 
x-axis, initially resting at points ( )0 0x =  and ( )1 0 0x = : thus ( ) ( )1 0 0x =  
and ( ) ( )1

1 0 0x = . They are connected by the zero-length spring with the force 
constant k/2 > 0. The point mass with the trajectory ( )x t  is accelerated by 
the external force ( )f t , ( )0 0f = , and slowed down by the frictional force 

( ) ( )1cx t−  with the viscous damping coefficient 0c ≥ . Whereas the point 
mass with the trajectory ( )1x t  is only slowed down by the frictional force 

( ) ( )1
1cx t− . The differential equations of motion for this system of two con-

nected point masses are 

( ) ( ) ( )2 1
1

1
2

mx cx f k x x= − + − −  and ( ) ( ) ( )2 1
1 1 1

1
2

mx k x x cx= − − .    (10) 

Therefore, the velocity of the first point mass is given by the formula: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0
´ 2 exp d d

t t
x t z t t f t k m c m f t tτ τ τ

′ ′ ′ ′= − + − −  ∫ ∫       

if 0, 0m c> ≥ ;                        (11) 

and 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 11

0
exp 2 d

t
x t c kt c k c f t t f t t t−  ′ ′ ′ ′= − − + − ∫  if 0, 0m c= >  (12) 

If c > 0, we may consider ( )x t  as the PO-trajectory, and the time differen-
tiation of the formula (11) or (12) defines directly the corresponding N-formula. 
According to the differential equations of motion (10), the differential equation 
of motion for the PO-trajectory ( )x t  is as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )4 3 2 1 1 22 2 12 , 0.
2

m x cmx km c x kcx kf cf mf c+ + + + = + + >    (13) 

The kinetic constants m and k specify the PO, whereas the kinetic constant c 
specifies the interaction between the PO-velocity and the surrounding medium. 

2.2. S-models for the Linear LT-Dynamics 

We now calculate approximate models for the linear LT-dynamics implied by 
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the linear N-formulas (4) and (5), when the external force ( ) ( )f t F tλ λ=  i.e. 
0λ >  is small and ( ),mt t∈ +∞ . Taylor series expansion of N-formulas (4) and 

(5) in powers of λ  gives: 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 31 2 5x t k F t k c F t Oλ λ λ λ λ− −= − +  as mt → +∞  if , , 0m c k > ;(14) 

and 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 21 2 4x t c F t mc F t Oλ λ λ λ λ− −= − +                

as mt → +∞  if , 0, 0m c k> = ;                 (15) 

provided ( ) ( )0sup n
t F tλ≥ ≤ ∞  for 0,1,2,3n = . Thus, both responses of accele-

ration to the external force are slow, not instantaneous. 
Whereas the differential equation of motion (1) implies that 0t∀ ≥  and each 

λ : 
( ) ( ) ( )2 1x t m F tλ λ−=  if 0, 0, 0m c k> = = ;            (16) 

( ) ( ) ( ) ( )2 11x t c F tλ λ−=  if 0, 0, 0m c k= > = ;           (17) 

( ) ( ) ( ) ( )2 21x t k F tλ λ−=  if 0, 0, 0m c k= = > .           (18) 

Above formulas (14) and (15) show how using the S-models for the 
LT-dynamics specified by the PO equation of motion (1) with ( ) ( )f t F tλ λ= , 
we can obtain the long-term PO-acceleration expressed as a sum of time deriva-
tives of the small and slowly changing external force ( )F tλ λ , say,  

( ) ( ) ( ) ( ) ( )2 1 1
1
N n N

nx t k F t Oλ λ λ− += +∑               (19) 

provided ( ) ( )0sup n
t F tλ≥ ≤ ∞  for 0,1, ,n N= 

; e.g. if 1
1k k −= , 2

2k k c−=  
with , , 0m c k > . Such S-model for the LT-dynamics under small and slowly 
changing external force ( )F tλ λ  we name as the LT-formula of the order of 

Nλ . The real constants kn we name as the LT-constants. About the LT-formula 
(19) we note that 

( ) ( ) ( )1n nx t O λ −=  as t → +∞ , 2,3,4,n = 
.           (20) 

If 0nk =  for 1,2, , 1n o= −
, and 0ok ≠ , 1o ≥ , then each LT-formula 

(19) of the order Nλ  implies iteratively the following novel differential equa-
tion of the order 2o Nλ + −  for the LT-dynamics: the LT-equation 

 ( ) ( ) ( ) ( ) ( )1 1
2
N n o o N

nc x t F t Oλ λ λ− + −= +∑ ,             (21) 

and vice versa. When N = 4 and 1 0k ≠ , the constants of the LT-equation (21) 
and the LT-constants of the LT-formula (19) are related iteratively: 

1
2 1c k −= , 2

3 1 2c k k−= −  and 3 2 2
4 1 2 1 3c k k k k− −= − ;          (22) 

1
1 2k c−= , 2

2 3 2k c c−= −  and 3 2 2
3 2 3 2 4k c c c c− −= − .           (23) 

2.3. On Elements and Usage of Serial Models 

1) The Equations (1), (4), (14), (19), and (21) illustrate the mathematical rela-
tions between the following elements of the proposed S-models: 
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a) PO differential equation of motion, b) N-formula, c) LT-dynamics, d) 
LT-formulas, and e) LT-equations; see Figure 1 the block cycle diagram in Sec-
tion 4. 

2) The LT-formulas (19) contain only one time derivative of the PO-trajectory, 
the LT-equations (21) contain only one time derivative of the external force, 
while the PO differential equations of motion are is not so constrained, cf. equa-
tion (13). 

3) The Equations (14) and (15) exemplify how on expressing the LT-constants 
kn of the LT-formula (19) in terms of the kinetic constants m, c, and k, the 
S-models bring out the relative significance of these kinetic constants for the 
LT-dynamics. 

4) The early time, 0t ↓ , start-up dynamics of the N-formula (4) is given by 
( ) ( ) ( ) ( ) ( )2 11 2 3 20x t m F t O tλ λ−= + .               (24) 

But the way in which the LT-formula (14) of the LT-dynamics depends on the 
kinetic constants m, c, and k is fundamentally different. 

5) The Equations (4) and (14) suggest that the N-formula and the corres-
ponding LT-formulas may differ significantly. Nevertheless, when the external 
force is small and slowly changing, we may use the LT-formula to calculate the 
approximate long-term PO-trajectories. 

6) In contrast to the differential equation of motion (1) that depends conti-
nuously on the kinetic constants m, c, and k, in view of the Equations (14) and 
(15), the corresponding LT-formulas may not. The same applies for the 
LT-equations (21), which in general do not determine the PO differential equa-
tion of motion (1). 

7) The Equations (15) to (18) and the estimate (20) suggest that without solv-
ing a PO equation of motion like (1) or (13), we can calculate the corresponding 
LT-formulas up to any order of λ by eliminating iteratively the higher time de-
rivatives of trajectory. So assuming that the estimate (20) is correct, we calculate 
in that way from the differetial equation of motion (13) for the PO consisting of 
two connected point masses the corresponding LT-formula: 

( ) ( ) ( ) ( ) ( )11 22 if 0, 0x t c F t O m cλ λ λ−= + ≥ >            (25) 

8) The formulas (7) to (9) show that for the particular PO, its initial response to an 
external force becomes exponentially negligible. Moreover, if the PO-acceleration is 
cyclic then there is no start-up, early time dynamics: in this case, the long-term 
dynamics and dynamics of PO are identical! 

3. Exemplary LT-Formulas 

In this section, where ( ),mt t∈ +∞  with mt +∞ , we calculate iteratively from 
the assorted differential equations some exemplary LT-formulas in terms of the 
time derivatives of a function of the external force ( )F tλ λ . Any LT-formula or 
LT-equation that we do not calculate from some PO equation of motion we de-
signate as a hypothetical one. 
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3.1. LT-Formulas for the Strong String 

Using the strong string, we generalize the PO differential equation of motion (1): 
( ) ( ) ( )2 1 3

1 3mx cx k x k x F tλ λ+ + + =                 (26) 

where 1 3, , , 0m c k k ≥ ; and 0c >  if ( )1 3 0k k m+ > . Thus the three kinetic 
constants c, and k1 and k3, specify the reaction of the surrounding medium to the 
PO-velocity and PO-position respectively. To calculate the Taylor polynomial of 
the differential equation (26) we rewrite it by Cardano’s formula: 

( ) ( )
1 3 1 31 2 1 22 3 2 3q q p q q p   = − + + − + +      

x            (27) 

with 1 33p k k≡ , ( )( ) 32q r F t kλ λ≡ − , and ( ) ( )2 1r mx cx≡ + . We presume 
that the equation (26) is still a PO equation of motion if 3 0k >  and that the es-
timates 

 ( ) ( ) ( )( )12sig 3 1 3 as , 0,1,n n kx t O t nλ + += → +∞ =            (28) 

are true also if , 0m c > , calculate the Taylor polynomial of ( )rhs 27≡   x  as a 
function of r, and eliminate the time derivatives ( )nx . This way we obtain the 
LT-formula: 

{ } { } { }( )( ) ( )( )1
10 1 0 7 3 2sig 3 as ,kx c O tλ += + + → +∞x x x

 
where 

{ } ( ) ( )rhs 27nn r≡ ∂ ∂   x  at 0r = .               (29) 

This formula exemplifies a new type of S-models for the LT-dynamics with 
polynomials in time derivatives of the function ( )rhs 27≡   x  of the external 
force ( )F tλ λ . 

3.2. The Quadratic Drag Force 

Let us consider a PO with mass 0m ≥ , which is moving along the x-axis 
through a fluid at relatively large velocity ( ) ( )1 0x t >  under the influence of the 
external force ( ) 0F tλ λ > , and slowed down by the Lord Rayleigh type of the 
quadratic drag force ( ) ( )( )21

dc x t , 0dc > . The PO-mass m specifies the PO in-
ertial force, whereas the constant dc  specifies the reaction force of the sur-
rounding fluid. So we presume that the PO-velocity ( )1x  satisfies the following 
Riccati differential equation: 

( ) ( )( ) ( )
22 1 .dmx c x F tλ λ+ =                   (30) 

Hypothesizing that the differential Equation (30) is an LT-equation and that 
the estimates 

( ) ( ) ( )1 2 as , 1, 2,n nx t O t nλ −= → +∞ =               (31) 

are true also for 0m > , we get iteratively a new type of serial models for 
LT-dynamics. They are polynomials in time derivatives of ( )F tλ λ : 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 5 2– 4 asd dx t c F t m c F t F t O tλ λ λ λ λ λ= + → +∞  (32) 

We can generalize the calculated hypothetical LT-formula (32) by adding the 
frictional force ( ) ( )1 tcx−  to the hypothetical LT-equation (30). 

3.3. The Nonlinear Relativistic LT-Formulas 

Let us consider LT-formulas of a relativistic N-formula. We base them on relati-
vistic point mass, which is located at ( )tr  and moving with velocity ( )tv , 
under the influence of the external force ( )tλ λF  with the dimensionless aux-
iliary parameter 0λ > . We define the external four-force 

( ) ( ) ( ) ( )( ),t t t tλ λ γ λ λ λ λΦ ≡ ⋅ F Fβ  with ( ) ( ) 1 221tγ
−

≡ − β ,   (33) 

where ( )t c≡ vβ . We will use the PO four-velocity ( ) ( ),tβ γ γ≡ β ; and the 
metric with the signature ( )+ − − − , so that 1β β⋅ = . We introduce an addi-
tional four-force ( )t∆ , which specifies the properties of PO-dynamics in the 
case of the external four-force ( )tλ λΦ , and formulates the relativistic 
N-formula: 

[ ] ( ) ( ) ( )1mc t t tβ λ λ= ∆ + Φ  with [ ] ( )d d nn tβ γ β≡ , 1,2,n = 
    (34) 

where t/γ is the proper time. As [ ]1 0β β⋅ =  and 0β ⋅Φ = , we may rewrite the 
relativistic N-formula (34) as  

[ ] ( ) ( ) ( ) ( )1 1mc t t tβ ββ λ λ= − ⋅ ∆ + Φ .              (35) 

Generalizing the linear LT-formula (19), we model the dependence of the 
four-force ( )t∆  on the external four-force ( )tλ λΦ  by a relativistic poly-
nomial in time derivatives [ ]nλΦ  of the external four-force, to get the hypo-
thetical relativistic LT-formula: 

[ ] ( ) [ ] ( ) [ ]

[ ]( ) ( ) [ ] [ ]

( ) [ ] [ ]( ) [ ]( ) [ ]

[ ]( ) ( ) [ ] [ ] ( )

1 1 23
1 2 31 32

1 1 33 3
41 42 43

2 1 1 1 15 3 3
51 52 53

2 2 43 3 6
54 55 56

1 k k k k

k k k

k k k

k k k O

β ββ λ λ λ λ

λ λ λ

λ λ λ

λ λ λ λ

= − ⋅ Φ + Φ + Φ ⋅Φ Φ + Φ

+ Φ ⋅Φ Φ + Φ ⋅Φ Φ + Φ

+ Φ ⋅Φ Φ + Φ ⋅Φ Φ + Φ ⋅Φ Φ

+ Φ ⋅Φ Φ + Φ ⋅Φ Φ + 
Φ +




    (36) 

where the real parameters 1 56, ,k k  are independent of the external four-force 
( )tλ λΦ . We name them “the LT-constants” when we use them for a particular 

PO to specify its hypothetical relativistic LT-formula (36) up to the order of 5λ  
inclusive. 
• If ( ) ( )t t∆ = ∆ − , then N-formula (35) is invariant under time reversal and 

the hypothetical relativistic LT-formula (36) has 2 41 42 43 0k k k k= = = = . 
• The N-formulas (17) and (18) themselves suggest two hypothetical relativis-

tic LT-formulas: [rhs(36)] [1] and [rhs(36)] [2]. 
• By eliminating iteratively all the time derivatives [ ]nλΦ  except the one of 

[ ]0λΦ  from the hypothetical relativistic LT-formula (36), we get a hypothet-
ical relativistic LT-equation, analogous to the LT-equation (21). 
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3.4. The Relativistic LT-Formulas for an Electrified PO 

Presuming that the PO is electrified by a pointlike charge, we follow Schott [6] 
and express the additional four-force ( )t∆  as the difference  

 [ ] [ ]( ) [ ]1 1 1d Bβ β β∆ = − ⋅ + ,                   (37) 

where [ ] [ ]( )1 1d β β β⋅ , 0d ≥ , is the long-term intensity of the four-momentum 
emitted by the Liénard-Wiechert potentials with the cyclically moving singulari-
ty at ( )tr , see ([7], §6.6), and [ ]1B  is the time derivative of an “acceleration 
four-momentum ( )B t ”. Therefore, for an electrified PO we rewrite the relati-
vistic N-formula (34) as 

[ ] [ ] [ ]( ) [ ]1 1 1 1–mc d Bβ β β β λ⋅ + = Φ ,               (38) 

and 

[ ]( )[ ]11 0B dβ β⋅ + = .                     (39) 

The kinetic constant d specifies the magnitude of radiation reaction force of 
the surrounding vacuum, which opposes the acceleration of an electrified PO. 
According to Dirac [8], the acceleration four-momentum ( )B t  may be any 
four-function of the time derivatives [ ]nβ ; and the N-formula (38) for an elec-
trified PO conserves the four-momentum by the Equation (39). Furthermore, 
Bhabha [9] pointed out that if ( )B t  is such that the cross product 

[ ]( )1B dβ β∧ +                        (40) 

is a total differential with respect to the proper time, then such an electrified PO 
conserves the angular four-momentum! 

Inspired by the LT-equation (21), we assume that the nth time derivative 
[ ]nβ  is of the order nλ  as t → +∞ , and then model the time derivative [ ]1B  

in the relativistic N-formula (38) by the relativistic polynomials in [ ]nβ , subject 
to the Bhabha condition (40), cf. ([7], Ch.9) and [10]. Accordingly, the hypo-
thetical, relativistic LT-equation for an electrified PO equals the LT-equation 

[ ] ( ) [ ]1 21mc dβ ββ β λ− − ⋅ = Φ                   (41) 

up to the order of 2λ  inclusive, disregarding the Bhabha condition (40). As-
suming the Bhabha condition (40), we gave such a hypothetical, relativistic 
LT-equation up to the order of 6λ  inclusive, see [11]. On eliminating iteratively 

[ ]2β  from the (41) we get 
[ ] ( ) [ ] ( )1 1 31mc d mc Oβ ββ λ λ λ = − ⋅ Φ + Φ +  ,          (42) 

which is the LT-equation such as the LT-equation (36) up to the order of 2λ . 
Up to the order of 6λ  inclusive, we gave such relativistic LT-equation in ([7], 
Sect.11.4). 

3.5. On Equation of Motion for a Charged Particle 

1) In 1892, H. A. Lorentz started an ongoing quest to take account of the radi-
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ation reaction force (the effect of the loss of four-momentum by the electro-
magnetic radiation) by the classical equation of motion for a charged particle. In 
1938, Dirac assumed that an electron is such a simple thing that the lowest order 
hypothetical LT-equation (41) ought to be the correct equation of motion with 

2 2
06d e c= π , and no additional polynomial terms are needed, cf. [8]. The equ-

ation (41) is named the Lorentz-Abraham-Dirac equation. Since it exhibits the 
self-acceleration, it has baffled the mathematical physicists ever since the Dirac 
invented it. Since we obtained it as the first known hypothetical relativistic 
LT-equation about the LT-dynamics of an electrified PO, we puzzled out its sig-
nificance. An equation about long-term dynamics, where ( ),mt t∈ +∞ , is not 
necessarily an equation of motion, where ( )0,t∈ +∞ , the initial dynamics is 
missing. 

2) In 2008, Rohrlich [12] stated that the physically correct equation of motion 
for a classical charged particle is the lowest order relativistic LT-formula (42) for 
an electrified PO with 2 2

06d e c= π , provided ( )( ) ( )11d mc ββ− ⋅ Φ Φ , 
see [13] for comment. 

There is a century old discussion with an infinite number of proposals about 
the appropriate equation of motion for an electrified PO, see e.g. [7] [14] [15] 
and the references cited therein. Nevertheless, we do not consider here the theo-
retical problem about the properties of a real object and conditions under which 
it behaves largely like PO, and we may idealize it as PO by constructing an ap-
propriate PO equation of motion. 

4. Conclusion 
4.1. Comments 
4.1.1. Multi-Simplified Serial Model 
To simplify an implicit relation ( )1 2, , 0x x c =  we modify it by inserting six 
parameters: 

( )1 1 1 2 2 2, , 0c cx x cλ ε λ ε λ ε+ ++ = ,               (43) 

where three auxiliary parameters 1λ , 2λ , and cλ  point to the variables 1x , 

2x , and the constant c respectively, whereas the parameters 1ε , 2ε , and cε  
specify their starting values. The Taylor series to nth order in auxiliary parame-
ters 1λ , 2λ , and cλ  provides the nth order multi-simplified, serial model. 

4.1.2. Specific S-Models for LT-Dynamics 
Usage of S-models requires selecting and identifying the relevant aspects of the 
LT-dynamics. Instead of using the modified external force ( )F tλ λ , we might 
obtain more detailed information about the significance of kinetic constants for 
LT-dynamics of a given PO by using the modified external force ( )F tλ ε  with 
two dimensionless, auxiliary parameters λ and ε, to control separately the mag-
nitude and the rate of change of the external force. Considering the same PO, we 
can start also with various simplified equations of motion. Thereby we can ob-
tain Taylor polynomials in time derivatives of different functions of the external 
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force, e.g. for the equation (26) there are three possibilities: 1 3, 0k k > , 1 0k = , 
or 3 0k = . The resulting LT-formulas provide information about the signific-
ance of individual components of PO for its LT-dynamics ! 

4.1.3. General Relativistic Properties of the LT-Dynamics 
According to the hypothetical relativistic LT-formula (36), the LT-dynamics of 
a PO is specified up to the order of 3λ  inclusive by the four LT-constants 

1 2 31, ,k k k  and 32k . According to Einstein, the first LT-constant is 1 1k mc= . In 
addition, within Dirac’s classical theory of radiating electrons, the second 
LT-constant is 2 3

2 06k q mc= π . Therefore, in general, we expect that the 
LT-constant 2k  is determined by the intensity of the loss of the PO four mo-
mentum in response to the time derivative of the external force, it is not negative 
as a real PO may provide only a finite amount of the four-momentum. There-
fore, the first two terms of the relativistic LT-formula (36) provide for a classical 
electrified PO the definitions of its mass and charge by their role in the relativis-
tic LT-dynamics. 

The physical interpretation of two third-order LT-constants 31k  and 32k  is 
open. Under the Bhabha condition (40), they are related as follows: 

1 2
31 1 1 2

21
3

k c k k− 
 
 

= −  and ( ) 1 2
32 1 1 21k c k k−= − ,           (44) 

where 1c  is a real constant. 
Using the LT-formula (36) with increasing 0λ ≥ , we can simulate how at a 

given precision of our observations the number of the observable LT-constants 
increases with the magnitude and rate of change of the external four-force 

( )tλ λΦ : at very small and slowly changing external force, just the PO-mass can 
be determined. Due to the multitude of actual POs, we see no physical reason to 
believe that there is only a limited number of the independent relativistic 
LT-constants. 

4.1.4. Application of the LT-Formula 
1) The N-formulas (17) and (18) point out exceptional cases with POs whose 

LT-formula equals their N-formula. 
2) As we can hardly ever obtain the exact solutions in closed form for the PO 

equation of motion, the corresponding LT-formulas provide a welcome source 
of information about LT-dynamics. Whenever each following term of the 
LT-formula is essentially smaller than the preceding one, we may expect that this 
formula will provide appropriate information about the LT-dynamics. The 
LT-constants provide the significance of the individual kinetic constants of the 
PO equation of motion for LT-dynamics. 

3) A hypothetical LT-equation implies hypothetical LT-formula of the same 
order of λ: We may always use it to calculate approximations to the long-term 
PO-trajectories because LT-formula cannot exhibit self-acceleration, on the con-
trary to PO-equation. 

4) Certain PO moving through a medium might present a too complicated 
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system to create its exact equation of motion. But we may still be able to some-
what describe its LT-dynamics by a hypothetical LT-equation which balances the 
external force with the sum of the inertial force and an S-model of the interac-
tion force between PO and the surroundings, cf. the hypothetical LT-equation 
(30) and the Lorentz-Abraham-Dirac Equation (41). 

5) To make a hypothetical LT-formula we can use as a generic ansatz some 
multivariate polynomials in time derivatives of an appropriate function of the 
external force such as given by the Equations (19), (29), (32) or (36), and extract 
the values of their parameters by multiple linear regressions from data about ac-
celeration the of long-term PO-trajectories, see [6]. Thus without knowing an 
adequate N-formula, we can make appropriate LT-formulas for predicting the 
LT-dynamics of a given PO. 

6) There are many real systems consisting of POs, each of which is treated as 
the point mass with acceleration specified by Newton’s second law, e.g. in as-
tronomy, and in classical mechanics. Using appropriate LT-formulas instead of 
Newton’s second law, we could take into account not only the PO-masses but 
also some of the additional kinetic properties of these POs. That way we might 
get better dynamic models of such systems. 

7) Basing models of continuous mechanical medium on the laws about the 
interaction of the point masses and Newton’s second law (see [[7], Sect. 4.4]), 
and using an appropriate LT-formula instead of Newton’s second law, one might 
get better models. 

8) Remaining subjects: a) Memory: PO-acceleration after cessation of the ex-
ternal force, b) Passive damping: energy dissipation by parts of a composite PO. 
c) Composite dynamics: the LT-dynamics of a PO in terms of the LT-formulas 
of its parts. 

4.2. Summary 

We presented a particular type of simplified models. Using few terms of the 
Taylor series, these models provide some information about difficult and com-
plex problems. In this paper, they describe the long-term dynamics of a special 
type of bodies at small and slowly changing external forces. We introduced: 

1) A pointlike physical object PO, a classical extended object whose motion 
interacts with the surrounding medium. PO response to an external force is 
aptly specified solely by the trajectory of a single point, whose velocity eventually 
stops changing after the cessation of the external force. 

2) A particular type of PO-dynamics: if the PO-acceleration is cyclic then 
LT-dynamics equals to the basic dynamics, there is no start-up. 

3) The key mathematical element is the N-formula. It generalizes Newton’s 
second law formula for acceleration by explicitly specifying the PO-acceleration 
by the external force. 

4) The simplified models of the LT-dynamics under a small and slowly 
changing external force, i.e. the LT-formulas, approximate the long-term de-
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pendence of PO-acceleration at a given time instant by the Taylor polynomial in 
time derivatives of the external force at the same time instant. 

Given an ordinary PO differential equation of motion, we can calculate itera-
tively the corresponding LT-formula of any order of λ! Nevertheless, the 
LT-formula does not need to imply the original PO equation of motion. 

Each LT-formula implies iteratively a novel differential equation of the same 
order of λ about the LT-dynamics (LT-equation), and vice versa. Such an 
LT-equation provides certain information about the LT-dynamics, and may ex-
hibit self-acceleration. Different POs may have identical LT-formulas of the 
same order of λ. 

To illustrate the mathematical framework and usage of serial models of the 
long-term dynamics of the pointlike objects, we considered the driven damped 
harmonic oscillator in Section 2. As Figure 1 the block cycle diagram shows, we 
illuminated the relations between various elements and techniques for modeling 
the PO long-term dynamics, where ( ),mt t∈ +∞  and mt +∞ , i.e. mt  is large. 
Thus, the PO long-term dynamics is actually a generalization of the asymptotic 
dynamics, where t +∞ . 

4.3. Main Points 

1) Simplification through Taylor series expansion. We consider simplification 
of mathematical models by Taylor series expansion of their elements. According 
to Planck [16] “the simpler the presentation of a particular law of Nature, the 
more general it is though at the same time, which formula to take as the simpler, 
is a problem which cannot always be confidently and finally decided.” 

2) Modifications of an initial ansatz through its parameter. The tacit basis of 
our approach to model making is the fact that when the given ansatz model is an 
invertible function of a particular parameter; we can modify it through this pa-
rameter into an arbitrary ansatz. 

Example: Given the three parameter ansatz 
 

 
Figure 1. The simplified modeling of the long-term PO dynamics. 
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( ) ( ) ( ); , , 1F x b c a bx cxα ≡ + + , ( ), , , ,x a b c∈ −∞ +∞ ,        (45) 

then for any function ( )f x  we get 

( ) ( ); , , fF x b c f xα =                      (46) 

iff 

( ) ( )fc a bx f xf≡ + − .                    (47) 

3) To model small and slowly changing force we use ( )F tλ λ  with small va-
riable 0λ > . The results are useful with 1λ =  if function ( )F t  in itself is 
small and slowly changing. 

4) We introduced pointlike objects and serial models as the modeling ele-
ments. To illustrate them we provided various examples of heuristic approach to 
modeling the pointlike objects dynamics. This might prevent future mix-up over 
the proper usage of the long-term equations and various differential equations 
for modeling dynamics of the pointlike objects. We put forward this novel ap-
proach as well we knew, yet “Proof of the pudding is in eating”. 
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