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Abstract 
The paper introduces a theoretical model aimed to show how the relativity 
can be made consistent with the non reality and non locality of the quantum 
physics. The concepts of quantization and superposition of states, usually re-
garded as distinctive properties of the quantum world, can be extended also 
to the relativity. 
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1. Introduction 

The quantum theory and the relativity have stimulated influential ideas and ex-
perimental efforts to investigate and understand a huge number of natural phe-
nomena from atomic to cosmic scale [1] [2]. However, with space ranges spread-
ing from ~10−18 m to ~1026 m by about 44 orders of magnitude, is comprehensi-
bly problematic the attempt to unify in the frame of a unique theory the whole 
variety of related natural phenomena. Yet, is symptomatic the fact that similar 
difficulties often arise even in formulating a more selective class of specific 
physical problems. In the case of the relativity, for example, something relevant 
should be still missing even at the mere cosmic scale; despite the great amount of 
its previsions and discoveries, remain problematic crucial topics like the pro-
gressive acceleration of universe expansion, the MOND (modified Newton), the 
dark matter and dark energy. A possible hint to overcome these difficulties is to 
identify an appropriate background of ideas that integrate or modify the preex-
isting ones; for example, at the quantum level, the major problem of the 
relativity is its link to the non-reality and non-locality of the quantum theory [3]. 
Also, the “handwritten” cosmological constant reluctantly introduced by Eins-
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tein after the Hubble experimental hint, is a further example of necessary revi-
sion of the general relativity even in its most representative cultural frame i.e. the 
cosmology. Is reasonable the suspect that focusing greater attention on the ex-
isting conceptual background is not an additional difficulty but a possible solu-
tion? To provide a contribution to this problem, the paper [4] has introduced an 
operative definition of space time 

2

G
c
                            (1.1) 

that implies as a corollary the statistical formulation of quantum uncertainty 

,xx p n tδ δ δεδ= =                      (1.2) 

being n an arbitrary integer. The purpose of this paper is to examine the physical 
information deductible by the definition (1.1): as it merges   and 2G c , in 
principle, it seems reasonably valuable for quantum and relativistic implications. 
The most intuitive way to convert (1.1) into an effective equation allowing suc-
cessive calculations is to introduce explicitly its physical dimensions 

3

2 ,G length
timec

=


                       (1.3) 

which also calculates 
2

96 3
2 8.2 10 J m .−= × ⋅ =

 


G

timec
               (1.4) 

The second (1.4) linked to (1.2) defines δε ′ ′′= −  , where ′  and ′′  are 
two arbitrary boundary energies, whereas the right hand side implies nδε ω=   
with 1tω δ −=  and nε ω ε′ ′′≤ ≤ ; this means that ω  is an energy in the 
range of allowed values n ω  falling within δε  with 1, 2,n =  . The first 
equality (1.2) reads ( )12 x nh p nδ δ δ λ−= =π , having put x x xδ ′ ′′= −  and 

( )1 1 1h p h p h pδ λ λ− − −′ ′′ ′ ′′= − = −  coherently with δε ; then to any  
x x x′ ′′≤ ≤  corresponds h p hλ λ′ ′′≤ ≤  with p h λ=  and that 2 x nλπ =  
as well. Hence (1.2) summarizes contextually three fundamental statements of 
quantum physics. Now the crucial task of the present physical model is how to 
define specifically length and time of (1.3) to infer physical information. To this 
aim, (1.4) will be implemented via some fundamental parameters of the universe 
[5] 

17 26

35 2 18 1

4.35 10 s, 4.35 10 m,

1.9 10 s , 2.2 10 s ,

estim estim
u u

u

t r

H− − − −

= × = ×

Λ = × = ×
            (1.5) 

i.e. the estimated age and radius of the Universe, from now on quoted with 
shortened notation ut  and ur , the Einstein cosmological factor Λ  and the 
Hubble constant uH . Two quantities of interest are the mass obm  detectable in 
the universe counting the stars only [5] and the critical density crρ  of Fried-
man equations [6] 

2
52 27 33

3 10 kg, 8.6 10 kg m .
8

u
ob cr

H
m

G
ρ −= × = = ×

π
         (1.6) 
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Of course these numerical data must be intended as today’s values. The mass 

obm  is interesting, although approximated by defect for two reasons: because it 
refers to stars only and because it concerns by definition stars whose light has in 
fact reached us during the life time of the Universe. 

The present theoretical model implements systematically uncertainty ranges 
to calculate quantum and relativistic quantities according to the logical step “lo-
cal values →  uncertainty ranges”. From a formal point of view this statement 
can be acknowledged reminding the standard concept of measure errors: just as 
no one trusts the reliability of a single value measured in its experimental error 
bar, likewise (1.2) waive the signification of a local dynamical variable in its un-
certainty range. Yet the true physical meaning of this replacement is one among 
the crucial points of the model, as it will be more thoroughly shown below; some 
examples of calculated results are also reported in the Section 6 to confirm the 
concepts exposed in the Sections 1 to 5. The uncertainty ranges are defined via 
the standard notation 

( ) ,any function f f fδ ′′ ′= −                  (1.7) 

being f ′′  and f ′  the range boundaries defined by two arbitrary values al-
lowed to the concerned function; these values are arbitrary, unknown and un-
knowable by definition of quantum uncertainty. In general, both of them can be 
variables or constants. As xδ  implies x variable in an appropriate interval of 
values x x x′ ′′≤ ≤ , the dynamical variable x is assumed to take a range of ran-
dom values between arbitrary boundaries x′  and x′′ . Also, since the symbol 
δ  introduces the meaning of change by definition, it also indicates the differen-
tial of f through the formal identity f f fδ′′ ′= + ; then the further identity 

, ,ff f x x x x x x x
x

δ δ δ
δ

′′ ′ ′′ ′ ′ ′′= + = − ≤ ≤            (1.8) 

introduces the ratio f xδ δ  that in turn takes physical meaning under appro-
priate conditions. A further way to implement the ranges is that already hig-
hlighted about δε , i.e. n n nω ω ω′ ′′≤ ≤   , which means 

,n n n′ ′′≤ ≤                         (1.9) 

being of course n′  and n′′  arbitrary and unknown integers. In the following 
the shortened notations 2xδ  and ( )2xδ  mean respectively ( ) ( )2 2x x xδ ′′ ′= −  
and ( ) ( )2 2x x′′ ′− . Eventually note that in principle both signs are allowed for 
any range; for example nothing hinders that 0x x xδ = −  is defined by 0 0x  , 
so that 0 0x x x x xδ = ± = ± ±  being both x and 0x  arbitrary. Sometimes in 
the following text a given result is obtained more than once in different contexts: 
this is not a redundant repetition, rather it must be intended as a check con-
firming that all conceptual steps progressively exposed are consistently linked 
each other. Despite the agnostic way to introduce (1.2), the remainder of this 
paper is able to formulate a self consistent theoretical physical model. The text is 
exposed in order to be as self contained as possible. 
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2. Preliminary Considerations 

This section introduces some considerations having general character of 
straightforward corollaries of (1.1) to demonstrate that this definition of space 
time is physically sensible. All concepts introduced below are listed sequentially 
without calculations, while emphasizing their physical meaning; the validity of 
the various formulas inferred through the model will be concerned in the next 
section 6. 

2.1. Energy and Energy Density in the Space Time 

Implement first the dimensional analysis of (1.1), (1.3) and (1.2) defining 
2 2 3= G c  and 3η =  , where   stands for energy and   for length to 

introduce the concept of energy density η . Then multiplying and dividing side 
by side these two equations one finds 

2 2 3 2
6 2

3 2, ,η
η

= = =
  









G c G

c
               (2.1) 

having identified   pertinent to η  with that defined by the second equation. 
Equation (2.1) yields two equations. Owing to (1.4) the first one is 

2 2
1 1, ,η τ

τ
− −   = = =   

   








c cG G                (2.2) 

according which the value of η  depends on that of   via fundamental con-
stants only: i.e. ( )tη η=  if ( )=  t , whereas instead constη =  if constε ′= . 
It is necessary to make (2.2) consistent with (1.2), i.e. to regard   as an uncer-
tainty range 0− ; as the boundaries of any range are arbitrary, in this particu-
lar case it means considering the energies 0 ≤ ′ ≤   enclosed in the given 
boundaries. So 0η =  would be the deterministic value of energy density re-
lated to 0η = , whereas instead the actual value of 0η η= −  corresponds to the 
range size 0− . Also, the dimensional relationships (2.1) yield the following 
equations 

( )
1 6 1 32 2

2 , , 0,G c G t t t
c

δ δ η η δ δ
η

   = = = ≠   
  

 

        (2.3) 

being tδ  an appropriate time range corresponding to the space range δ  ; the 
second equality is nothing else but the definition (1.3) of space time multiplied 
by tδ . Let tδ  be equal in general to 0t tτ + − , being the reference time 0t  an 
arbitrary constant and τ  a further time constant. From a formal point of view, 
this is by definition the uncertainty time lapse 1t t−  with t variable and 

1 0 tt t constτ= − = . The corresponding space range 1δ = −   , with  

1 const=


 , is such that dividing both sides by tδ  one finds 
1 3

2 3
2

G t
t c

δ δ δ
δ

− = =  
 

 



                    (2.4) 

and thus also 
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2 ;G
c

δ
δ

= ±








                       (2.5) 

clearly this result merely rewrites (1.3) as 3 tδ δ . Note that δ   has physical 
dimensions of velocity; so, regarding cδ ≤ , at any t (2.5) yields in particular 

3 .min P
G

c
δ = ± = ±



                      (2.6) 

The Planck length appears to be the smallest space range physically inferable 
through the definition (1.1) of space time, whereas the Planck time and energy 
can be nothing else but P Pt c=   and = P Pt  according to (1.4), whence 
the Planck mass 2= P Pm c  too by dimensional reasons. Instead at 0t t=  by 
definition tt constδ τ≡ =  and thus constδ =



 ; so (2.4) turns into 
1 3 1 3

2 3
2 2 2 .

t

const G G
t const c cτ τ

δ τ
δ τ

−

=

   = = =   
   



              (2.7) 

The left hand side introduces a velocity by definition constant. In particular, 

Ptτ =  is consistent with the ratio of constants tconst const c=


, in analogy 
with ( ) 2

0
1

0µ
−  of the classical electrodynamics. 

2.2. Classical Newton law 

Since c  in (2.2) has physical dimensions of acceleration, write thus 

42 22.9 10 m s ;= = ×





cacceleration               (2.8) 

then it must be possible to define via dimensional reasons also the related veloc-
ity, force and energy 

, , ;δ δ= = =

  

  c c ct velocity m force m energy         (2.9) 

both tδ  and δ   are arbitrary because they are introduced without hypothesis 
or conceptual constrain. Also, 

, ,δ δ
δ δ

= = =






c v v v
t t

                   (2.10) 

whereas holds the dimensional relationship 2 3 2δ =m mass length time . As 
this latter defines in turn at the right hand side the physical dimensions of 

3G mass× , it is possible to write 3δ =mass Gmass  i.e. 
3 2

1 2 ;
δ δ

= ± = ± = ±
×  


m mmass mG G G

mass length
          (2.11) 

the double sign being in agreement with (2.5). The energy   is here identifiable 
with the analytical form of the classical Newton law, if δ   is regarded as the 
uncertainty range corresponding to the random distance between 1m  and 1m . 
First of all, with this available dimensional information only, it is impossible to 
identify the respective role of either mass; otherwise stated, as 1m  and 2m  
were both formally inferred from a unique 2m , the quantum uncertainty re-
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quires that inertial and gravitational mass are physically equivalent. Moreover 
nothing is known in fact about δ  , introduced in (2.1) simply as an arbitrary 
dimensional length. This suggests that actually (2.11), quoted here only as a pre-
liminary check of (2.9), is the classical formula of a more general force, which in 
fact will be considered again in the next section 4. Yet it worth emphasizing 
since now that (2.11) is conceptually different from 1 2Gm m r , seemingly ana-
logous but actually wrong: indeed this latter implies an instantaneous action at 
distance r, whereas (2.11) implies the finite propagation time of the gravitational 
interaction through the range δ  . This point will be concerned later, it is 
enough to anticipate here that the space range δ   contains inherently time in-
formation according to (1.2). The chance of defining v  in (2.10) is justified in 
principle via (1.2) introducing first =v v  as 

;x v
t p

δ δε
δ δ

= =                       (2.12) 

this link implies that in general the size of all uncertainty ranges defining v are 
time dependent themselves. Thus is sensible in principle v  anticipated in 
(2.10). The fact that the boundary coordinates of xδ  are arbitrary does not ex-
clude for example ( ) ( )2 1δ = −x x t x t ; so the uncertainty allows defining the 
possible time dependence of velocity modulus as change rate of ( )x x tδ δ δ=  as 
a function of time lapse tδ . The way (2.12) of expressing (1.2) is significant for 
at least four reasons: (i) v  is in fact four-vector because, being defined in (2.10) 
via uncertainty ranges, it must be regarded according to (1.2). (ii) It agrees in 
principle with the idea of replacing the concept of derivative with that of ratio of 
uncertainty ranges, as it will be more thoroughly confirmed in the next sections 
2.6 and 4. (iii) Despite the quantum nature of (1.2), the gravity fits in a natural 
way the present model based on (1.1). (iv) Equation (1.2) requires that v must be 
upper bound. Indeed, consider any local momentum p included in a range of al-
lowed values 0 1≤ ≤p p p ; if v would tend to infinity then δε  related to δv p  
should be compatible with an infinite local energy, whereas instead 0 1≤ ≤    
correspond to a finite range of values allowed to the momentum. This absurd 
conclusion, i.e. finite δε  and thus δ p  for infinite δv p  because of v, re-
quires an upper finite value c of v in agreement with (2.7). This property of c is a 
corollary of (1.2), not a postulate; as such it must hold in any reference system. 

2.3. Quantum Uncertainty and Space Time 

The energy density (2.2) is inherent the concept of space time according to its 
own origin (1.3) and has several implications, first of all the existence of a pres-
sure stP  internal to space time volume 3xδ  previously symbolized as 3length ; 
the subscript means space time to emphasize that it is inherently based on the 
definition (1.1) only. As sketched in the Appendix A [4], one finds 

1 2, , , 1.
3 3st stP ξη ξ= =                   (2.13) 

For example, assuming a spherical volume of space time of radius str  crossed 
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by a diametric light beam completely absorbed at its internal boundary, one cal-
culates an internal outwards force 

2 14 , .
3st st stF r ξη ξ =π=                    (2.14) 

Moreover (2.2) reads according to the first (2.9) 
2 2

2 , ,velocity a velocitya
G tt G

η
δδ

= = =               (2.15) 

so that velocity c≤  implies 
2

2 ;c
t G

η
δ

≤                         (2.16) 

hence the first (2.9) reads 

1 , n 1,
n

c
t velocityδ

= = ≥



                

 (2.17) 

which requires in turn 

* *, n .
tδ

> =


                        (2.18) 

This result compares the time range tδ  and the energy *  to it related via 
  only for any physical reason. Is remarkable the fact that this familiar inequa-
lity of quantum mechanics is here consequence of the other relativistic one 
v c≤ , which actually reads v c<  for matter particles; so (2.18) supports the 
validity of the first (2.9). It is worth considering also the second and third 
dimensional equations (2.9) that read 

, , ,m
m m

energyforce energy
mc

δε= = =
 



 

         (2.19) 

where m  is the reduced Compton length of m. It appears reasonable to as-
sume that the range size δ   is an integer number n of reduced Compton wa-
velengths, here regarded as the shortest wavelength relatable to one particle. If 
so, then putting 

mnδ =                          (2.20) 

the second (2.19) reads 

.energy n=                         (2.21) 

whereas the third (2.19) reads 

2 , .m
m

hn mcδ λ
λ

= =π                    (2.22) 

Appears here as a corollary an early postulate of the old quantum mechanics, 
i.e. the energy quantization due to the integer number n of steady waves allowed 
for a particle traveling in a closed path. This result is generalized via an arbitrary 
factor 1ξ <  in order that m   having physical dimensions of momentum 
reads 
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2 , , , .m
hn momentum mv v cξ ξ ξ ξ ξ
ξ

δ λ ξ λ ξλ
λ

= = = = =π     (2.23) 

All of this agrees with the results preliminarily obtained in section 1. A full 
paper [7] has been devoted to highlight the implications of (2.20), which in fact 
transfers n from its basic definition in (1.2) into the specific physical problem of 
a bound particle moving circularly around a central force field. 

On the one hand (2.20) is justified by its direct corollaries (2.22) and (2.23), 
which however represent a particular case of boundary condition allowing 
steady wavelengths. While ξδ   is uniquely definable as the radius of a circum-
ference, it must be replaced by a combination of minor and major semi-axes of 
an ellipse in order that (2.23) describes still the integer number of steady wave-
lengths along an elliptic perimeter. Are known in this respect various formulas, 
e.g. [8], that calculate this perimeter; the next subsection 5.7 will show how to 
infer through this reasoning the perihelion precession of orbiting planets. On the 
other hand the definition (2.23) of momentum is merely formal, being based on 
a dimensional assessment compliant with the condition v c<  via the arbitrary 
factor ξ . Nevertheless also in this reasoning energy quantization and De Brog-
lie momentum are contextual. It is shown soon below that n of (2.17) is the re-
fractive index of a dispersive medium. These considerations, crucial for the birth 
of the old quantum mechanics and here inferred as corollaries, suggest the ne-
cessity of defining more in detail the actual physical meaning of v. 

2.4. Quantum Velocity and Space Time 

The steps introduced by (2.9) are significant: whereas c in (1.1) is self-evident, it 
is a constant of nature, now rises the problem of clarifying further the physical 
meaning of velocity modulus v as a property of massive particles moving 
through the space time. To introduce v from a first principle, note that (2.12) 
yield 

( ) , ;v xv p pc v
c t

δδε δ δ
δ

= = =
 

since mc mv≥ , rewrite (2.23) according to (2.17); i.e. nmc m v=  yields 

, n 1, n .m
h cp mv

v
λ λ

λ
= = = ≥ =               (2.24) 

Introduce an arbitrary frequency ν  of matter wave inherent the De Broglie 
momentum and write now 

( ) ( )n1 1 n , ,v
v c c

δ νν δνδ δ δ ν ν
λ δν λ

   = = = =   
     

so that 

( )n1 1 1 1 :
gc v

δ ν
δ

δν λ δν
  = = 
   

the second equality defining a new reciprocal velocity 1
gv−  is justified by di-
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mensional reasons according to the ratio at the left hand side. This yields the 
modulus of this velocity 

( )
;

ng
cv

δ ν δν
=                      (2.25) 

clearly gv  is the group velocity of a wave packet in a dispersive medium if 
( )v v ν=  as a function of De Broglie wave frequency ν . Actually this holds for 

both 0δ → , i.e. the ratio of range sizes tends to the usual way to define the 
classical derivative for very small range sizes ( )nδ ν  and δν . Hence (2.12) is 
sensible. 

Recall now the eq 2 r nδ λπ =  found in (2.23), whose physical meaning in-
troduces a crucial condition on any mass 2m  orbiting according to (2.11) 
around 1m  at constant distance having modulus rδ : owing to the dual nature 
wave/corpuscle of matter, a steady 2m  wave is required to describe a stable or-
biting system around 1m  at radial distance rδ . Consider thus in this respect 
the De Broglie wave inferred in (2.24) and write 

2 ,n h
r
λ
δ

= =π


                      (2.26) 

which brings, in agreement with (2.23), directly to 

.r
n hp p

r λδ
δ λ

= = =
                     (2.27) 

At the right hand side appears the momentum pλ  of a De Broglie wave de-
localized within 2 δπ r . At the left hand side appears the radial momentum 
range δ rp  of a corpuscle delocalized in rδ : for example in the case of (2.11) it 
means that the space gap rδ  between the masses 1m  and 2m  implies a steady 
wavelength λ  along the orbital path of the running mass around the rest mass, 
which confirms the indistinguishability of gravitational and inertial mass intro-
duced in section 2.2. Rewrite now 0 0λδ = − = −r r rp p p p  of (2.27) with vector 
notation, noting that δ rp  is radial momentum range around the rest mass, whe-
reas 0λ λδ = −p p  is momentum range size along the path of the orbiting mass 
in agreement with (1.9); then 0 λδ = − =r r rp p p p  implies 0λδ = − =r rp p p p . 
Regard first 0 0=rp , as it is possible because the range sizes are arbitrary, in 
which case λ=rp p  reads more expressively ⊥=



p p , i.e. radial and tangential 
vectors; this result implies a circular orbit where a unique δr  implies a unique 
δ rp  and thus constant orbital λp . Of course in general 0 0≠rp , which sug-

gests that not necessarily the orbit must be circular; even admitting δ rp  con-
stant, ( )0 0=r rp p t  implies λp  variable. Even so, however, it is possible that 

λδ δ=rp p  simply thinking ( ) ( )0 0 0λδ ′ ′′= − − − =r r rp p p p p ; i.e. 0rp  has been 
split itself into its radial and tangential components, so that rp  and λp  change 
in the respective ranges 

:r λδ δ=p p                        (2.28) 

this implies the momentum range conservation of the running mass regarded 
first via its radial delocalization momentum range δ rp  and then also via its or-
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bital delocalization momentum range λδ p , normal to the radial distance in a 
circular path. Clearly this holds for the ranges δ



p  and δ ⊥p , whatever the lo-
cal 



p  and ⊥p  might be. Nonetheless two considerations support significantly 
the present way of reasoning. (i) From a relativistic point of view ( )0 0 δ=r rp p t  
justifies the definition of the momentum vectors as 4-vectors owing to (1.2) and 
makes compatible the present conclusions even with another major effect: e.g. 
the orbit instability, sketched later in the subsection 5.3.4 as due to emission of 
gravitational waves. (ii) Examine a further consequence of (2.28) from a quan-
tum point of view; as such this result should have a general validity, being it 
direct corollary of first principles. Consider a point source of particles, be they 
photons or matter corpuscles, and assume the tangential advancement of their 
wave front described by λp  correspondingly to the radial advancement of the 
corpuscle beam rp . As the uncertainty requires considering the respective mo-
menta consistently with the lack of deterministic trajectory, (2.28) suggests that 
to a wavelike radial propagation of the particle beam corresponds a wavelike 
propagation along a normal direction too. If a beam of corpuscles illuminates a 
solid plane with two slits, it is natural that the momentum λδp  of running 
waves yields an interference pattern on a screen placed at distance δ δ=  rnr p  
behind the slit plane. More specifically, n controls the various distances on the 
interference plane with respect to the slits. In other words (2.28) anyway hold 
and account for the duality wave/corpuscle of matter revealed by n tangential 
waves that interfere on the screen simply because two slits generate two beams 
according to the Huygens principle. All of this is self consistent regardless of 
how are defined the relativistic 



p  and ⊥p  of particles of the beam. 

2.5. Relativistic Outcomes 

The relativistic worth of these results follows straightforwardly, first of all be-
cause even the time is inherently involved by (1.2); multiplying side by side the 
first and third (2.9) one finds 

2

2 2

δ δ ×
=





t energy velocitym
c

 

and thus, owing to the first (2.17), 

2 2 2 2

1, , .
n n

vm energy velocityp v mv p
t tc c

δ δ
δ δ

×
= = = = =  

   

  

 
 (2.29) 

Note that 2n  is here mere dimensionless multiplicative factor of v


, which 
however cannot be specifically calculated because both δ   and tδ  are uncer-
tainty ranges unknown and conceptually unknowable; so 2n  contributes in de-
termining the resulting v



, whatever its value might be. These dimensional equ-
ations introduce the velocity and relativistic momentum components v



 and 
p


. Moreover write according to (2.12) 

,v
p

δ
δ

= 





                         (2.30) 
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Multiplying side by side this velocity and (2.29) one finds 

2 .
δ
δ

=

 




 p c

p
 

Then it is possible to write 

( ) ( )2 2p cδ δ=
 

                      (2.31) 

i.e. identically ( ) ( )( )2 2p c constδ δ= +
 

 , because of course ( ) 0constδ = . 
Hence (2.31) is compatible with 

( )22 .p c const= +
 

                     (2.32) 

Note that 

2
00

lim
v

pc m c
v→

=                       (2.33) 

and then, being 0m  the rest mass of the particle, one finds 

( ) ( )222 2
0 .p c m c= +

 

                    (2.34) 

A simple reasoning shows therefore that the statistical formulation (1.2) of 
quantum uncertainty is immediate consequence of the space time definition (1.1) 
and that the energy and momentum equations of special relativity are actually 
quantum equations, likewise the Lorentz transformations; indeed merging (2.34), 
(2.27) and (2.29) one finds 

2
0 0

22 2 2 2
, .

1 1

m c m v v hp
cv c v c λ

= = = =
− −

  

 

 


          (2.35) 

Note that this definition of energy and momentum agrees with that of (2.23) 
simply putting 

2 0

2 2
, , .

1

m
m c p m v m

v c
= = =

−
     



            (2.36) 

The definition of 


m  is essential to overcome an evident difficulty about 


p , 
which diverges for →



v c  when expressed via the Lorentz factor but remains 
finite when expressed via 



 . Clearly this is due to the fact that the former defi-
nition introduces explicitly the mass, the latter does not; so if is the mass that 
diverges because of the Lorentz factor, then both 



  and 


p  coherently in-
crease till then their asymptotic ratio becomes p c=

 

 . However there is a 
further reason, more subtle, to explain this point even better; this reason will be 
concerned in the section 5.5.8. 

2.6. The Uncertainty Equations 

Merging the third (2.9) and (2.22) one finds 
mc nδ =                          (2.37) 

and then also 

2 2 , .mc mc t n t
c c
δ δδ δ= = =
 

                (2.38) 
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Since m is arbitrary, consider now two masses m′  and m′′  such that 
( )2m c c nδ′ ′=   and ( )2m c c nδ′′ ′′=  . Subtracting side by side these equa-

tions the first (2.38) yields 

( ) ( )2 , ;m m c t n n t cδ δ δ′ ′′ ′ ′′− = − =   
as of course n n′ ′′−  is still an arbitrary integer, this result reads 

( ) 2, , .t n m m c n n nδ δ δ′′′ ′ ′′ ′ ′′′ ′′= = − ≤ ≤           (2.39) 

So even n is defined in its own range of integer values, as stated in (1.9). Mul-
tiplying and dividing the left hand side of the first equation by an arbitrary ve-
locity modulus v, by dimensional reasons one finds δ δ= p v  and x v tδ δ=  
so that p x nδ δ =  . Thus (2.37) implies via (2.22) and (2.19) the uncertainty 
equations 

, ,t n p nδε δ δ δ= =
  

                    (2.40) 

i.e. just (1.2) merely with a different notation of the conjugate dynamical va-
riables. These equations imply the indistinguishability of identical particles, be-
cause actually they concern the phase space rather than the particles themselves; 
in other words it is impossible to distinguish electron 1 from electron 2 deloca-
lized in a region of space time if nothing in known about them. Indeed it has 
been shown in (2.29) to (2.35) that, for example, momentum and energy are di-
rectly related to the range sizes (2.40) regardless of any hypothesis about the par-
ticles themselves. On the one hand is remarkable the fact that the Newtonian de-
finitions (2.9) imply the concept of uncertainty, thus confirming that actually 
even the classical gravity is rooted in the quantum equations (1.2). On the other 
hand the agnostic meaning of uncertainty, which implies lack of information 
about the boundaries of the ranges and about the local values of the dynamical 
variables allowed in their ranges, is not a postulate but a corollary of the way to 
introduce (2.40). The agnostic meaning of (1.2) follows from (2.9), in turn de-
ductible themselves without need of further considerations besides the dimen-
sional analysis of the physical definitions of time and energy. In fact is enough a 
general idea only: ′ ′′≤ ≤    implied by m m m′ ′′≤ ≤  follows from and cor-
responds to the number of quantum states n n n′ ′′≤ ≤  allowed at any 
t t t′ ′′≤ ≤ . By consequence space and time coordinates lose their deterministic 
local meaning of classical physics, while however their uncertainty ranges fulfill 
the respective Lorentz transformations (2.35). Of course owing to (2.24) it also 
holds for the wave definitions of dynamical variables λ λ λ′ ′′≤ ≤  of p and 
v v v′ ′′≤ ≤  itself. In effect it follows because the velocity is defined as ratio of 
uncertainty ranges as shown in (2.29), (2.40) and (2.12); a deterministic value of 
v is pertinent only in classical physics and in Einstein relativity. Although the 
reasoning to infer (2.39) has quantum character, it involves the relativistic 

2mc=  and quantum p h λ=  local values of dynamical variables randomly 
falling within the respective uncertainty ranges. It has been shown in [9] that n 
must be arbitrary integer in order that (1.2) are independent of any particular 
reference system. Summarizing shortly the reasoning therein carried out, let 
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x pδ δ  be defined by range sizes in a given reference system R and x pδ δ′ ′  in 
another R′ . Since the respective products are equal to n and n′  times  , it is 
clear that (1.2) are actually indistinguishable in R and R′ , because n and n′  
are indistinguishable themselves; indeed n and n′  are not specific values, rather 
they symbolize sets of arbitrary integers, so that any allowed n cannot be distin-
guished from any allowed n′ . In other words the quantization makes indistin-
guishable the reference systems because the unique sequence , 2 ,3 ,     is 
identically compatible with p xδ δ  in R and p xδ δ′ ′  in R′ . Moreover all un-
certainty ranges, e.g. x x xδ ′′ ′= − , contain themselves one boundary value, say 
x′ , that in principle could be referred to the origin of its own R, whereas the 
other boundary, say x′′ , determines the range size. However, being both boun-
dary coordinates by definition unknown and conceptually unknowable, any link 
of xδ  to a specific R is conceptually missing as well. This conclusion is further 
confirmed in a more substantial way as shown in [9] and again sketched also 
here. Expressing the range sizes in the Planck units previously found, see (2.6) 
and following, (1.2) read in fact 

* * * *
x p tn n n n nε= =                       (2.41) 

where n is the arbitrary integer of quantization whereas *
jn  are arbitrary real 

numbers defining the j-th range sizes as multiple of the respective Planck units, 
e.g. *

t Pt n tδ =  with * * *
t t tn n n′ ′′≤ ≤  as in (1.9); the primed and double primed 

notation of *
tn  indicates instead specific time values *

tn , of course arbitrary. 
According to the link (2.41) between mere numbers it is in fact impossible even 
to introduce R itself, in agreement with the conclusion that by definition (1.2) 
hold in any reference system R inertial or not. Obviously an analogous conclu-
sion holds for the ratios of uncertainty range sizes too, e.g. for v x tδ δ=  of 
(2.12) 

* *

* * :x xP

Pt t

n n
v c

tn n
= =

                      (2.42) 

owing to the arbitrariness of all range sizes, for example, this velocity can be in-
tended in particular as an average value v  of all ratios admissible for x x x′ ′′≤ ≤  
and t t t′ ′′≤ ≤  or as the limit of both 0δ → , i.e. as limv v x t≡ = ∂ ∂ . Despite 
the notation, even x∂  and t∂  still have in principle the meaning of very small 
uncertainty range sizes whose ratio defines the modulus v as a new dynamical 
variable; yet the local value of limv  is still numerically undefinable in the present 
quantum model because are not known the time and space coordinates *

tn  and 
*
xn  falling within t∂  and x∂ . However, this is true if the infinitesimal x∂  and 
t∂  are regarded in fact as independent ranges, as so far implicitly assumed for 
xδ  and tδ . If both ranges are concurrently vanishing, as it happens in the 

usual concept of derivative, then their shared property of contextual vanishing 
adds supplementary information on the definition of v, which reads now clv : 
indeed it modifies the concept of quantum total uncertainty hitherto intuitively 
acknowledged for x tδ δ . This is why clv  is conceptually knowable in classical 
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physics, but not in general in the present agnostic model based on (1.2) only 
where all *

jn  of (2.41) are random in their own * * *
j j jn n n′ ′′≤ ≤  and thus inde-

pendent. This point deserves attention and is further explained in the next sub-
section. Here it is enough to remark the conceptual difference between the mod-
ulus of the four-vector rel relv = v  of special relativity and the quantum v, ratio 
of two independent and arbitrary uncertainty ranges defined in (2.29), (2.40) 
and (2.30). On the one hand the local moduli clv  classical or relv  relativistic 
are calculable, whereas the local v of (2.12) does not likewise any function whose 
local time and space coordinates are conceptually missing. On the other hand 

relv  must be related to the reference system where is available deterministic in-
formation on local coordinates and time, whereas v waives “a priori” its own R 
because of (2.41). The fact that in principle v can be introduced without explicit 
link to a specific reference system has a further implication. Let v enter in the 
formula of a physical amount f written in terms of uncertainty ranges of dynam-
ical variables only: if ( ), , ,f f x p tδ δ δε δ=  turns into ( )* * * *, , ,x p tf f n n n nε=  
while ( )* *

x tv v n n= , then it is possible to introduce f itself without defining ex-
plicitly its R, whatever the specific physical meaning of v and f might be. 
Nevertheless the lack of a specific reference system does not imply in fact any 
ambiguity, as it will appear in the following section 6 where are calculated some 
numerical outcomes of the present model; rather the physical meaning of v results 
from that of xδ  and tδ  or δε  and pδ  themselves according to (2.12). Al-
though this physical model seems too agnostic to infer valuable information, 
note that these conceptual premises have been enough to infer the fundamental 
(1.2) from (1.1) and even preliminary relativistic results. The remainder of the 
paper aims to show that just this conceptual agnosticism allows to overcome the 
determinism of Einstein general relativity and plugs it into the elusive quantum 
world; the calculations will be carried only after having completed adequately 
the theoretical frame so far introduced. 

2.7. Uncertainty, Covariance, Simultaneity 

In general the choice of the reference system R is crucial in any classical physical 
model that implements deterministic local coordinates; in the Einstein relativity, 
the equations are required to be invariant with respect to the reference systems, 
including the non-inertial ones. Consider however a quantum problem formu-
lated only via uncertainty ranges; in fact (2.41) shows that if all *

jn  and n are 
arbitrary, then there is no direct correlation between range sizes of dynamical 
variables and reference systems just because the former do not contain any in-
formation someway related to the latter. As it has been remarked for n, the only 
available information is that the product of two range sizes of conjugate dynam-
ical variables must be quantized; i.e. both products * *

j jn n ′  of (2.41) must yield an 
arbitrary integer whatever the local values of the respective dynamical variables j 
and j’ might be. So, if the local coordinates are replaced by ranges that fulfill 
(1.2) and (2.41), then is missing “a priori” the existence of privileged reference 
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systems; moreover it is easy to show that, by consequence, the requirement of 
the different form of equations in R and R’ becomes inessential. Is instructive in 
this respect the classical example reported in various textbooks, e.g. [10], of a 
point mass m tethered by a massless and inextensible wire, so that the mass 
moves circularly around a fixed coordinate. This example becomes significant 
noting that if the wire is broken, e.g. by the centrifugal force itself, thereafter the 
motion of the mass is rectilinear uniform along the tangent to the circumference 
in the breakdown point. This is true in R with origin fixed on the rotation center 
of the mass. In R’ fixed on the moving mass, instead, the mass is at rest; when 
the wire is broken the mass deviates from its initial path, it follows a curved tra-
jectory. The classical physics implements F ma=  and F ma′ ′=  respectively: 
elementary considerations show that r ce coa a a a′ = + + , where the subscripts 
stand for real, centrifugal and Coriolis terms. This is a typical example where the 
motion of the mass described in R and R’ implies acceleration terms appearing 
in the non-inertial R’ only. Einstein felt then the necessity of a covariant theory 
including the gravity. Classically it is possible to introduce R and R’ along with 
any other R’’ arbitrarily chosen. Just for this reason the Einstein relativity aims 
to describe in general any physical system independently of a specific R, thus ex-
cluding the existence of such a “privileged” R but admitting however that in ef-
fect all these various R are actually definable. In any approach formulated via 
(1.2), instead, neither any deterministic coordinate of the tethered system nor its 
own R are actually definable owing to (2.41); in general it is possible only to say 
that exist arbitrary reference systems and that if two of them are inertial then 
hold (2.35). Consider indeed the dynamics of the rotating mass described by the 
Newtonian (2.9): is crucial the fact that the acceleration is defined as ( )a c=   , 
where the unique variable is  . This latter however is a local energy that must 
be implemented solely via its uncertainty range 2 1δε = −  : i.e.   is to be re-
garded as 1 2≤ ≤   , whereas a  is a random value included within a range 

1 2a a a≤ ≤  of values. Also, in the present quantum model we should compare 
the ranges δε  and 2 1δε ′ ′ ′= −   before and after the breakdown of the tethered 
system; in other words a’ is now a different local value included within a differ-
ent range 1 2a a a′ ′ ′≤ ≤  of values. But actually this comparison between inertial 
and non-inertial reference systems is conceptually meaningless in the present 
model: the range boundaries and the local values of dynamical variables are un-
knowable and irrelevant as concerns the physical description of any quantum 
problem, so it is irrelevant the local disagreement a a′≠  and the fact that a’ in-
cludes various additional terms with respect to a . The agnosticism implied by 
(1.2) compels considering these ranges before and after the wire breakdown re-
gardless of how the corresponding local accelerations are made of; in other 
words the chance δε δε ′=  of including the respective a  and a’, in principle 
possible because a  and   differ by a proportionality constant factor, bypasses 
the necessity of discriminating R and R’ to describe the tethered system with or 
without its breakdown. Since this holds for any uncertainty range by definition, 
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in fact (2.41) waives the necessity of specifying either reference system to con-
cern the dynamical variables. Accordingly it is possible to regard all ranges of 
(1.2) independently of their definition in a specific R: rather it is possible to in-
troduce xδ  and tδ  independently of the local space and time coordinates 

*
xn′  and *

tn′  in Plank units, equivalent to ( )x x t=  and ( )x x t′ ′ ′= , and re-
gardless of their own xR  and tR . It is clear now the last statement of the pre-
vious subsection: distinguishing ( )* * *

x x tn n n=  and ( )* * *
x x tn n n′ ′ ′=  to obtain the 

local velocity through the usual concept of derivative violates the concept of 
total uncertainty and implies turning the formulation of the physical problem 
into the deterministic definition of classical dynamical variables. This conclu-
sion is reasonably extrapolable also to different times *

tn′  and *
tn′′  in two 

different R: i.e. * *
t tn n′ ′′= , for example, would violate the principle of total lack 

of information about the local time variable, whereas the uncertainty leaves 
out any form of local determinism in any R. So *

tn′  and *
tn′′  must fulfill the 

condition * *
t tn n′ ′′⊥⊥ , where the symbol means “independent of”: i.e. it states 

that *
tn′  and *

tn′′  are independent local times in Pt  units and introduces two 
crucial corollaries. On the one hand if *

tn′  and *
tn′′  are independent local 

times in different reference systems, then * *
t tn n′ ′′⊥⊥  excludes the concept of 

simultaneity in R and R’; as any t in R is not numerically correlatable to t’ in R’ 
in a deterministic way, two events simultaneous in R are not automatically si-
multaneous in R'. On the other hand the local time *

tn′  is illusory itself likewise 
the local coordinate *

xn′ ; indeed during a given time lapse of length *
t Pn t  it is 

meaningless to distinguish * *
t tn n′ ′′>  or * *

t tn n′ ′′< . The lack of the concept of 
simultaneity in the special relativity is obvious: if c is finite and invariant in all 
reference systems whereas instead space lengths and time lapses are subjected to 
(2.35) via pδ  and δε  of (1.2), it is trivial to conclude that the time lapses tδ  
and tδ ′  in different reference systems cannot imply the simultaneity of a given 
event for two observers in reciprocal motion. From a quantum point of view the 
same conclusion is due to the lack of single time coordinates to be compared in a 
deterministic way, being significant instead time ranges to be compared e.g. in 
two different reference systems. These statements, well known since the birth of 
the special relativity by consequence of the finite value of invariant c, appear 
here as straightforward corollaries of the quantum uncertainty. Nevertheless the 
present way to regard the quantum physics based on (1.2) has not only relativis-
tic implications, partially already inferred in the subsection 2.5 and further con-
sidered in the next section 3, but also quantum implications. Here are two short 
examples of corollaries of (1.2) pertinent to the present reasoning. 

(i) Quantum implication: the hydrogenlike atoms. Write 

0, 0 :r rp pδ δε ε′ ′= − = −                  (2.43) 

since the unprimed range sizes at the left hand sizes are arbitrary, the same must 
hold for the primed range sizes at the right hand side. Then it must be possible 
to implement identically both of them, regarding thus the lower boundary value 
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0 as a particular but not deterministic case. To infer physical information from 
these statements and check their validity, find the classical energy ′  of hydro-
genlike atoms. Implementing (1.2) for rp′ , which actually owing to (2.43) is by 
definition radial range despite its notation, one finds 

( ) ( )
( )

( )2 2 22

2 2

2 2
, 2 ;

2 2 2
r n n np r r
m mr m rm r

δ
δ

′
′ ′= = = = =

′ ′

  

         (2.44) 

clearly r′  has been introduced as a length by dimensional reasons and symbo-
lizes the range 0r′ − . Thus 

( ) ( )
( )

( )2 2 2 2

22

2 2 2
, ,δ

δ δδ δ
′= ± = ± = = −

′ −

  

 

n n n Zer

m r rmZem Ze r r
   (2.45) 

having introduced appropriate information, i.e. the specific electromagnetic in-
teraction between nucleus and electron charges. One finds, with the second equ-
ation reasonably suggested by (2.44) and first (2.45) itself 

( )2

22 ,δ ′= = =


B B

n
r r r r

mZe
 

that yield Bohr radius and energy 

( )
( )

222 2

2 .
2 2

ε
δ

′ = = − = − = −
′



 B

Ze mZe Ze
r r n             

 (2.46) 

Now it should be clear why range sizes and boundary coordinates are irrele-
vant as concerns the quantum problems, as in effect it has been demonstrated 
for various systems [11] [12]. In particular it is not necessary to specify R cen-
tered on the nucleus, it is enough to state that nucleus and electron are rδ  
apart; the radial range size is then defined by the non deterministic Bohr radius 
via the integer 1 n≤ ≤ ∞ . Is clear thus the meaning of the coefficient 2 in the 
second (2.44): an electron r′  apart from the nucleus has total radial delocaliza-
tion range 2r′ . In this model the quantum numbers are in fact numbers of 
quantum states. 

(ii) Relativistic implication: the invariant equations. Write (1.2) as follows 

2 2,n p nx t x x x t t t
p p

δ δεδ δ δ δ δ δ δ δ
δε δε δ δ

= = = =
 

 

so that, subtracting side by side, 

( )
2 2 2 0.c pc t x

pc
δε δδ δ
δ δε

− =
 

Let be now, without loss of generality, 

( )
,c p Y

pc
δε δ
δ δε

= −
 

being Y a function with physical dimensions of reciprocal velocity to be defined. 
Hence 
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( )2 2 2 2 2 0,pc t x Yc tδδ δ δ
δε

− − =
 

i.e. 

2 2 2 2 2 2 2 .nc t x Yc t Yc t Yc t x
p p

δεδ δ δ δ δ δ
δ δ

− = = =
          (2.47) 

The left hand side reads, again because of (1.2) and (2.34), 

( ) ( )
( )
( ) ( )( )

( ) ( )
( )

2 2 2 2
22

2 2 2 2 2

2
2 2 2

2 2 2

22 2

2 2 2

1 1

.

n nc n c
p p c

n c
p c

p c

n c mc

p c

δε δ δε δ

δ δε
δε δ

δε δ

 
 − = −
 
 

= −

= −

 







         (2.48) 

If Y is a constant, i.e. 1Y c−= , (2.47) shows two invariant quantities of the 
special relativity correlated each other; 2 2 2c t xδ δ−  is particularly important as 
it has been demonstrated in [13] to be conceptual foundation of the special rela-
tivity. Special attention deserves in this respect the operator formalism of quan-
tum mechanics, which regards since the beginning the particles as waves; instead 
the last equations have concerned the corpuscular properties of matter. The next 
section shows how to introduce in this conceptual frame also the wave formal-
ism, in agreement with the corpuscular/wave nature of the particles. 

2.8. The Wave Formalism 

Rewrite identically (2.32) as 

( )( ) ,p c p c const+ − =
   

                   (2.49) 

which is trivially consistent with 
, , ,

;

p c const p c const

const const const

′ ′ ′′ ′′ ′ ′′+ = − = = = ±

′ ′′= = ±
      

    
       (2.50) 

it is trivially evident that multiplying side by side with the help of the third and 
fourth conditions (2.50) one obtains (2.49) and thus (2.32). Yet two more condi-
tions make the first two (2.50) compatible with (2.32). Multiplying side by side 
′ ′= −
 

 const p c  and ′′ ′′= +
 

 const p c  one finds 

( )2 2 ,′ ′′ ′ ′′ ′ ′′= − + − +
   

  p c const const p c const const         (2.51) 

whence the two chances allowed by const const′ ′′= : 

 (1) *2 *, , ,ε′ ′′ ′ ′′= = ± = = ±
  

  p ip const const const       (2.52) 

which yields 

( )2*2 * 2 ,= + p c const  

and 
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 (2) ( )2*2 * *, , ,′ ′′ ′ ′′= − = = = = ±
  

   i p p const const i const
 

 (2.53) 

which yields 

( )2*2 * 2 .− = − −


 p c const  

Both conditions (2.52) and (2.53) agree with (2.32) exactly likewise (2.50). The 
former implies imaginary momentum 



p ; also, since there is no reason to ex-
clude 0′ >



  and 0′′ >


 , one must accept even imaginary energy 


 , which 
opens a new conceptual frame along with the imaginary momentum too. The 
relativistic (2.32) needs therefore a new interpretation to be consistent with 
complex dynamical variables, which in turn must be acknowledged them-
selves: it is evident that all of this implies in fact the corpuscle/wave behavior 
of matter to fit both quantum and relativistic results. While the compatibility 
of (2.49) with the initial (2.32) is trivial, that of (2.52) and (2.53) with (2.32) is 
still possible even defining complex quantities. Consider first (2.52) to calculate 
via *p p i= ±



 the corresponding complex range *p p i n i xδ δ δ= ± = ±
 

  
according to (1.2). Since any integer n can be expressed as a difference of two 
integers n′  and n′′  one finds 

* * * ,n n np p p n n n
i x i x i x

δ
δ δ δ

′ ′′
′ ′′ ′ ′′= − = ± = ± = −

  

  

      (2.54) 

and thus also 
* *

* * * *, ,p n p n
i x i x

δψ δψ
δψ δψ

δ δ
′ ′′

′ ′ ′ ′′ ′′ ′′= ± = ± 

 

 

           (2.55) 

having multiplied both sides of these equations by *δψ ′


 and *δψ ′′


 with the 
purpose of obtaining again via (2.55) a real value of momentum consistent with 
the relativistic p



 of (2.49). Subtracting side by side (2.55) and writing explicit-
ly * *

0δψ ψ ψ′ ′ ′= −
  

 and * * *
0δψ ψ ψ′′ ′′ ′′= −

  

, (2.54) yields 

( ) ( )
( ) ( )

* * * * *
0 0

* *
0 0 .

p p

n n
i x i x

ψ ψ ψ ψ

δ δψ ψ ψ ψ
δ δ

′ ′ ′ ′′ ′′ ′′− − −

′ ′ ′ ′′ ′′ ′′= ± − −

   

   

 

 



         (2.56) 

If the range boundaries 0ψ ′


 and *
0ψ ′′


, arbitrary in principle, are defined 
such that 

* * *
0 0 ,p pψ ψ′ ′ ′′ ′′=
   

then (2.56) reads 
* *

* * * *p p n n
i x i x

δψ δψ
ψ ψ

δ δ
′ ′′

′ ′ ′′ ′′ ′ ′′− = ±  

 

 

 



 
and thus 

* *
* * * *, .p n p n

i x i x
δψ δψ

ψ ψ
δ δ

′ ′′
′ ′ ′ ′′ ′′ ′′= ± = ± 

 

 

            (2.57) 

It is easy to acknowledge that for *
0ψ ψ′ ′→

 

 and *
0ψ ψ′′ ′′→

 

, along with 
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0xδ →


, all δ  of (2.57) turn into the classical ∂ ; so both equations are noth-
ing else but the classical momentum wave equations with respective real eigen-
values *p′  and *p′′  with an appropriate choice of 0ψ ′



 and 0ψ ′′


. This result, 
which introduces the quantization required by (1.2), is clearly the wave formula-
tion of momentum equation via the complex wave function *ψ . Note that this 
result could have been obtained more shortly starting from (2.27) rewritten re-
placing p pλ ≡ 

: regarding the De Broglie momentum as the imaginary mo-
mentum appearing in (2.52), 

n p
r λδ
=



 
of (2.27) turns into 

* ,
pn p

i r iδ
= = ±



 
whence, multiplying by the function δψ  both sides, 

*.p
i r n
δψ δψ
δ

= ±


 
Thus one finds 

* , .p n
i r
δψ ψ δψ ψ
δ

= ± =


 
The last position expresses the range δψ  as a function of n; i.e. it follows 

thinking the values of n in an arbitrary range n n n′ ′′≤ ≤  and thus regarding 
δψ  as a range of terms ( ) ( ), 1 , , 1 ,n n n nψ ψ ψ ψ′ ′ ′′ ′′+ −  through which one 
calculates the respective eigenvalues of momentum falling between *n p′  and 

*n p′′ . Consider now (2.53) with imaginary energy *ε


. An identical reasoning 
holds of course here; trivial algebraic steps analogous to that from (2.55) to 
(2.57) yield 

* *
* * * *,n n

i t i t
δψ δψ

ψ ψ
δ δ
′ ′′

′ ′ ′ ′′ ′′ ′′= ± = ± 

 

 

 

            (2.58) 

compatibly with the existence of states of negative energy. Moreover *ψ ′


 and 
*ψ ′′


 resulting from the uncertainty range formalism of (1.2) represent a combi-
nation of the n-th quantum states allowed for momentum and energy of par-
ticles. Once more the reason is that the uncertainty range boundaries are un-
known and arbitrary; hence one could rewrite validly (2.54) replacing the upper 
boundary value *p′  with * *p pξ ′′′ ′+  so that * * * *p p p pδ ξ ′′′ ′ ′′= + − , being ξ  
an arbitrary constant coefficient. If so, then (2.55) would result with *δψ ′



 and 
*δψ ′′


 replaced by ( )* *δ ψ ξψ′ ′′′+
 

 and ( )* *δ ψ ξψ′′ ′′′+
 

, whereas (2.57) would 
consist of two primed and double primed functions like this 

**
** ** ** * *, .p

i x
δψψ ψ ψ ξψ
δ

′ ′′′= ± = +
   



             (2.59) 

From these considerations inferred as corollaries of (1.2) and (2.32) without 
need of postulates, was born the early wave mechanics and the modern quantum 
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mechanics. 

3. Relativistic Corollaries 

This subsection examines four main implications of (2.2) noting that if 
constη =  then const=  as well, whereas ( )tη η δ=  implies ( )tδ=   too. 

Owing to (1.4) and (2.9), the definition (1.1) of space time appears compliant 
with the idea of a dynamic system characterized by matter, energy and forces; 
also, the equivalence of mass and energy of the special relativity inferred in 
(2.33) agrees with the feature of space time characterized by the energy density 
η  of (2.1) inherent to its definition (1.1). Without these results the space time 
would be an empty concept unavoidably abstract and unphysical. Instead, for 
reasons shown in the appendix B, does exist in principle an outwards pressure 
corresponding to the energy density η  in (2.2), which in turn can be partially 
or totally counterbalanced by the attractive gravitational effect of matter/energy 
possibly present in a given volume of space time according to (2.32) and (2.33). 
The space time is therefore a dynamical system, in principle in equilibrium or 
non-equilibrium conditions, which evolves as a function of time. This point in 
particular, which anyway governs its dynamics, is now concerned to justify the 
possible presence of mass in a volume 3xδ  of space time. Implement (1.1) to 
find a further result based again on a dimensional reasoning. Note the possible 
correlation 

2 , 0,G m
mc
δ

⇔ ≠
                       (3.1) 

between quantities having the same physical dimensions; m is an arbitrary mass 
confined and delocalized within the arbitrary size δ   of an uncertainty space 
time range, thus without chance of information about its exact position. This 
section concerns just the physical conditions consistent with the delocalization 
of m in an uncertainty range, in agreement with (1.2). 

3.1. Real and Virtual Mass 

Are reasonably conceivable two conditions on the correlation (3.1), here ex-
pressed as follows 

2

G
m c
δ ξ=                          (3.2) 

being ξ  an appropriate proportionality factor. 
(i) One concerns the Lorentz invariance of both definitions (3.1): for the first 

one this condition is self-evident because it is a constant, for the second one the 
condition must be purposely required. Write owing to (2.35) 

2 2, 1 ;v c
m m m
δ βδ δ β

β
′

≡ = = −
′

  

 
since both δ ′

  and m′  are Lorentz transformations of δ   and m, it must be 
true that 
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, .mm δ βδ
β
′

′= =                       (3.3) 

With the given definition of β , for 0v =  clearly m m′≡  and δ δ′ ≡  ; 
i.e. m is the v dependent dynamic mass corresponding to the rest mass m′  de-
fined in (2.33), whereas δ ′

  is the space contraction of the proper length δ  . 
It is significant that (3.3) confirms the result (2.36) obtained via (2.35). 

(ii) Consider now the limit of (3.2) for 0m → ; it is reasonable to expect that 
this limit is nothing else but the definition (1.1) of empty space time, i.e. 

0 02 20 0
lim lim , .
m m

G G
m c c
δ ξ ξ ξ

→ →
= = =



                (3.4) 

This limit ensures the consistency of the definitions (3.1) in agreement with 
the idea of m delocalized in δ  : if no particle is delocalized, the range size is 
null. This suggests putting by dimensional reasons 

( ) , , 0o o
pmv v m m m m

v nv
δ

ξ δ δ
δ

= + = + = = ≠



  



      (3.5) 

so that the second (3.5) reads ( )2
om p np cδ=

 

  thanks to (2.29) and thus 

2 ,o
pm c

n p
δ

= 



                        (3.6) 

whereas (3.2) reads 

( ) 2 .o
Gm m v

m c
δ δ= +


                      (3.7) 

Note that owing to (2.35), (2.26) and (2.27) 

, , 2 ;
2 2

r r n
mv p n

λ λ δ λλ δ λ
β β β

′ ′
′ ′ ′ ′= = = = =

π
=π

π ′
         (3.8) 

the last step of the chain means that whatever λ′  might be, it is possible to de-
fine a corresponding rδ ′  that must identically fulfill the condition (2.26) being 
inessential the primed notation. Hence (3.7) yields 

( ) 2 .o
r Gm m

n c
δ ′

= +
′

                      (3.9) 

On the one hand multiplying and dividing the right hand side by om m  (3.9) 
yields 

2 1 1, ,o

o

m mc G
n r m m
µ µ

δ
= = +

′ ′
                (3.10) 

i.e. still holds a Newton-like law but with positive sign, yet in principle still 
consistent with (2.11). On the other hand, examine (3.9) that holds in general 
for any 0om m≠ ≠  and takes the meaning of quantum vacuum fluctuation 
consisting of the presence of two particles of masses m and om . Regard now 
(3.9) in the particular case especially important where these masses form a 
virtual pair particle/antiparticle. Specifying then with more expressive notation 

*
v vom m m m+ = + , where the subscript v stands for virtual, write thus 
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( ) ( )
4

* * 2v
v v v v v2 , , P

P

G cr n m m n m m c F
F Gc

δ ′ ′ ′= + = = + =


     (3.11) 

via the Planck force PF . Then 

v
v v

v v

, ,

, ;

P
r

P

Fn n h n n np p t n
r n n n F r

n n n

δ δ
δ λ δ δ

δ

′= = = = = =
′ ′ ′ ′ ′ ′

′ ′= ≠

  

 
 

     (3.12) 

the last position holds because n′  is due to the integer number of wavelengths 
consistent with 2 rδπ ′  according to (2.26), whereas n is clearly due to (1.2). In 
turn, v vnδ ′=   implies the rising of a random number n′  of pairs of particles 
and antiparticles with total energy vn′  allowed to exist during the time 
lapse vtδ ; it is significant that (3.1) implies n′  fluctuation driven couples 
of particles/antiparticles. Examine now the chance of defining as a further 
particular case of (3.9) the lower limit value of rδ ′ . Consider first to this pur-
pose 1n n′ = = , so that 

( )=1 2 ;n o
Gr r m m
c

δ δ ′= = +                   (3.13) 

moreover it is possible to infer from the second (3.5) 

( )
min 2 , , 1, ,oc

oc
mo

m m G
r m n v c

c cc
δ

δ
+

= = = = =
 

 

     (3.14) 

where the last position implies consequently δ = mo  by definition whatever 

ocm  might be. Eventually, since m and om  are arbitrary, om  in particular has 
been defined by dimensional reasons only, it is also possible to consider 

0ocm m= ≠  for the simple reason that nothing hinders this position; in this last 
particular case 

min 22 , 1, , ,bh oc
Gr r m n v c m m
c

δ δ≡ = = = =          (3.15) 

whereas the last position requires 

.mo
oc

mo mo

phm m
c c cλ

= = = =




                (3.16) 

Consider now the condition (3.5) to highlight when m can be assumed in fact 
confined in the range size δ   during an arbitrary time range tδ : this re-
quirement implies that v tδ δ≤



 , which must hold for both components v±


 
of the displacement velocity vector v in principle necessary to introduce the de-
localization of m along δ  ; if tδ  is defined in R fixed on m, then the con-
finement condition requires actually 2v tδ δ≤



  to allow at least one chance 
for m to remain really confined when displacing at rate v



 towards either 
possible direction from the middle coordinate of δ  . Thus under the condition 

2 2
G

mc
δ

=
                          (3.17) 

the initial mass-free space time 2G c  includes now m during the time range 
tδ  whatever its v±



 might be. This explains the link between 2 v tδ δ≥


  
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defining minrδ  and the factor 2 defining bhrδ . Hence the confinement condi-
tion of m in the given bhrδ  implies (3.16), which in turn holds even for photons 
because ocm  is defined via c. Note eventually that (3.16) takes an interesting 
form writing 

2

2 4 2

22 2 1, , ;
2

bh bh
bh bh P bh

P mo

h hmG mc G hr m h F r
F cc c c
ν ν

δ ν δ
λ

= = = = = =  (3.18) 

via the Planck force. So bhrδ  takes the form of a zero point energy of a mass m 
oscillating with frequency bhν  corresponding to (3.15) in its confinement range 
δ  . 

3.2. Invariant Equations of Special Relativity. 

Rewrite Identically (1.3) as 

2 3

2 2 ,G v length
c v time

=


                     (3.19) 

being v c≤  the modulus of an arbitrary velocity allowed in the space time 
containing mass, concerned in the previous subsection. In principle v could be 
the group velocity (2.25) of a wave packet propagating through space time vo-
lume filled with dispersive medium, or it could be the expansion rate of the 
boundary of space time volume compatible with (2.14), or eventually it could 
even be simply the velocity of a body of matter moving through the space time; it 
depends on how is defined v. To examine this point regard v as a possible veloc-
ity allowed in the space time, whatever it might represent in any reference sys-
tem, and consider that (3.19) identically rewritten as 

2 3 2 3

2 2 2

G c length c x
time tv v v

δ
δ

= =


                 (3.20) 

describes the swelling of the early space time volume introduced in (1.3), here 
indicated as 3xδ  along with the factor 2 2c v . This equation is justified by 
(2.13), (2.14), (2.2) and (2.9) and will be further implemented also in the next 
subsection 3.5. Rewriting explicitly (1.1) as a function of v one finds therefore 

3
2 2

2 , ,G x v c
tv δ

∆
= ≤



                   (3.21) 

where 
2

3 3
2 ;cx x

v
δ∆ =                        (3.22) 

accordingly the identity (3.19) becomes compliant with the space swelling rate 
during the time lapse tδ , whereas (2.1) yields 

2 2 3
2

2 2 2 .v G v x
tc v c

η η
δ
∆

= =


                   (3.23) 

In principle this result is compatible with (2.4) and (2.14). A corollary of 
(3.22) follows starting again from (3.21) to write 
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2

2 2 2 2 2 , , ,s
s

G G G t sv v
t tv v v s

δ δ δ
δ δδ δ

= = = =
+ + 



   



         (3.24) 

being sv  and v


 arbitrary velocities. Let be now 2 2sδ δ+   such that by defi-
nition 

2 2 2 2 ,o os c tδ δ δ+ =                      (3.25) 

being osδ  and oδ   specific values that for os sδ δ→ ±  and oδ δ→ ±   ve-
rify (3.25). Hence 

2
2 2

2 2 2 , :o
o

G G t v c
v c t

δ
δ

= ≡
                     (3.26) 

if (3.25) is true, then (3.26) is nothing else but the initial definition (1.1) of space 
time itself, already found in (2.47), whereas it appears that either 2

osδ  or 2
oδ   

of (3.25) tend to the invariant interval of the special relativity. In other words, 
the step from (3.19) to (3.20) introducing the space time swelling implies the in-
terval invariant rule. Consider indeed (3.22); Appendix B shows how to obtain 
from this equation the invariants 

2 2 2 2 2 2 ,c t c t t tδ δ δ δ δ δ δ δ′ ′ ′ ′− = − =               (3.27) 

according which trivial manipulations yield, as shown in (3.3), 
2 2

2 2 2
2 2 21 , .

1
v tt
c v c

δδ δ δ
  ′

′= − =  − 
 

             (3.28) 

The algebraic steps show that Lorentz transformations and invariant interval 
in inertial R and R', here introduced for simplicity via a one dimensional ap-
proach but immediately referable to a 4D formulation, are intrinsically inherent 
the space time definition (1.1) yield again space contraction and time dilation of 
special relativity. Equation (3.27) is particularly important because it is shown in 
[13] that the invariant interval is the conceptual basis of the special relativity, 
whence the chance of obtaining in particular (3.28). 

3.3. Relativistic velocity 

The results hitherto achieved compel explaining the concept of velocity. Multip-
lying both sides of (2.10) by 3v c  one finds by consequence of (2.9) and ac-
cording to (2.29) 

3 3 2 2

2 2 2 , ;v v v c v p vp
t h hc c hc c

δ
δ

π π π
= = = =

  

          
 (3.29) 

it follows thus 

3

2 , ,v v hp
tc

δ
λ δ λ

= =
π                    (3.30) 

whereas it is possible to define 

3

2, , 2n v v n r n
r t rc

δ δ λ
δ δ λ δ

π
π= = =              (3.31) 

that allows the last equation. Once more it is worth emphasizing that the inva-
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riant (3.29) has been obtained along with the third crucial equation. Therefore, 
merely examining the definition (2.8) of acceleration one finds quickly results 
already obtained in the Equations (2.29) to (2.35) starting from the three (2.9). 
But now there is more. Rewrite the first (3.31) as 

2 , ,r
r

nc t nc v v rv
r v tc
δ δ δ

δ δ
= = =                  (3.32) 

which yields according to (2.22) 

2
rv v c

vnc δ
=                         (3.33) 

that reads identically 

21 1rv v c v c
v vnc

δ
δ δ

−
− = − =

 
and thus, taking the reciprocals of both sides, 

2

1 ;
1 r

v
v cv v nc
δ

δ
=

−−  
hence 

2 .
1 r

v c v
v v nc
δ δ−

=
−

                     (3.34) 

First of all eliminate n; it could be put equal to 1 by definition, yet it is easy to 
follow a general procedure valid for any n. With the positions 

, , ,r
r

v v c vV V C V
n n n n

δδ= = = =            (3.35) 

(3.34) reads 

2 .
1 r

V C V V C C
V V c
δ δ δ−

= = − +
−  

Trivial manipulations of this equation yield 

( ) 2

1 1
1 r

V C C
V V c

δ
 

− − = 
−   

i.e. 

( ) 2

2 .
1

r

r

V C V V c
C

V V c
δ −

=
−

                   (3.36) 

Let us elaborate further this result in order to obtain a significant equation; is 
useful in particular the position 

( ) ( )2 ,r
r

V VV C V V
c

δ ξ− = −                  (3.37) 

where ξ  is arbitrary proportionality factor. With Vδ  in principle arbitrary as 
well because of the uncertainty, as previously stated, this position is allowed. 
This step appears important rewriting (3.36) via (3.37) as 
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( )
2 ,

1
r

r

V V
C

V V c
ξ−
=

−  
which in turn yields 

* *
2 ,

1
r

r

V V CV V
V V c ξ
−

= =
−

                  (3.38) 

where the resulting *V  is still an arbitrary velocity. This formula is actually well 
known, as it relates in special relativity rV V−  to *V ; it is evident that in the 
particular cases where V c=  or rV c=  then *V c= , i.e. the sum of c plus any 
velocity returns always c. 

This reasoning is not at all redundant repetition of a result already known: 
(3.30) and (3.31) are quantum properties obtained contextually to (3.29) that is 
the invariant definition of relativistic momentum. Hence the reasoning implies 
merging of quantum and relativistic results concurring to the definition of c as 
an invariant limit velocity: this crucial statement of relativity is here required by 
(1.2). Note that (3.38) has been obtained via Vr and V, which are arbitrary like 
the respective vr and v but leave out n: i.e. the quantization is not essential to in-
fer (3.38), as it has been emphasized while obtaining (3.36). On the one hand it 
explains why the relativity was formulated without suspecting the underlying 
quantization, which indeed appears hidden in (3.35) in the present model. On 
the other hand it means that the positions (3.35) are not merely formal, as it is 
evident rewriting (3.33) as 

2 2 :r rv v V V C
Vnc c δ

= =                      (3.39) 

the problem of (3.33) is that the left hand side vanishes for n →∞  incompati-
bly with the right hand side that never vanishes because v cδ ≤ . Owing to 
(3.35), instead, at the right hand side of (3.33) appear just the velocities leading 
to the result (3.38) of actual interest without contradicting the arbitrariness of n. 

So (3.38) completes the conclusion (2.18), where a well known quantum in-
equality was inferred just from a physical property of c; here also this property of 
c appears as a further corollary of (1.1) and (1.2). Once more, as already shown 
in further papers [4] [11] [12], relativistic and quantum principles appear in the 
present approach as harmonically coexisting concepts without “ad hoc” hypo-
theses. 

4. Euler-Lagrange Equations and Gravitational Potential 

Start from (1.2) that yields 

2 ;n xx p p
pp

δδ δ δ
δδ

= − = −


                     (4.1) 

also, recalling the considerations of subsection 2.6, let us define 

, , .x x p p
t t t
δ δ δδ δ δ δ δε δε
δ δ δ

= − = =              (4.2) 
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Note now that (4.1) can be rewritten as 

.x px p x
p p

δ δδ δ δ
δ δ

= − = −


                     (4.3) 

The step from (4.1) to (4.3) is not trivial. As anticipated in the subsections 2.6 
and 2.7, the chance of exchanging the place of xδ  and pδ   fulfills the specific 
concept of derivative in the physical frame of the quantum uncertainty; in fact 

xδ   is mere ratio of arbitrary ranges finite by definition, to be regarded as inde-
pendent differentials possibly but not necessarily tending both to zero. This 
subsection aims just to show that this way of intending the quantum derivative is 
physically sensible. Multiplying now both sides of the second equality (4.3) by 

xδ , one finds 

2 .px x x
p

δδ δ δ
δ

= −


                       (4.4) 

Define now a function f consistent with this result, i.e. such that fδ  fulfills 

( )2 , , , , ;px x f x f f x x p p
p

δδ δ δ δ
δ

= = − =


              (4.5) 

in turn (4.4) and (4.5) are consistent with the positions 

, .f p fx x
x p x

δ δ δδ δ
δ δ δ

= − =




                  (4.6) 

As concerns the first equation, the first (4.2) yields 

,fx
t x
δ δδ
δ δ

=
  

whereas (4.4) reads with the help of the second (4.6) 

.p fx x
p x

δ δδ δ
δ δ

= − =




 
Hence, merging the last two results, one finds 

.f f
t x x
δ δ δ
δ δ δ

=


                        (4.7) 

According to (4.4) the function f has physical dimensions length2/time and 
fulfills the same kind of equation of the Lagrangian   of a physical system; in 
fact f is proportional to   a multiplicative constant 3c G  apart. Since 

3f fc G′ =  is an energy, this is in principle just the sought Lagrangian. Yet the 
way to obtain this equation via the proportionality constant does not require the 
condition ( )kin kinE E x=   and ( )pot potE E x= . 

The Euler-Lagrange equations are well known; yet the non-trivial fact is that 
they have been inferred here as corollaries of (1.2) and (1.1), which are the con-
ceptual root of both relativistic and quantum physics. Moreover this result sup-
ports the present way to regard the concept of derivative as a ratio of uncertainty 
ranges. Follow now two checks of the present way of reasoning. 

(i) The classical Newton law inferred in the section 2.2 seemingly does not 
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account for the finite propagation rate of any perturbation or interaction. Actually 
such information is explicitly available writing 

2 2 2 2 2 ,

.

n t xp x x t x c t s x
x x x x c x c

s c t

δεδ δε δεδ δεδ δ δ δ δ δ δ δ
δ δ δ δ δ

δ δ

= − = − = − = − = −

=




    

  (4.8) 

The force defined in this way is related to an energy ′ ′′≤ ≤   , vanishes with 
a 2xδ −  law, is proportional to the deformation rate 0xδ ≠  of the space time 
range xδ , is positive or negative depending on whether xδ  swells or shrinks 
as a function of time and vanishes for 0sδ → ; i.e. the force is defined within 

0sδ ≠ . It reasonably means that a time range tδ  is necessary in order to allow 
its propagation at distance sδ , outside which the force in null. The fact that 

sδ  has been defined via c means the carrier of the force must be a virtual pho-
ton or a graviton or anyway a massless particle propagating at speed c. Note that 
instead the classical 2

1 2Gm m   has the form of a force propagating instanta-
neously because it is based only on (2.9) and (2.10) without implementing (1.2). 
Actually (2.11) avoids itself this error because it is expressed via the uncertainty 
range δ  , not via the deterministic  ; since (1.2) involve inherently tδ , (2.11) 
could have been written itself as ( )1 2Gm m p tδ δ δ

  

  thus involving anyway 
the time range tδ



 governing its propagation. This holds of course for any 
force. As concerns the gravity note that also now it is possible to repeat for (4.8) 
the considerations introduced for (2.11): 3 2s mass length timeδ δε −= × × , i.e. 
from a dimensional point of view 1 2s xc mass Gδεδ δ − = × . Hence, whatever the 
actual form of the function 1s xcδεδ δ −

  might be, it is reasonable to regard its 
series expansion whose first order term is a constant; if so, then neglecting for 
the moment the higher order terms, it is possible to write 

2
1 2

2 2 .
m mmp G G

x x
δ

δ δ
= ± + ⋅⋅⋅ = ± + ⋅⋅⋅                (4.9) 

This formula is formally similar to (2.11), yet it incorporates the idea of a non 
instantaneous long term force that worried Newton himself. The form of the 
higher order terms will be concerned later, see next (5.114). 

(ii) Consider eventually that (2.12) yields with the help of (1.2) and (4.2) 
2

2 2 2

2 2

1

1 1

p p vF n vF x vF tv
p p p np p t t

x F x
t t

δεδ δεδ δε δ δ
δ δ δδ δ δ δ

δεδ δ δ
δε δεδ δ

 −
= = − = − − = − + 

 
  = − + = − +      



 








 
where 

, , , .nF p v t F
t

δ δ δ δε δ δε
δ

= = = =





            (4.10) 

In summary it is possible to write this result as 
2

2, 1 ,xv
x t

δεδϕ δδϕ
δ δεδ

 = − = + 
 



                (4.11) 
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where ϕ  is a new function having physical dimensions velocity2; with vector 
notation the first equation reads 

.ϕ= −∇v                         (4.12) 

This definition, inferred here as a corollary, was taken in [13] as a basis to in-
fer special and general relativity; the sign of δϕ  depends on whether 

1δε δε −


 . Moreover (4.11) also reads according to (2.8) 

21 , ,x x
c xv a a

t
δεε δ
δε δ

 = = − + = 
 







              (4.13) 

where xa  has physical dimensions of acceleration. It is immediate to acknowl-
edge that ϕ  of (4.11) is the definition gravitational potential [13], which will be 
more specifically concerned in the next subsection 5.5. Also, v  is not simply 

xa  but includes a further addend xa δε δε−


. 
These concepts, more systematically examined in the next sections, have been 

preliminarily introduced to show the validity of the definition (1.1) of space 
time, which will be implemented next according to (1.3). 

Space Time Curvature 

Consider (3.20) under the particular condition where the velocity 2v  can be 
expressed as follows 

( ) ( )2 , , , ,v a v v t tδ δ δ δ δ δ= = =                (4.14) 

being a acceleration by dimensional reasons. Hence (3.20) yields 

2 2 2 2

1 1 1 .G G G G G a G aa
a a a av a v v

δ δδ δ δ δ δ
δ δ δδ

        = − = − = −        
        

     

  

 

Summarizing therefore this result as 

2 2
1 2 1 2

1 1 1 1 1, ,G G a
av v

δδ δ
δ δ δ δ δ
    = − − = −    

    

 

    

     (4.15) 

by definition of uncertainty range ( ) 1δ −
 , there are in principle three chances. 

The first one is that 

02
0 1 2

1 1 , , 0,G G a a a
av

δ δ
δ δ
   = − ≡ =  

   

 

 

         (4.16) 

with notation emphasizing that a  is a constant. Moreover are also possible for 
(4.15) 

2 2
2 1

1 1,G G a
av v

δδ
δ δ

  = − = 
 

 

   
and 

2 2
1 2

1 1, .G G a
av v

δδ
δ δ

  = = − 
 

 

   
Clearly a  is the acceleration describing the change of space time swelling 

rate as a function of time; since the time is inherent the physical dimension of 
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G  appear natural the positions (4.14). In the particular case (4.16) where a  
is constant, it is possible to write 

*
* * *0

* *
0

, , ,
a vv v t

av t
δδ δ
δ

= = =



              (4.17) 

whereas (4.15) becomes 

2
0 1 2

1 1 .G G
av

δ
δ δ
   = −  

   

 

 

                 (4.18) 

Both 1δ   and 2δ   are arbitrary, in particular these boundaries of the range 
( ) 1δ −
  can be positive or negative; the resulting sign of mean that for any phys-

ical reason δ   expands or shrinks with constant acceleration 0a  as a function 
of time. Implementing again the arbitrariness of range boundaries, the last equa-
tion reads 

2 1

1 1 1, ,δ
δ δ δ
  = ± = ± 
   

                 (4.19) 

being   the Laplace-like curvature radius of space time with principal curva-
ture radii 1δ±   and 2δ±  . In general the signs of these radii depend on the 
specific problem [14], e.g.: for a liquid droplet in a gaseous environment are 
both positive, for a gas bubble in a liquid environment both negative, for a liquid 
meniscus between solid cylinders with saddle-like geometry one positive and 
one negative. So it is not surprising that in principle all chances have been found 
in the present general approach starting from first principles as concerns the 
space time swelling. 

It is significant anyway that the concept of space time curvature is definable in 
a natural way even in the present quantum/relativistic context through the con-
cept of uncertainty range. It is instructive in this respect the crucial role of (1.2) 
in linking quantum and relativistic points of view. Consider two remarks. 

(i) Consider (1.2) to express in particular radial range size rδ  and conjugate 
radial momentum range size 

.
r

nr
p

δ
δ

=
                         (4.20) 

Specify this equation as done in (2.24) and (2.25) i.e. implementing the De 
Broglie definition r rp h λ=  of radial momentum, corollary itself of (1.2) [15]. 
Accordingly write 

( ) ( )
2 ;

1r r r

nh n nr
p p h

δ
δ δ δ λ

= = =π               (4.21) 

then also consider that by definition 1
rδλ−  is nothing else but 1 1

r rλ λ− −′ ′′− , 
whatever the range boundaries rλ′  and rλ′′  might be. Hence (4.21) turns into 

1 12 , ,
1 1r r r r r

nh n nr
p

δ
δ λ λ λ λ

= = = = −
′ ′′ ′ ′′−

π 


         (4.22) 

with notation emphasizing again that   is clearly the Laplace curvature radius 
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according to the reasoning carried out to infer (4.19); this in turn supports the 
condition (4.14). 

(ii) In general the space time size change rate xδ  , as defined in (4.2), is re-
lated to the rising of a force field pδ   within xδ  itself; so write via (4.10) 

0, 0 :x p p
t
δδ δ δ
δ

=                     (4.23) 

the sign of the force field pδ   depends on whether xδ  swells or shrinks for 
any physical reason, whereas the force field is null if x constδ = . Then, com-
bining this result with the second (2.9) one finds 

2
2

2 2 2

n m c nm c m c xx x force
t np p n
δ δδ δ
δ δ δ

= − = − = − = −


 

  

     
 (4.24) 

that in turn reads 

( ) 2 1
2 2 2

1 1 ,

= ;

x x xnforce
t x xx x x

n
t

δ δ δ δ
δε δε δε

δ δ δδ δ δ

δε
δ

   = − = − − = − − = −   ′ ′′  






  (4.25) 

the last equality is legitimated in analogy with (4.19) once having defined by di-
mensional reasons 1 2

2x x xδ δ δ−′ =  and 1 2
1x x xδ δ δ−′′ =  whatever 1xδ  

and 2xδ  might be. The interesting fact is that in the second (2.9) the concept of 
force was directly related to that of acceleration c  , here the same force is re-
lated to the concept of curvature via the space time ranges xδ ′  and xδ ′′  re-
placing the acceleration. The only possible conclusion is that Newtonian concept 
of force and relativistic concept of space time curvature are equivalent in de-
scribing the concept of force. The Einstein intuition becomes corollary of the 
quantum uncertainty. 

5. The General Relativity as a Corollary 

Some relevant concepts of general relativity are quoted in this section to show 
how to generalize the approach hitherto followed for the special relativity. Are 
examined in particular further significant implications of the quantum uncer-
tainty ranges, to show how both special and general relativity contextually merge 
in a unique non-local and non-real conceptual frame. Some hints in this respect 
have been early examined in [16]; further topics are here reminded along with 
new considerations just to point out what have to do these typical concepts of 
quantum theory with the gravitational field. Indeed the problem of quantum 
gravity involves non only the quantization of this field according to the distinc-
tive concept of superposition of quantum states, but also the inherent concepts 
non-reality and non-locality. 

5.1. The So-Called “EPR Paradox” 

It has been shown in the subsection 2.8 that the wave formalism is a corollary of 
(1.2) together with the relativistic properties inferred in subsections 2.5, 3.1 and 
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3.2; these results make in principle the present model compatible with the stan-
dard answer of wave quantum mechanics to the paradox. Yet, although it would 
be legitimate to skip additional comments to the ample literature already exist-
ing on this topic, it is instructive to emphasize the distinctive contribution pro-
vided to the paradox by the present model based on the quantum uncertainty. 
Deserve attention the following crucial points of this theoretical framework: (i) 
the concept of uncertainty ranges replacing the local dynamical variables is in 
principle compatible with the concept of entanglement; (ii) the difficulty of su-
perluminal distance is bypassed, because the deterministic concept of distance 
between physical objects is unphysical; (iii) the concept of non-locality reduces 
to that of unpredictable randomness of particles confined and delocalized in 
quantum uncertainty ranges and excludes any kind of local information; (iv) by 
consequence of (iii), the concept of “non-locality” is strictly related to that of 
“non-reality”. 

Consider two particles, whose delocalization is in principle possible either in 
their own independent uncertainty ranges or in one shared uncertainty range. In 
the first case the particles in 1xδ  and 2xδ  are in general non-interacting, e.g. 
any physical reason that deforms 1xδ  like in (4.23) does not necessarily affect 

2xδ , so that the force field 1pδ   in 1xδ  does not imply 2pδ   in 2xδ  too: 
the particle in 1xδ  experiences a force, whereas that in 2xδ  does not, i.e. the 
particles do not interact. In the second case a unique delocalization range xδ   
also results from the way the particles interact, even if no external perturbation 
causes or affects pδ  : this is the typical case of (3.12) where pairs of virtual par-
ticles with opposite charges and spins are generated by vacuum energy fluctua-
tion. First of all, the modulus v of velocity of any particle in a given point of 
space time cannot be specifically local velocity because are missing by definition 
both the space coordinates 1x  and 2x  from which to which a particle moves 
and the time coordinates 1t  and 2t  defining the displacement time lapse; it 
follows that it is unphysical to define velocity and distance and thus superlumin-
al distances. In fact two particles confined in xδ  are neither far away nor close 
each other, they simply are in xδ . This agrees with the Aharonov-Bohm effect 
[17] simply acknowledging that one particle is neither “here” or “there”, rather it 
is simply everywhere. This holds even though the particles are delocalized in 
different 1xδ  and 2xδ : as the boundary coordinates of uncertainty ranges are 
arbitrary, certainly the impossibility of determining distances and velocities 
holds identically also for two particles in their own uncertainty ranges. Hence do 
not exist “spooking actions at a distance” but rather “actions at a spooky dis-
tance”: once having renounced to the classical determinism and accepted (1.2) 
there is no way to distinguish the behavior of particles far apart or close each 
other confined in a given delocalization range, whatever their interaction me-
chanism might be. Particularly interesting is the former case of two entangled 
particles born within a unique uncertainty range where, for example when one 
γ  photon decays by interacting with a nucleus or via vacuum fluctuation, e.g. 

https://doi.org/10.4236/jamp.2021.97114


S. Tosto 
 

 

DOI: 10.4236/jamp.2021.97114 1751 Journal of Applied Mathematics and Physics 
 

[18] [19]; in fact the latter chance found in (3.9) reasonably agrees with (2.2). 
Accordingly, in the conceptual frame based on (1.1) and (1.2) the EPR paradox 
shouldn’t even be formulated: the present model is inherently non-local by defi-
nition. Moreover the agnosticism of (1.2), not purposely invoked here but as-
sumed since the beginning as the unique leading idea of the present physical 
model, implies a conceptual gap in (3.1) between elusiveness of (1.1) and reality 
of (3.9); the former is mere dimensional definition of the framework allowed for 
latent events, the latter made feasible by the measure process breaks the latency 
of possible events. Since nothing is “a priori” known about vm  and *

vm , e.g. 
number of pairs or energy and lifetime of pairs and so on, the present model is 
inherently also non-real by definition. In other words the physical agnosticism 
implied by the concept of uncertainty as hitherto exposed, corresponds to the 
non real essence of the quantum world before the experiment; hence one must 
accept the idea that also the relativistic properties hitherto inferred are subjected 
to the same non-weird but logical consequences of (1.2) without need of post-
ulating any “collapse” of wave function into a well defined quantum state. It 
means that n introduced in (1.2) and next appearing in (3.9) remains arbitrary 
and undefinable until when the measurement converts it into a specific obsn ; in 
turn, the wave formalism allows calculating the probabilities inherent the su-
perposition of allowed states. Consider now the orientation of the possible spins 
of the particles with respect to an arbitrary direction. When measured, their spin 
orientation must yield a total angular momentum equal to zero like that of the 
empty space time (1.1) before the vacuum fluctuation (3.11). Physical informa-
tion in this respect is provided only by the angular momentum conservation law, 
which however presupposes a measurement process. In general this is a pertur-
bation action that affects the quantum state of any particle. In particular, being 
both particles in the same xδ , the measure process perturbs the system of en-
tangled particles wherever they might be, not either particle only. If for any 
physical reason the shared xδ  is modified, then the consequent xδ   implies 

pδ   and thus a force field in xδ  that in turn perturbs the couple of particles. 
Is clear at this point the connection of the present reasoning with the possible 
spins of vm  and *

vm  introduced in (3.9); in a certain sense the concept of en-
tanglement is here stronger than usually intended once having removed the idea 
of “superluminal” or relativistic “luminal” distance, no longer conceived as sep-
arate and mutually excluding distinguishable situations. With the language of 
wave formalism, the quantum state of two entangled particles is a superposition 
of luminal and superluminal states. Nonetheless the conclusion is the same: the 
most controversial premise of the entanglement, the simultaneous perturbation 
linking particles infinitely apart via spooky action, is here automatically re-
moved. The answer provided by the total agnosticism of (1.2) can bypass also the 
simultaneity inherent inherent entangled pairs, as proposed by the mere wave 
formalism, and suggests a further implication. The EPR paradox, conceived to 
demonstrate the inadequacy of wave mechanics, demonstrates instead the in-
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adequacy of the deterministic metrics that fail explaining via tensor calculus the 
correlations between entangled particles; the experimental data show indeed that 
the relativity needs the “external” contribution of the wave formalism introduc-
ing the concept of entanglement. The present model explains both relativistic 
results and wave formalism while removing in principle the paradox itself. This 
is because the total agnosticism of (1.2) makes the relativity non-local and 
non-real itself. On the one hand the concept of non-locality, unpredictable ran-
domness of particles delocalized in quantum uncertainty ranges excluding any 
kind of local information, is in turn related to that of “non-reality”: in fact this 
idea does not violate any relativistic principle, apart from its out of place local 
determinism. On the other hand it is not crucial whether the spins of entangled 
particles are actually aligned or counter-aligned inside xδ  before the correla-
tion experiment, rather it is only required that they are in fact measured coun-
ter-aligned after the correlation experiment. In this sense the experiment creates 
the reality fulfilling the angular momentum conservation although starting from 
any undefined and undefinable state, be it wave/corpuscle duality or dead/alive 
states of Schrödinger’s cat or luminal/superluminal distance. Eventually appears 
clear the task of the present section: to find relativistic results without starting 
from a deterministic metrics, whatever it might be. To confirm that all of these 
considerations hold also for the relativity, the next subsections concern a few se-
lected topics purposely chosen to emphasize the role of the quantum uncertainty 
in the general relativity: the latter is in fact a corollary of the former. The most 
important point in this respect is the equivalence principle, which is soon ex-
amined first in the section below. 

5.2. The Equivalence Principle 

Two relevant results previously obtained, Equations (2.9) to (4.25), address di-
rectly to Einstein’s equivalence principle, as it has been explained through the 
simple reasoning early concerned in [9]: the reasoning is so crucial and short to 
deserve being sketched here for completeness. Think a space time uncertainty 
range 2 1x x xδ = −  with time dependent size, and two observers sitting on the 
boundary coordinates of this range. Let for example the lower boundary 

( )1 1x x t=  be defined with respect to the origin of an arbitrary reference system 
R, i.e. it defines the “position” of xδ  in R at a given time, whereas 2x  is a 
fixed coordinate that defines the “size” of xδ . Although neither information is 
actually definable and accessible, it appears in principle that if ( )1x t  is subjected 
to change as a function of time for any physical reason, then the size change rate 

xδ   of xδ  is related to the rising of a force acting on a particle possibly deloca-
lized in xδ ; indeed (4.23) and (4.10) predict a local force field p  whose strength 
falls within a range of forces 2 1p p pδ = −   . More specifically, is interesting the 
following chain of equations inferred with the help of (4.2) and (2.9) 

2 2

2 2 :n x m c x x xx p ma m c force
p p np n

δ ε δ δ δδ δ
δ δδ

= − = − = − = − = −


 

 

    (5.1) 
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hence, owing to (4.2), 

2

1 ,xforce n n p
t x tx

δ δ δ δ
δ δ δδ

 = = − = − 
 



               (5.2) 

i.e. the force field p m cδ =   due to the space time deformation rate xδ   is 
repulsive or null or attractive depending on 0xδ   respectively. The chances 
of ( )x tδ  are swelling, shrinking, remaining constant. Also, as 

1 ,cm n
t x
δ
δ δ

 = −  
 






                     (5.3) 

(5.1) yields with the help of (1.2) 
1 , ;δ δδ δ
δ δ λ λ
 − = = = = = 
 





   
 m

m

m c t m c t t n
x n n

   

the last position has been explained about (2.22) when commenting the eq 
(4.23). The fact that force of (5.2) results equal to n  times the left hand side of 
the chain shows the quantum nature of this force. Eventually the right hand side 
of (5.3) shows the geometrical essence of an attractive force, indeed 

2 1

1 1 1, δ
δ λ δ δ δ

−  = = = − 
 

 
 

t x x x
 

in agreement with the second (2.19). Clearly   is the space time Laplace-like 
curvature radius corresponding to the attractive gravity force −  of (2.11), as 
explained in (4.19). 

Once having expressed the deformation of space time in terms of range size 
change rate xδ  , return now to the Einstein equivalence principle considering 
for simplicity the change of ( )1x t  only with constant 2x ; this is enough to ac-
count for the rising of a force field inside xδ  and highlight the reasonable con-
clusions of two independent Newtonian observers sitting on either boundary of 

( )1 2x x t xδ = − . The key points are: (i) the observer 1 sitting on 1x  experiences 
an acceleration since his variable coordinate is defined with respect to the origin 
of R, i.e. this observer moves far from or towards to the origin of R during the 
deformation of xδ ; (ii) the observer 2 feels anyway a force field inside xδ  al-
though he is at rest in R. 

Therefore the observer 2 concludes that an external field is acting on xδ , 
whereas the observer 1 acknowledges an acceleration as if his position in R 
would be perturbed by the force field in xδ . Once more the consistent conclu-
sion is that in fact the space time deformation rate xδ   causes itself the rising of 
a force field and that an accelerated reference frame is equivalent to such a force 
field. Only for 0xδ →  the force field appears as a local classical force. It is 
immediately evident the role of the quantum uncertainty in this explanation of 
the concept of force, required by the physical equivalence of the boundary 
coordinates in lack of any discriminating information about their behavior: 
indeed pδ   is nothing else but a corollary of xδ   via (1.2), whereas the conclu-
sions of the two observers are equally valid. External gravity force and space time 
deformation driven force are indistinguishable because the properties of space 
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boundaries 1x  and 2x  of xδ  are conceptually arbitrary and unknowable by 
definition. Note that other forces of nature are directly related the interactions 
between particles, e.g. the electromagnetic interaction; the gravity force is in-
stead inferred as a property of the space time that manifests under deformation 
of the uncertainty range sizes. This short discussion allows explaining what have 
to do the Equations (1.3) and (1.4) via (1.2) with relativistic and quantum phys-
ics: the Einstein intuition and thought experiment are now corollaries of the 
quantum uncertainty. 

5.3. Quantum Angular Momentum 

This topic has been concerned in [11] [16] [20]. Here are sketched for com-
pleteness some selected reminds only, useful later. By definition the component 
of angular momentum along an arbitrary direction defined by the unit vector z  
is M z = × ⋅r p z , which reads in the present conceptual frame as  
M z δ δ= × ⋅r p z  i.e. ( )M z δ δ δ δ= ⋅ × = ⋅p z r p s  where δ δ= ×s z r . Hence 
owing to (1.2) the unit vector zδ δ δ=s s s  yields 

M ;z z sp p s lδδ δ δ δ δ δ δ δ δ
δ

= ⋅ = ⋅ = ⋅ = = 

sp s s p s s
s

       (5.4) 

here n of (1.2) has been replaced by l according to the usual notation l  to ex-
press the component M z  of M. The problem is now that the direction of z  is 
arbitrary and unknown; so repeating the reasoning with a different ′z  would be 
physically insignificant, as it does not add anything conceptually new to the giv-
en result. The only information available is that l is an integer number 0  
depending on the scalar zδ δ⋅p s . 

Let us sketch some properties of quantum angular momentum, which will be 
useful in the next subsection, assuming that L l L− ≤ ≤ ; i.e. l ranges between 
two allows values −L and L, of course arbitrary, whereas (5.4) holds for any L, 
exactly as done in (1.9). The following considerations emphasize the reasoning 
carried out in [11], although here the steps to calculate M2 differ slightly from 
that therein exposed: consider here that if M z  is the only component knowa-
ble, then M2 must be somehow related to M z  only. Note that 

( )
0

0, 2 1 , .
L L L

l L l L
l l l L L L l L

=− =−

= = = + − ≤ ≤∑ ∑ ∑          (5.5) 

The first equality follows by symmetry between the given limits of l, while the 
second equality is straightforward consequence of the first one; this explains why 
the second equation computes all l-th states of the given component as twice the 
sum from 0l =  to l L= . Since the angular quantum number l is actually a 
number of allowed quantum states likewise n of (1.2), the idea is now that M2 
should be defined by its own quantum angular number of l states and that in 
turn this latter is related to the sum of all l-th states allowed to its unique defina-
ble component M z . In other words (5.4) suggests counting all quantum states 
of M z  included in the range L L− → , i.e. summing all positive quantum 
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numbers l  of allowed states as done in (5.5); this result should be reasonably 
related to M2. To verify this reasoning consider the j-th component M j  of M, 
which owing to (5.4) and first (5.5) reads 

( ) ( )2
2

2

1M
2 1 .

3

j

j j

L
j jj

j j
l L

L L
l L

=−

+
= = +∑



              (5.6) 

Since the number of states from jL−  to jL  is 2 1jL + , it is possible to cal-
culate the average 2M j  as 

( ) ( )2
1

2

M 1
2 1

3
j j j

j

L L
L

− +
= +



                 (5.7) 

Although one component only of M is calculable, assume reasonably that in a 
isotropic space time 

2 2 2M M M ;x y z= =                     (5.8) 

taking these averages, (5.7) with equal jL  for all three components yields, as 
done in [11], 

( )
2 2 23

2 2 2
1

M M M3 1 , .j j
j

j
L L L L

=

= = = + ≡∑
  

           (5.9) 

In effect, once having written 2 2M 3 M j= , the knowledge of the three com-
ponents (5.6) reduces in fact to that of one component only; hence it is natural 
that this result coincides with that of (5.5) expressed in 2

  units and confirms 
(5.8). Follow now three important corollaries. 

(i) Implement now these quantum results considering arbitrary numbers n of 
states to describe also properties of orbiting systems. Rewrite thus (5.7) as 

( ) ( )
22 2 2

2 2

MM M3 2 1 1 , 2 1 ;
( 1)

j n n n n
n n

= = + + + =
+


 

       (5.10) 

i.e. 2 2M   consists of 2 1n +  states, from −L to L. An immediate corollary 
of the third (2.9) reads 

m c ma energyε δ δ= =




  
and thus 

2 1;energy
c mc

εδ
= ≥





                     (5.11) 

indeed 2mc  is rest energy, whereas energy denotes in general the dynamic 
energy of a physical system. Thus, since according to (2.11) 

( )

22 2
2 2 2 M, ,

2 1G
mG

L L
ε ε

δ
 

= = =  + 


  
(5.11) squared reads 

( ) ( )
22

2 2

2 1
1

M

m G L L

c

+
≥
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so that 

( )

2
2 4 .

1
c

m
mG L L

 
≥  

+ 

M
                   (5.12) 

As the minimum non-zero value of ( )1L L +  is 2, it is possible to infer 
2

2 .
c

m
mG

 
>  
 

M
                      (5.13) 

Eventually, since it is possible to regard m qδ δ δ= +    as done in (3.25), 
being q is electric charge, one identifies (5.13) as a spin effect; in an analogous way 

qδ   as a charge effect, indeed the analytical form of the Coulomb law is analog-
ous to that of the Newton law. So = +  m q  yields a new addend 2δ =q q q . 
Replace thus M zc  with 2q , as both have physical dimensions energy length× ; 
the same reasoning yields now 

2 22
2 .

c q m
mG mG

   
+ ≤   
  

M
                  (5.14) 

(ii) A further corollary concerns the spin of particles and the Pauli principle. 
Since in 2

  units ( ) ( )21 1 2 1 4L L L+ ≡ + − , it is possible to write 
2

2 2 21 1 1 1M 1
2 2 2 2

L L L      + + + = + + +      
      
  

        (5.15) 

i.e. 

( )
2

2 2 2 2 21 1 11 , , M .
2 2 2

J J J L L   = + = + = + + +   
   

      (5.16) 

Note that the left hand side of (5.15) defines an angular momentum in fact al-
lowed, so   in (5.16) is a half integer angular momentum due to 2 , which 
is clearly by analogy with l  the component along an arbitrary direction of a 
new half integer angular momentum. In [9] is concerned the spin of particles 
more in detail starting from (5.15). Here this topic is not further concerned for 
brevity, e.g. to show why actually J L S= ± ; it is interesting instead to remark 
that the Pauli principle follows as a corollary of (5.16) [20]. This interpretation 
of the Pauli principle is a crucial consequence of the fact that l and L are not 
mere quantum numbers, but numbers of allowed quantum states likewise n of 
(1.2). 

(iii) Consider the following definition of M z , which reads 

0 0 :mv m cζ δ ζ δ= =                      (5.17) 

both equalities express actually the component of angular momentum with ζ  
accounting for the sin and cos factors. Then owing to (2.35) and (3.3) the second 
equality reads 

2 2
0 0 0

0 0 0, , ,
m c m c

m c
c c

βδ δζ δ ζ ζε δ βδ ε
β β

′
′= = = = =




   

 
in agreement with (3.3). Hence 
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2 2
1

2,c e e c
e

ζε ζ α
δ δ βδ

−= = = = =
′ ′

 

  

             (5.18) 

and thus 
2 2

,P
P

c e e eeζζε
δ δ δ α

= = = =
′ ′ ′



  

               (5.19) 

by definition of Planck charge. The first equality (5.17) yields 
2mv cmv

e ev
δζ δ= =


  

 
so that 

2

, ,ev mv
c e

δ ζδ
δ

′′= = =
′′

 



                 (5.20) 

having merged ζ  with the arbitrary range size of δ  . This simple reasoning 
has defined via M z  the fine structure constant, the Coulomb law, the magnetic 
potential   and the definition of Planck charge. 

5.4. Black Hole 

Consider (3.2) rewritten according to (2.20) as 
2

2 2, , ,m
Gm n cv n v

mc
δ

δ ξ
= = = =

 





             (5.21) 

where v is velocity by dimensional reasons. Let us define now a dimensionless 
parameter ζ  such that 

2 2

2 21 ;v v
c c

ζ= −                        (5.22) 

then, dividing both sides of (5.21) by 2c  one finds 

( )
2 2

2 2 2

1, , , 0 .
1

Gm v v v v
c c c

ζ ζ
ζδ

= = = < < ∞
+

        (5.23) 

To show the physical meaning of (5.22), consider first the particular case 
( )* 1v v ζ= = ; so (5.21) rewritten with pertinent notation *m m=  and  

*δ δ=   reads 
* *2 *2

* *2 *2 2
2 * 2 2

11 , , , 1,
2 2

Gm v v cv v v c
c c c

ζ
δ ± − += − = = = ± + = =


   (5.24) 

and yields 
*

*
2

2m G
c

δ =                        (5.25) 

in agreement with (3.15) and (3.16). Note that (5.24) corresponds to (3.24) al-
ready introduced to infer (3.25); in particular one implements here 2 2

sv v=


, so 
the implications of (5.22) are in fact related to and confirm (3.27). In fact (5.24) 
allows defining as a function of a unique reference length 0δ   two internal and 
external surfaces corresponding to *v±  that fulfill (5.25); indeed *tδ  implies 
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*
*

0 ,
2

c tδδ δ± = ± 

 
i.e. two characteristic lengths *δ +  and *δ −  are definable as 

* * * *
0 0, .

2 2
c ct tδ δ δ δ δ δ+ −= + = −               (5.26) 

Assuming that * *δ δ+ ≡   of (5.25), then it is possible to calculate 0δ  ; 
hence (5.26) yields 

* * *
* * * *

2 2 3

2 2 2, 2 , ,m G m G m Gc t t
c c c

δ δ δ δ+ −= = − ≤        (5.27) 

the third result being due to * 0δ − ≥ . The result (5.25) agrees with that already 
found in (3.15), which shows that the particular *v  defined by (5.24) has really 
a specific physical meaning. Moreover (5.27) shows the existence an inner event 
horizon at distance *δ −  with respect to the gravity center of *m  compatible 
with the outer one of (5.25). The event horizon appears here as an outer shell of 
the black hole of finite thickness, rather than an ideal two dimensional boundary 
surface. The fact of having implemented uncertainty ranges instead of determi-
nistic metrics excludes in the present model the rising of divergence at the grav-
ity center of the black hole, which is local inner boundary coordinate of the radii 
δ +  and δ −  and then unphysical. 

Encouraged by the particular result (5.27), let us generalize the condition 
(5.24) by considering instead 1ζ ≠  in (5.23): two different chances of genera-
lization concern reasonably 0 1ζ< <  and 1ζ > . 

On the one hand, considering 1ζ <  and putting now *2 2v vζ= , (5.22) and 
(5.23) yield 

( )
* *

2 * *2 2
*2 2 * *2 2

, , 1 :
1 1

o
o o

o

GmGm mc m v c
v c v c

δ δ
δδ

= = = = −
− −

 





 (5.28) 

these equations have well known meaning consistent with (2.36) regarding 
* *, ,rest restm m δ δ= =                    (5.29) 

i.e. om  and oδ   are defined in a reference system oR  moving at constant 
rate ov  with respect to R where *m  and *δ   are at rest. These results agree 
with and confirm the different reasoning exposed to infer (3.3). 

On the other hand, also follows from (5.28) the chance of defining via *δ   
the time range otδ  such that 

* * *
*

3 33 *2 2 *2 2
, :

1 1
o om G Gm t Gmt

c c cc v c v c

δ δ δ= = = =
− −



 
as expected owing to (3.28), o oc tδ δ=  agrees with Lorentz transformation of 
proper time lapse tδ  i.e. 

*

*2 21
o

tt
v c

δδ =
−

                     (5.30) 

with the same physical meaning of (5.28). So the second (5.28) is the well known 
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velocity dependent dynamic mass law with respect to the rest mass, the third one 
yields the Lorentz contraction of the proper length restδ  . Although (5.24) con-
cerns in particular *v v±=  only, the velocity *v±  shows the condition under 
which hold (5.28) and the following (5.25) that describe a law of nature; the 
same holds for (3.11) implied by (3.3). 

Follows now an interesting implication of (5.25). Consider 
*2 2 *

*2 *
4 4

4 4 ,m G m Gm G
c c

δ = =

 
which dividing both sides by 2c  yields 

* * * 4

2 2 *

4 , P
P

m G m cF
F Gc c

δ
δ

= =




                 (5.31) 

and thus 
* * *

2 * 2 *

1 4, ,
P

m m G
Fc a c

δ δφ δφ
δ

= = =




               (5.32) 

being by dimensional reasons *a  acceleration. This way of rearranging (5.31) is 
significant as, owing to (2.8), 

* 2

* .c c
δ

=
 



                       
 (5.33) 

On the one hand the first equality (5.32) does not conflict with (2.8) as this 
definition yields 

23
*

* * * ,
2 2

Ppc c
m G mδ

= = =
 




                 

 (5.34) 

being Pp  the Planck momentum, whereas the second equality reads  
* *

PF m a δφ= ; hence δφ  is consistent with the concept of angle inherent more 
in general * *

P m=F a . On the other hand (5.32) yields via (2.9) 
* 2 * 2

* * ,P
m c m c sF

s
δδφ δφ
δδ δ

= =
   

being sδ  an arbitrary length range; hence 

* 2
*, .P
sF s m c δδ δφ δφ δφ

δ
′ ′= =

  
Regard sδ  as the length of arc of circumference of the circle osculating the 

true path that defines the angular deviation δφ ; so PF sδ  calculates the work 
done by the force component F along a curved trajectory. Then 

* *
* 2 * *

* 2 * * 2

*
*

4, ,

, ,

m

P
m

c s m G F sF s m c m s
c m c

FF
m c

δ δδ δφ δ δφ
δ

δφ

= = = = =

= =
′

 









     (5.35) 

having specified sδ δ=  in the third (2.9) for obvious reasons. The second 
equation is the Einstein result of light beam bending in the gravity field of *m ; 
the deviation angle δφ  is also equal the ratio between the work F sδ  done by 
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the field along the photon path sδ  and the rest energy * 2m c  of the field 
source. Moreover it appears that * *= mF , i.e. the energy *  corresponding to 
F involves the Compton length of *m . The mathematical approximation inhe-
rent the Einstein result corresponds here to having assumed sδ  as a circumfe-
rence arc instead of a more general curved arc of the actual photon trajectory. 

Now note eventually an interesting corollary of (5.33) that reads * *c δ=    
and is identically rewritten as 

2 2 2 2
*

* * 2 2 * *

z z 1 z z, ,
z z

c c c
c

α
αδ δ δ δ

= = = = =
  

   

          (5.36) 

where z is a new arbitrary parameter not yet introduced in the present model to 
be appropriately defined in agreement with (5.18). Simply renaming z as 
z e= ± , where both signs are compatible with 2 2z e= , it follows that e±  is the 
electric charge, whereas the proportionality factor α  linking the Coulomb law 
hidden in *  via c  is actually the fine structure constant. This last result is 
closely related to the results from (5.17) to (5.20) previously found. Emphasize 
now that the particular condition (5.24) is sensible, although it has been intro-
duced preliminarily just in order for (5.23) to match (3.17) and not as a conse-
quence of a fundamental requirement; yet (5.24) can be generalized while re-
garding (5.28) as mere particular case. The key point is to replace (5.23) via a 
function   of ζ  and bhrδ  defined as follows 

( ) ( ) ( ) ( )
2 2* *

2 2 , 1 0;bh
m G m Gr
c c

δ ζ ζ ζ ζ
   

′ ′′− − = = + = =   
   

      (5.37) 

The condition on 1ζ =  corresponds to (5.24), because then this equation 
admits solutions 0bhrδ =  and again * 22bhr m G cδ = . Discarding the null 
solution, bhrδ  is just that expected according to (MJM) pertinent to 1ζ = , in 
agreement with (5.25). To generalize (5.24) it is enough to consider (5.37) with 

( ) ( )ζ ζ′ ′′= −   for 1ζ =  and with any ( ) ( )ζ ζ′ ′′≠ −   for 1ζ ≠ , 
which in principle it is possible with both 0 1ζ ′< <  and 1 ζ ′′< < ∞ . This ge-
neralized equation can be rewritten putting respectively 

( ) ( )
2 2 2 2* * * *

2 2 2 2, .bh bh
m G m G m G m Gr r
c c c c

ζ δ ζ δ
       

′ ′ ′′ ′′= − − = − −       
       

   (5.38) 

On the one hand it is reasonable to assume that these equations concern two 
different properties of bhrδ ; on the other hand it is also reasonable to guess that 
two properties of the mass *m  can be charge and angular momentum due to its 
possible angular spinning or to its possible spin or both. Anyway, since the un-
certainty ranges at left hand side represent square lengths, it is immediate to 
conclude that the same holds for the right hand size terms; in other words, to in-
clude the charge terms it is enough to express the space range sizes that appear 
in the Coulomb law of (5.36). So, in Planck units, 2 2 4Q c G=  yields 

( ) 2 2 4
Q Q G cζ ′ = =  according to (5.36). An analogous reasoning for the ro-

tation of *m  via the angular momentum J  reads ( ) ( )22 2 *
J J m cζ ′′ = = . 
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Replacing both contributions (5.38) into (5.37), whose left hand side is <0 
because ( ) ( )2 2* 2 * 2

bhm G c m G c rδ> − , one finds thus 

( )

2 2* * 2 2

2 2 4 2*
,bh

m G m G Q G Jr
c c c m c

δ
   

− − = − −   
   

 
with appropriate signs at the right hand side. This yields the well known result 
consistent with (5.14) 

( )
2 2 22* *

2 2*
.bh

G Q J cr m m
Gc m G

δ
 
 = + − −  
 

            (5.39) 

5.5. From Special to General Relativity 

Rewrite the first (3.32) as 
222
01

2 2 22
vvt vnc

r c c c
δ δ
δ

 
= = − 

 
                 (5.40) 

having simply implemented at the right hand side the definition of  
( )range any functionδ= . Note that the possible chance n →∞  requires 

0tδ →  or rδ → ∞  or both, because the right hand side of (5.40) is anyway fi-
nite being 1v c≤  and 0v c≤ . This problem requires defining appropriately rδ  
and tδ  as done with (3.33) to infer the relativistic property (3.38) of c. Consider 
that any range size tending to zero implies in fact the classical determinism for the 
concerned variable: i.e. 0 1t t t≤ ≤  means that t specific local value→  for 

1 0t t→ , whatever 0t  and 1t  might be. This conclusion holds for all quantum 
variables and ensures here that (5.40) is definable for any n implementing the 
positions (3.35), i.e. replacing tδ  and rδ  as follows 

2

22 , , ;n
n n

n

t v rc r t t n
r c n

δ δδ δ δ δ
δ

 
= = = 

 
           (5.41) 

as of course ntδ  and nrδ  are still arbitrary, it is possible to implement like-
wise (5.41) or (5.40) examining some possible cases where 0v  and/or 1v  are in 
particular constant or more in general any functions of n. Anyway note that 
(5.41) fulfill the invariant condition of special relativity already concerned in 
(2.47) 

:n nr t r tδ δ δ δ=                       (5.42) 

in fact, being n arbitrary likewise rδ  and tδ , it is possible to regard the left 
and right hand sides as if they would refer to different inertial reference systems. 
This point will be further clarified below. 

1) 0v  and 1v  both constants. 
In this case write (5.40) as 

2 2 *2
*20 0 0

2 2 22 1 1
v v const vtnc const const const const

r c c c
δ β
δ

   
= − = − = − =   

   
 (5.43) 
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where 
*22

* *0 01
02 2, , 1 ,

v vvconst v
c cconst

β= = = −            (5.44) 

so that (5.43) reads 
*

*
* *2 1 2 , , ;c t c t tn n t r r

const const rr
δ β δ δδ δ β δ

δβ δ β
′    ′ ′= = = =    ′   

  (5.45) 

thus, apart from the factor in parenthesis appearing at both sizes and thus irre-
levant, (5.45) implies again 

,r t r tδ δ δ δ′ ′ =                       (5.46) 

in agreement with (5.42) and the result of the Appendix B. Regarding the primed 
and unprimed quantities in the respective inertial reference systems R and R’ re-
ciprocally moving at constant rate *

0v , appear again the Lorentz space contrac-
tion and time dilation together with the invariant behavior of the product 
( ) ( )space timeδ δ×  of uncertainty ranges. This conclusion is not trivial: (5.46) 

holds regardless of n in parenthesis of (5.45) and justifies the chance of regard-
ing the uncertainty ranges likewise the local coordinates of relativity, while re-
marking however that the former only and not the latter fulfill the Heisenberg 
principle. 

2) ( )0 0v v n=  and ( )1 1v v n= . 
In this case it is possible to start from (5.41) for further considerations about 

(5.40). Rewrite (5.41) as 

( ) ( )
2

2 2
22 1 , ;n

n n
n

v c t
r c

δ
δ δ β δ β δ δ

δ
 

= = − = − = 
 





 
merging the equalities at the right hand side one finds 

( ) ( )

( ) ( ) ( )

2
2 2 2

2

2 2
0

0 0

4 2 1 2 1

2 1 log 2 1 log ,

n

nr
δ δβδ β βδβ δ β β

βδ

β ββδ β βδ β ββ δ β δ
β β

= − − = − −

 
= − − = − −  

 



 
being 0β  an arbitrary constant, and thus eventually 

( )
2

2
02

0

4 2 1 log , .n

n

w w w
r

δ βββ δ β δ
βδ

= − − =


 
This result is interesting because it takes the final form 

( ) ( ) ( )
2

2
0 02

2 log log log , 1 ,n

n

w w w w w Q Q
Q r
δ

δ β ββ δ β
δ

= − = − − = = −


 
having simply replaced ( )log wδ  with the usual notation of uncertainty range 

( ) ( )0log logw w−  as in (1.7). Since the range boundaries are arbitrary and is 
reasonable to expect that 0w  is defined by 0β β= , then 0 1w =  yields 

2 2 2

2 2 2

2log , :
o o
n n n
o o

n n n

w w
Qr r r

δ δ δ
δ δ δ

= − =
                 (5.47) 
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the interesting fact is that at the left hand side appears the ratio of the square 
lengths 2o

nδ   and 2o
nrδ  whatever the value of the dimensionless factor Q might 

be, at the right hand side appears the entropy like term logw w− . Since 1β <  
by definition, w can be regarded as probabilities via an appropriate choice of the 
arbitrary constant 0β . It is evident that the arbitrariness of the quantum ranges 
plays a fundamental role in this respect; indeed, being the range sizes arbitrary 
by definition, the left hand size ratio is indistinguishable from and thus identi-
cally readable as the initial nδ   and nrδ  in turn reducible to the respective 
lengths of (5.40). This result is helpful for its implications in the next section 5.7 

3) Virial theorem. 
It is possible to assess now (5.40), which is useful to obtain information 

whenever the quantization condition of the dynamical variables is explicitly re-
quired. Since the boundaries of any uncertainty range are arbitrary by definition, 
examine the two possible cases where 0v  is in particular a constant or it is in 
general any function of n. Write (5.40) with the help of (2.35) as 

( ) ( )

( ) 2 22
1 0

2 2

2 2 2

,

2

δδ δ δδ ωδ
δ δ

δ
ωδ δ

ω

= = =

  −
= = = 

 

=

 







r
r

r r

rr

r

r

p ct t tnc nc p c t
r n p

p c v vv vt
c p c c c

 

having regarded r  as a zero point energy. So, multiplying by m the fourth 
equality, one finds 

( ) ( )
2

2 2 2 , ,rr r
r r r r

r

p cmv vt p c t m mv p
pc c c

δ β
ωδ δ ωδ δ β

 
= = = 

   
whereas the second equality reads 

( ) ( )2 .r rp c t m vβ δ ωδ δ=                   (5.48) 

Here is useful the classical approximation 1rβ ≈  assuming for simplicity 

rv c ; (5.48) simplifies to 

( ) ( ) ( )2 2 .rp c t m v mvδ ωδ δ δ= =                (5.49) 

Even (5.49) contains the same classical approximation of (5.48), because (3.3) 
shows that the dynamic mass becomes in fact a constant. Both steps clarify the 
physical meaning of 2vδ  and rp c , as (5.49) reads 

22 T , T , U ,
U 2 r

mvt p cδωδ
δ

= − = = −              (5.50) 

so that the formal position Urp c = −  yields 

2 T 1, 2T U.
U

t δωδ
δ

= − = = −                  (5.51) 

The positions (5.50) allow to find the expected result 1tω δ −= , which fits the 
classical virial theorem 2T U= −  consistent with the second equation; the clas-
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sical limit of (5.40) has sensible physical meaning. 
4) Quantum gravity. 
Multiply now both sides of (5.40) by tδ  in order to find 

2 2
0 1

2 2 ;
2 2

v vn c
r c t c tδ δ δ
+ =
 

                   (5.52) 

a further result is now available implementing the definitions 
2
0

2,
vc

r c t
ω ω

δ δ
= =                     (5.53) 

that yield 
2 2
1 1

2

1 1 1 ,
2 2 2

v vn c t
cc t

ω ω δ δ
δδ

+ = = =
 

  



            (5.54) 

and merge themselves into 
3 2

2 2
0 0

.c cr t
v v

δ δ δ= = 
                    (5.55) 

The left hand side of (5.54) diverges for n →∞ ; however this is not a prob-
lem, being allowed by 0tδ → . 

The first (5.53) is sensible, as it reads 2 r cνδπ = , i.e. 

2 , , ;r r
r r r

nv vc cr n v
n

δ λ λ
ν ν ν

= = = = =π            (5.56) 

the given definition of rv , quantized likewise the number n of respective rλ , is 
compatible with rv c≤  and with (5.41). Thus one finds once again the key 
quantum equation (2.22) and accordingly also 

, , ,

,

r r r

r

r r
r

nv v venergy n
r r v t t

h nr v t p
r

ω ω
δ δ δ δ

δ δ δ
λ δ

= = = = = =

= = =



  



 
      (5.57) 

and then, owing to the second (5.53), also 
2
0

2 .r vnv
r c tδ δ
=

 
Since according to (5.41) 

,n

n

rr n
t t

δδ
δ δ

=
 

then 
2
0
2 , , ;n rn r

r rn
n n

v r v vv v
t rc n

δ
ω

δ δ
= = =

 
the last position is coherent with that of (3.35). Eventually (5.41) yields 

( )
22
01

2 2 2 2 ;n n
r

n n

v t tv c v c
r rc c

δ δ
δ δ

= + = +
 

in this way both positions (5.53) are consistent with (5.41): i.e. defining appro-
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priately r tδ δ  via n nr tδ δ  there is no divergence of velocity in (5.40) and 
(5.54) for n →∞ . A further corollary of the positions (5.53) is found merging 
them by eliminating c: replacing c rωδ=  in the second one, two interesting 
results are 

2 23 2
3 2 0 0, .

v vrr a
t c c t

ω δω δ
δ δ

= = =                (5.58) 

The familiar form at left hand side of the first equation will be useful below, 
see next (5.71) and (5.72); the second equation provides a further definition of 
acceleration. Both equations support the results just obtained. Consider now 
(5.54) noting that the physical dimensions at the right hand side are 

2
3 21 ,

2
v mass length time
c

−= × ×


                (5.59) 

whereas at the left hand side appears instead the expression of vibrational har-
monic system along with its zero point energy; this suggests that 2

1v c  should 
be itself proportional to 2m G  by dimensional reasons, i.e. 2 2

1v c m Gξ= , be-
ing ξ  the proportionality constant. Defining therefore without loss of general-
ity the dimensional square mass as 2

1 2m m m=  because m is in fact arbitrary 
likewise as 1m  and 2m  themselves, write for this distinctive reading of the 
energy defined by (5.53) in agreement with (2.11) 

1 2 1 2 1 21 1 ,
2 2 2

m m m m m mn G G Gξω ω ξ
δ δ δ

 + = = − 
 

 

  

        (5.60) 

where it is possible to identify at the right hand side 

1 2 1 21,
2 2

m m m m UG U G T
δ δ

= − − = = −
 

             (5.61) 

with the help of the quantum virial theorem inferred in (5.51). Then 

( )1 , 2 ,
2

n U T T Uω ω ξ+ = − − = − 

 
so that, putting 1ξ = , the result is 

21 , 1, 0, .
2

fk
n H H U T

m
ω ω ξ ω+ = − = = + < =        (5.62) 

The right hand side is the Hamiltonian of the orbiting system, i.e. Newtonian 
binding energy −G , which agrees with the idea of harmonic oscillator as a 
bound system itself. The minus sign of G  means that the force constant fk  
defining the quantum oscillator frequency implies an attractive energy between 
two orbiting masses; a repulsive energy would be instead inconsistent with 
steady quantum oscillations. As expected, whatever 1m  and 2m  might be, an 
appropriate n shows the actual quantization of orbital motion: for large masses, 
n is so large that the quantization is hidden by the values 1n n≈ + , being δ   
the circular orbit radius. So the steady harmonic oscillations are the quantum 
equivalent of the steady orbital motion of a Newtonian system via the circular 
frequency ω : the force constant fk  governing the one dimensional linear os-
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cillation of the former turns into the behavior of m in a central force field go-
verned by G and seemingly non-quantized. The last equation (5.62) is direct 
consequence of (5.53) because 

2 2 2
2

2 2 :fkc mc r
m mr m r
δω

δ δ
= = = =


               (5.63) 

i.e. classically 2ω  is proportional to 1m−  via the factor fk . Moreover, the 
link between a one dimensional oscillation and a two dimensional system orbit-
ing on an arbitrary plane implies 2 degenerate states, as the clockwise and 
counter clockwise rotation are both allowed and in principle indistinguishable; 
this also holds in the quantum world, indeed l takes all values n l n− ≤ ≤  iden-
tically to l− . So the macroscopic measurable orbiting energy (2.11) is twice that 

1 2 2m m G δ   of (5.60). This degeneracy can be also regarded as a statement of 
equivalence between inertial and gravitational mass: the degenerate energies 
concern now the systems where m1 moves around m2 or m2 around m1, depend-
ing on either reference system R1 or R2 where the respective mass is at rest. 
Without the equivalence principle, R1 and R2 would not interchangeable, as 
instead it is true according to the quantum (2.41). The macroscopic Newton law 
inferred from an oscillating quantum system reveals and requires the sought 
equivalence. 

5) Implications of harmonic oscillations. 
As a closing remark consider now the following dimensional definitions 

3 2

, ,cm
G Gω ω

ωξ ρ ξ
ω

= =                   (5.64) 

being ξ  an appropriate proportionality factor plausible in any dimensional 
equations and thus introduced here; the subscript emphasizes that these defini-
tions implement explicitly the frequency ω . These positions aim to calculate the 
force constant fk  of the harmonic oscillator implied by (5.54) 

3
2 .f

ck m
Gω
ωω ξ= =                     (5.65) 

In fact (5.64) are alternative to (2.1) and (2.2) in defining via ω  mass, densi-
ty and energy density in an arbitrary volume 3δ  . The connection with these 
equations is given by 

2
3 3,

G m mGω ω ω
ω

ρ
ω ρ

ξ ξδ δ
= = =

 

               (5.66) 

and yields 
2 4 3

3 2
G

f
m G

k
G

ω ω δ ξ
ξδ ξδ

= = = −


 

                 (5.67) 

so that 
2

.G
m

G ω

δ
= −




                      

 (5.68) 
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Moreover (5.64) defines 

( )2

.
c
Gω

ω
η ξ=                        (5.69) 

The physical meaning of these results will be highlighted by calculating their 
numerical values in section 6. 

6) Gravitational waves. 
This subsection aims to sketch that the gravitational waves are actually quan-

tized and fit the result inferred in (5.60); details on the physical model and re-
sults have been already concerned in a paper [16] on this topic. To add further 
considerations in this respect and highlight this point, let us start from the Eins-
tein formula 

( )
2

4 6 2 31 2
1 25

1 2

32 ,
5

m mdE G r r m m G
dt m mc

ω ω
 

− = = + + 
        (5.70) 

where r and ω  are the deterministic radius and angular frequency of an orbit-
ing body in a circular orbit; in this case holds the second equation, which is 
direct consequence of the third Kepler law. The explanation of these formulas is 
reported in [13]; here the priority is remarking how to inspect the energy loss dE 
by emission of gravitational wave energy. Rewrite (5.70) in order to replace the 
deterministic orbit parameters r and ω  to highlight their quantum meaning 
hidden in the given formulas and replace the integration factor 32/5 = 6.4 with 
2π , which differ by about 1.8% only; this numerical replacement allows hig-
hlighting conveniently the following considerations. Regard then the original 
Einstein result as 

2 5
4 61 2

1 2

2 2, , ;P
p

m mE cr W
t W m m t G

δ δ ω ω
δ δ

 
− = = = + 

π π
       (5.71) 

all quantities with notation δ  are now uncertainty ranges, tδ  is the time lapse 
to complete one orbit. 

First of all rewrite identically the first equation with the help of the second 
(5.70) and (5.60) itself as follows 

( )
2

24 6
2 3

2 2 ;G
G

p p

rE r
t W Wr

δδ δ ω ω
δ ω δ

 − = = 


π π






          
 (5.72) 

moreover replace once more t nδ δε=   according to (1.2), so that 

( ) ( )2 22 , G
G P G G

p P

E n nhW t t
W W

ε
δ δε ε ω ω− = = =

π


 
with notation emphasizing that Penergy W  has physical dimensions of time. 
Also, this equation becomes 

( )2 ,δ δδ δ δ ω δ− = − = =
 

G G G
P P

E E t nh t t
W W

 

and eventually 
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( )2 1, ,G G G
G

E nh t
t

δ ν ω ν
δ

− = =                (5.73) 

with notation emphasizing that the energy loss dE−  can be nothing else but 
loss of some quanta Ghν . Now it is possible to introduce the last step and com-
pare this result to (5.60), according which 2G nh hν ν− = + ; therefore 

GdE h nδ νδ= =  yields 

( )2 .G Gh n nh tνδ ν ω− =  
Just this conclusion is the key to guess the dimensionless Gt ω  that appears to 

be just a correction factor: being nδ  integer, Eδ−  can be nothing else but 
something like n hν′  with n′  integer in order to fit (5.60) [21]. Also, as Gt  is 
introduced via δε  and thus arbitrary, put then ( )2

Gt n nω ′=  so that 

.GE n hδ ν′− =                        (5.74) 

Otherwise stated, Gt ω  has been defined in order that (5.74) is consistent 
with (5.62). In synthesis, the initial Einstein formula, deterministic, becomes 
here a very simple quantum result, showing at the right hand side the number 
n′  of gravitational energy quanta lost. Also here Eδ−  expresses the fact that 
n′  must be intended as n n n′′ ′ ′′′≤ ≤ , with n′′  and n′′′  of course arbitrary, 
once more according to (1.9). 

Although for brevity this result has been introduced here as mere elaboration 
of Einstein’s early achievement, reversing the steps from (5.74) to (5.70) one 
could find the initial Eδ  whose quantization is however hidden. The paper [9] 
concerns instead an “ab initio” model, where are also described further implica-
tions of this result. The Einstein formula is actually a quantum of gravitational 
energy dissipated by an orbiting system. In this quoted paper, published before 
the experimental evidence of the gravitational waves, it is remarked that not 
necessarily the gravitational system must collapse; rather both signs possible for 

nδ  describe the exchange of gravitational quanta between orbiting systems, 
possibly the so called gravitons, could be regarded in principle in analogy with 
electromagnetic excitation and decay of atoms by exchange of photons. This 
supports the idea of gravitons inherent the gravity propagation rate (4.8). 

7) Quantum remarks on the Newton equation. 
At this point some remarks on (5.40) and (5.60) deserve attention. 
(i) According to (5.59), (5.60) and (5.62), write 

1 2
2
1

,
2

m mG
c v
=

                       (5.75) 

which yields 

1 2
2 1
2 2

1 21 1

2 2
, ;m m

m G m G
m c m cv v

= = = =
 

             (5.76) 

so, taking the limit 1v c→ , one finds respectively 

1 2
2 1
2 2

2 2
, .m m

m G m G
c c

= = 
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The black hole radii are thus the limit of (5.40) for 1v c→  suggest an inter-
esting feature of a bound gravitational system where either mass is a black hole; 
merging of their masses occurs when the event horizon of the latter approaches 
the Compton length of the former. 

(ii) It is usual to say that at the center of a black hole there is a space time sin-
gularity. Emphasizing that no singularity is explicitly required by or directly im-
plied in the present conceptual frame, such a singularity is actually unknowable and 
thus unphysical: according to (1.2) and (2.41), by definition non-deterministic, no 
information is accessible about what happens inside an uncertainty range. Thus 
the concept of local singularity is merely an arbitrary extrapolation allowed in 
the classical world only; here instead the relativity is conceived in the quantum 
frame of (1.2). 

(iii) Via (5.59) 2 22v c m G=  yields an expression for the force constant fk  
of harmonic oscillations (5.62) 

2 2
2 21 ,

2 2
m

f
vk m a a v

Gmc G
ωω ω= = = =




            (5.77) 

Where a  is a further definition of acceleration being 2v x tω δ δ= . This re-
sult, which clearly plugs the force constant of the quantum oscillator into the 
frame of the general relativity, will be further considered in the next subsection. 

(iv) The reduced Compton length 1m  of 1m  defines in (5.76) the Schwarz-
schild radius of the interacting mass 2m  as a limit case. This result follows the 
link between the energy of a two body gravitational system of masses and the 
energy of a quantum oscillator with binding force constant fk ; in turn this link 
suggests that the quantum relationship between 1m  and 2m  makes their event 
horizons equal to the respective Compton lengths; these latter correspond to the 
minimum approaching distance below which the masses merge into a unique 
black hole of total mass 1 2m m+  with event horizon ( ) 2

1 22 m m G c+ . Indeed 

21 2 1 2
1 2

1, , , 0.
2m m

tot

m m m mc G U U
c mµ

µ

µ µ
µ

+ = = = = = − <


  



 (5.78) 

(v) The fact that (5.60) is related to an arbitrary number n of quantum states 
allowed to a harmonic oscillator shows that even the gravity equation at the right 
hand side can be expressed as a superposition of states corresponding to and de-
fined by the respective n. Start from (5.60) written according to (5.53) as 

( )
2
01 2

2

1 , , ;
2 2

vGm m n n n n n n
c t

ω ω ω ω
δ δ

′ ′′ ′ ′′− = = − = = −  



    (5.79) 

then, with the last position where n′  and n′′  are arbitrary integers too, one 
finds via (5.61) and (1.9) 

1, ,
2G G T n nψ ψδε δε δε ω δε ω ω′ ′′= = − = −           (5.80) 

In this way the average kinetic energy of Newton orbital motion identified in 
(5.61) defines the range size Gδε  equal to that ψδε  of the quantized energies 
corresponding to the wave functions *ψ ′



 and *ψ ′′


 defined by (2.58). As 
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concerns U, write according to (5.61) 

( ) ( )

2 2
1 2 M

2 1 .
1

jGm mU n
n n

ω ω
δ

− = = + =
+



 

  
So the average potential energy of the gravitational system is equal to ω  

times the number 2 1n +  of allowed states of angular momentum; in other 
words the left hand side consists of 2 1n +  degenerate states ω . At the left 
hand side still appears the gravitational energy of the same masses now δ   
apart, at the right hand side the energy ,nω



  with the same coefficient 2 1n +  
due to the degeneracy of jl  states consistent with n. Thus Newton’s equation is 
equivalent to a superposition of l states of energy ,nω



  having quantum ori-
gin. 

(vii) Consider (5.25) and write 
2

2 4 2

2 2 2 1, , ;
2

bh bh bh bh
bh bh bh P bh

P

m G m c G h h
m h F

Fc c c
ν ν

δ ν δ= = = = = 

 
via the Planck force 4

PF c G= . Recalling (5.54), it is possible to regard the last 
term as a zero point energy and thus to define by analogy a more general energy 
given by 

( )1 2 1 .
2n bh bh P bhE nh h n Fν ν δ= + = + 

 
To interpreter this result, think a set of n non-interacting harmonic oscillators 

consisting of point masses bhm  that displace with frequency bhν  by a length 
δ   with respect to their equilibrium positions: the energy of such a system re-
sults averaging the mechanical work of PF  to displace all point masses and 
their oscillation energy bhhν . This average ( )1nE n n +  concerns clearly the 
corpuscle/wave behavior of bhm . 

8) The invariance in quantum special relativity. 
The starting key equations are now (3.29), which yield 

( )
2 2, ;

vvp p
c c

δ εε δ= =
 

multiplying side by side these equations 

( ) ( )
4

v v
p p

c
ε δ ε

δ =
 

one finds 

( ) ( )2
2

2

1 1
2 2

v
pc

c
δ ε

δ =                    (5.81) 

and thus 

( ) ( )2 2 0,v c pcδ ε δ− =                    (5.82) 

being of course by definition 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 1 2 2 1 2, .v c v c v c pc p c p cδ ε ε ε δ= − = −     (5.83) 
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Clearly (5.82) reads identically ( ) ( )2 2 0v c pcε − = , which of course is ful-
filled by 2p v c=  ; yet, considering the ranges (5.83) of dynamical variables in-
stead of their local values (2.32), (5.82) is also fulfilled by 

( ) ( )2 2v c pc constε − =                    (5.84) 

because ( ) 0constδ = . This equation yields thus 

( ) ( )2 2 .v c pc constε = +                   (5.85) 

Owing to (3.29), if in particular 0const =  and v c≠  then (5.85) reduces 
trivially to an identity. The fact that (3.29) holds even for v c= , whereas (2.35) 
do not, is the key to understand and verify the next step: although both p and ε  
diverge for v c=  according to (2.35), their ranges pδ  and δε  defined in 
(5.82) do not. Even for v c=  they take the form ∞−∞  that in principle could 
admit finite limits uniquely defined by (5.84). In effect it has been already re-
marked that have physical meaning the uncertainty ranges and not the local dy-
namical variables, random unknown and unknowable according to (1.2). Then, 
even implementing the particular position v c= , (5.85) resulting from (5.82) 
yields for 0const ≠  the well known result 

( ) ( )222 2
0, , ,const pc const m c v cε = + = =          (5.86) 

being 0m  a rest mass according to (2.33). This well known result of special 
relativity together with (WHF) defines the energy and the Lorentz transforma-
tions already found in (2.35) and (3.28); the fact of having replaced the local 
values with the respective uncertainty ranges makes plausible the step from 
(5.85) to (5.86). The quantum uncertainty is thus essential to generalize (5.85): 
eq (5.86) has been concerned here although already obtained in (2.34) just to 
emphasize the link between uncertainty and special relativity and the physical 
importance of the uncertainty ranges. This is the reason of having repeated the 
result (2.34). 

Let us show further that however (5.86) is not itself the most useful result for 
the next purposes just because its deterministic local values. Start therefore di-
rectly from (1.2); squaring both sides of v pδε δ= , being of course v x tδ δ= , 
one finds owing to (2.35) 

( ) ( ) ( )( ) ( )( ) ( )( )2 2 22 2 2 2 2, 1 .v c pc pc pc v cδε δ δ β δ β= = − = −   (5.87) 

Next, calculating pδ  as 2 1 02 01p p p m v m vδ β β= − = −  via (2.35), one 
finds 

( ) ( ) ( ) ( )02 01 02 01 ;pc m vc m vc m m vcβδ β β β β= − = −       (5.88) 

as expected from previous considerations, there is no difficulty to calculate this 
result of (5.87) for v c= . So 

( ) ( )( ) ( )( )222 2
0 0 02 01, ,pc m c m m mδε δ δ δ− = − = −        (5.89) 
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whence it is possible to infer 

( ) ( )( ) ( )
( ) ( )

( ) ( ) ( )
( )

( )

2
22 2

2 2

2 22
22 2

02

1

.

cpc n
t x

x c t
n m c

t x

δε δ
δ δ

δ δ
δ

δ δ

 
 − = −
 
 

−
= = −





     (5.90) 

Clearly the right hand side is a constant, thus invariant by definition; hence 
the ratio at the left hand side is an invariant as well. It is known indeed that this 
ratio is defined by two invariant quantities. Since the first (5.46) demonstrates 
that x tδ δ  is a relativistic invariant, it follows that the numerator is also inva-
riant as well itself. The ranges at the left hand side of the last equality correspond 
thus to the 0 02 01m m mδ = −  at the right hand side. The invariant interval 

2 2 2x c tδ δ− , in particular, has been stated in [13] as the conceptual foundation 
of the special relativity; just for this reason it is remarkable the fact that in the 
present model i(5.46) and (5.90) are actually straightforward corollaries of the 
quantum uncertainty. The crucial difference between (5.90) and (5.86) is that 
now ε  and pc  appear through their uncertainty ranges and not as determi-
nistic values. This result not only demonstrates the link between special relativity 
and quantum physics, but also allows further important steps concerning direct-
ly the general relativity. Although this point has been examined in several pre-
vious papers, see e.g. [4] [11] [12], the next section reports some relevant con-
siderations just on this topic. Consider once more (5.83) for 1 2v v c= = , as al-
ready done to infer (5.86); the reasoning is still that already highlighted, but now 
extended to find a further interesting result. Write explicitly (5.83) with the help 
of (5.34) as follows 

( ) ( ) ( ) ( )
22 2 22 2 2

0
1

, ,
2
pm c pc pc
m

δ ε ε δ ε= − = −         (5.91) 

being 1m  a new arbitrary mass; here we have simply expressed also the right 
hand side in the form of a range of square energies. Then (5.82) for v c=  reads 

( ) ( )
22 22 2

0
1

.
2
pm c pc
m

ε ε− = −                 (5.92) 

Clearly this equation reduces for 1m →∞  to the standard form (5.86) of 
Einstein’s special relativity. In fact the additional term in (5.92), more general 
than (5.86), is a known result of quantum gravity that helps solve three cosmo-
logical paradoxes [22]. More details about (5.92) are reported in [12]. 

5.6. Red Shift and Time Dilation 

Starting from (2.10) and (2.9) consider ϕ= = −∇
v c  [13], being ϕ−∇  a 

force per unit mass related to v  due to the gravitational potential ϕ , and write 
in the present one-dimensional approach 

δϕ
δ

= −


c
x
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whence 

2 .δ δϕ
= −



 x
c c

 

Let us show now that 

2 .δϕ δ δω
ω

− = =


 x
cc

 

Being by definition 2 1x x xδ = − , regard the second equality considering that 

1 1ω ω=x c  i.e. 1 1x cω ω=  : indeed this result reads 1 1ω= v c  because 

1 1x vω =  by dimensional reasons. Owing to (3.29) in turn this means 1 1p c ω=   
at the coordinate 1x  where the gravitational potential ϕ  reads 1ϕ ϕ= ; as con-
sistently to xδ  corresponds 2 1δϕ ϕ ϕ= − , while an analogous reasoning holds 
of course for 2 2x cε ω ω= , one finds 

( ) ( ) ( )2 1 2 12 , , ;
c

δ ϕδω δω ω ω δ ϕ ϕ ϕ
ω

−
= = − − = − − −       (5.93) 

this result is the red shift of a photon moving radially in the attractive gravita-
tional potential 0ϕ <  because 2 1ω ω>  implies 2 1ϕ ϕ> , i.e. lower frequency 
at the coordinate where the central gravitational potential is weaker. A corollary 
of this result is found replacing reasonably 1tω −→ ; (5.93) yields 

( ) ( )
2 2

1
1

t t
t t c c

−
= = − = = −

δϕδ δ ϕδω δ
ω  

i.e. summarizing 

0
02 , .

t t
t t t

t c
δϕ

δ
−

= = −                   (5.94) 

It is sensible to regard 0t  as a proper time, with respect to which is defined t 
determining tδ ; as the right hand side describes gravitational potential rising 
from 0 to ϕ  with 0 0ϕ − <  (5.94) reads 2

01 t t cϕ− =  i.e. 

0 21 .t t
c
ϕ 

= − 
 

                      (5.95) 

Owing to proper time 0t t< , this result yields time dilation tδ  due to 
gravity field with respect to field null. 

5.7. Black Hole Entropy 

Define the ratio of Planck length and mass, 3
P G c=   and Pm c G=  , 

which reads 2
P Pm G c= ; as (5.25) reads * * 22m G cδ = , the starting 

point of this section is 
*

* 2

22 .P

P

G
mm c

δ
= =

                      (5.96) 

This section is based on the ideas exposed about (5.47). 
(i) Surface entropy. 
Assume that the surface entropy is an extensive property that increases pro-
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portionally to the black hole surface. Squaring both sides of (5.96), it is possible 
to define a function *S  as follows 

2* *2 *2 *
* * *2

0 02 2 2

1 4 1, 4 ,
4 44 4 4P P P P

m AS S A S
m

δ δ δπ
π

π π
 

= = = = = = 
 

 



  

  (5.97) 

i.e. such that 
* *

*
2

0

.
4sur

P

S AS
S

= =


                     (5.98) 

In effect the given ratio of squared masses in (5.97) is equal to the ratio of 
square lengths that, owing to (5.47), has physical meaning of surface entropy; so 

*
surS  is the sought function that increases linearly with the surface *A  defined 

by the black body length *δ   via the proportionality constant 0S . Since accor-
dingly 

2* *2
* *4 4 4 ,sur

P

m m GS S
m c

 
= = = 


π π


π

  
the factor 4π  reminds the Gauss theorem and suggests its link to the flux *Φ  
of an appropriate function *F  through a surface element *Aδ  of *A . So write 

* * * * * * *2 * *
3, , , ,F F m G A

r
δ δ δ δΦ = ⋅ = = − =

rF A F A n     (5.99) 

where r is unit vector directed inside the flux surface *Aδ  whereas n is a unit 
vector oriented outside the surface *Aδ . Hence 

( )
*

* * *2 *2 *2
3 2 4AF A m G m G m G

r r
δδ δ

δ δ
 ⋅ Φ = = = Ω = 

  
π


∫ ∫ ∫

r n    (5.100) 

and then the last (5.97) yields 

* * *

2*2 2 *
*

0 2 2 2, .
4

P

m m m

m G G c AS S
c c

= = = =


   

           (5.101) 

With *F  related to the classical Newton law, the given definition (5.97) of 

0S  makes *
surS  proportional to the incoming flux Φ  of gravity force at the 

black hole surface expressed in c  units; so *
surS  does not depend explicitly 

on *m  but on Φ  it generates. The presence of   and c in (5.101) shows the 
link between black body matter and usual matter inherent the standard defini-
tion (5.47) of entropy, so merging quantum and relativistic concepts. This defi-
nition of 0S  is sensible, as it results to be a ratio of square lengths too, whose 
physical meaning of entropy agrees with that of *

surS . 
Equation (5.98) is the famous Hawking-Bekenstein surface entropy of a 

spherical non-rotating black body. 
(ii) Volume entropy 
In an analogous way it is possible to calculate the volume entropy. Once 

knowing that ( )2*
Pm m  is related to ( )2*

Pδ   , which has physical meaning 
of entropy, it is reasonable to guess that now the expected ( )3*

Pδ    related to 
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( )3*
Pm m  should yield a result *

Pm m  times that previously obtained. Write 
thus 

( )

3 1* *3 *
* * *3

0 03 3

4 3 4 4, ,
3 384 2 3P PP

m VS S S V
m

δ δ
−   ′ ′ ′= = = = =   

  

π π π

π









 (5.102) 

and then, as before, 
* *

*
* 3

0

;
8vol

P

S VS
S
′

= =
′



                    (5.103) 

this result corresponds to (5.98). Moreover (5.101) becomes 
3* *

* *4 1 ,
3 3vol sur

P P

m mS S
m m

 
= 

 

π
=                (5.104) 

where now the mas *m  appears explicitly; also, owing to (5.101), (5.104) 
should reasonably yield the volume entropy of a spherical black body with an 
analogous meaning of 0 03S S′ = . Also, since 

* * *2

3 ,
8 PP

V m m G
m c

=
  

the flux ratio cΦ  multiplied by the huge ratio *
Pm m  corresponds to the 

expected * 3 * 2
P PV A   . 

5.8. Perihelion Precession 

Consider the square ranges ( )2δε  and ( )( )2
pcδ  of (5.89), now defined expli-

citly as 

( ) ( ) ( )22 2 2
0 0, ;sr sr srcp cp m c m m mζ ζ ζε ε− = − + = −      (5.105) 

the subscript sr stands for “special relativity, whereas ζε  and cpζ  are appro-
priate boundary energies to be defined. This choice is possible because the 
boundaries of uncertainty ranges are arbitrary. Once having defined srε  con-
sistently with the special relativity energy (5.86), cpζ  and ζε  represent in-
stead the actual momentum and energy in a gravitational system congruently to 
the respective quantities of the special relativity. In other words the boundary 
energies and momenta of ( )2δε  and ( )( )2

pcδ  of (5.89) are chosen in (5.105) 
in order to generalize the corresponding values of special relativity to the case of 
a gravitational system just taking advantage of the arbitrariness and agnosticism 
inherent the uncertainty. Write therefore 

( ) ( ) ( )2222 2 2 2
02 2sr sr sr srcp cp c p p m c+ − = + − +ζ ζ ζ ζε ε ε ε

 
that fulfills by definition 

( ) ( )222 2 ,sr sr srcp m cε = +                  (5.106) 

so that 

( ) ( )222 2 2 42 2 2 ;sr sr srcp c p p m c m m cζ ζ ζ ζ ζ ζε ε ε− = − + −      (5.107) 
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then, putting 

( )2 2 42 ,sr sr src p p m m cξ ζ ζ ζε ε ε= − −              (5.108) 

the right hand side reads 

( ) ( )222 2 2cp m cζ ζ ζ ξε ε= + +                 (5.109) 

where 
2 4 4

2 2 22 1 2 1 , .ζ ζ ζ ζ
ξ ζ ξ ξ ζ

ζ ζ ζ ζ

ε ε ε ε ε
ε ε ε ε ε ε ε

   
= − − = − − =      

   
 sr sr sr sr

sr sr
sr sr sr

c p p m m c v p m m c
 

Note that now are used notations like pζ , and not pζδ , because are 
implemented boundaries of uncertainty ranges that of course are not determi-
nistic values. From a formal point of view the Equation (5.109) is similar to 
(2.34), inferred through a quantum approach, apart from the additional term 

2
ξε ; this is clearly consistent with the fact that by definition the subscript ζ  re-

fers to dynamical variables of general relativity introduced in (5.105). On the one 
hand (5.109) confirms the quantum gravity result (5.92), where in effect the cor-
rective term 2p m  also appears with respect to the Einstein energy equation 
of the standard special relativity; this comparison suggests that even 2

ξε  should 
be someway reducible to that in (5.92), which in fact has been also inferred rea-
soning on the boundaries of energy uncertainty ranges. On the other hand, 2

ξ  
represents the sought generalization of (2.34) or (5.86). Eventually rewrite 
(5.109) as 

( )
( ) ( )

22 2 2

2 21 .
m c

cp cp

ζ ζ ξ

ζ ζ

ε ε−
= +                 (5.110) 

This equation is interesting; it depends upon how is defined ξε  at the right 
hand side. For example specify in particular ξε , in principle arbitrary itself, ac-
cording to (2.11); in this way it is possible to finalize (5.110) to the purpose of 
generalizing energy and momentum of the special relativity to the correspond-
ing dynamical variables of the general relativity. In this specific case, possible 
and reasonable, regard ξε  and pζ  defining 

2 2
1 2 1 2, , M,
M

Gm m Gm m p
cp c

   
= − = − =       





ξ
ξ ζ ζ

ζ ζ

ε
ε χ

χ
 

where M = M  has physical dimensions of modulus of angular momentum 
and χ  is regarded as a proportionality factor linking pζ ζ  to M to be 
defined. Since the last equation has mere dimensional basis, χ  can be defined 
conveniently as the factor that converts pζ ζ  into an average value M = M  
of the modulus of the orbiting angular momentum M . This result turns next 
(5.110) into 

22 2
1 21 ,
M

m c m c Gm m
cp cp c
− +  

= +  
 

ζ ζ ζ ζ

ζ ζ

ε ε
χ  
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which reads eventually 
2 2 2

1 2
2

1 1 , , .
M

m c m cGm m k
k c cp cpk

ζ ζ ζ ζ

ζ ζ

ε ε
δφ δφ

χ
− + = + = = 

 
    (5.111) 

Note that if 0G =  then 1kδφ −= ; i.e. actually the value of k is not essential 
as concerns δφ , it is simply a reference value with respect to which is defined 
the change of φ  with respect to a value 0φ  in the absence of field. The essen-
tial quantity is instead the range size δφ , i.e. the shift of ζε  with respect to the 
rest energy 2m cζ . Hence it is sensible to introduce 1kφ δφ −∆ = −  in order to 
account for the change 0φ φ−  the gravitational effect in parenthesis only. Re-
write then (5.111) as 

2
1 2

2

1, :
M

Gm mconst const
c k

φ
χ

 ∆ = = 
 

           (5.112) 

the second position regards 2kχ  as mere proportionality constant of the 
gravitational term in parenthesis, assumed to be the one physically relevant be-
cause in fact it concerns the parameters G and M that govern the orbital beha-
vior of 1m  and 2m . Remind now (2.26) that refers to a circular orbit of 2m  in 
the gravity field of 1m ; in the case of an elliptic orbit one expects that the early 
steady condition consistent with circλ λ=  is reasonably to be replaced by a dif-
ferent wavelength ellλ . Let be ell circλ λ> , although still being ell elln r constλ δ =  
in order to generalize (2.26) 2circ circn rλ δ = π  while fulfilling the same kind of 
equation; with this assumption (2.26) is simply a particular case for ell circr rδ δ→ . 
Clearly ellrδ  is now an “effective” radius, taking into account that the perimeter 
C of ellipse is actually a function of its semi axes a and b; an approximate for-
mula is for example ( ) ( )( )3 3 3C a b a b a b ≈ + − + +π  , which is reliable for 
the present purposes because for a b=  it reduces to 2C a= π . If b a>  then 

( ) ( )( )6 3 3 3C a b a a b a b ≈ + − − + +π   reduces to 6C a≈ π  if the difference 
( ) ( )( )3 3 3b a a b a b− − + +  of positive numbers mutually self eliding becomes 

negligible with respect to 6a; so 6ellr aδ ≈ . With this numerical approximation, 
clearly 2 circ circr nδ λ=π  is to be replaced by 6 ell ellr nδ λ=π  with identical physical 
meaning; so, merging (5.112) with the quantum condition 6ell ellconst n rλ δ= = π  
yields eventually 

2
1 26 , 6 .
M

Gm m const
c

φ  ∆ ≈ = 
 

π π              (5.113) 

Are worth noticing in this respect two remarks on the “Kepler problem” ex-
posed in the textbooks [13] [21]. 

(i) The first one introduces the condition 2 j iπ  in a non-relativistic ap-
proach, where i and j are integer numbers to get a steady closed trajectory via a 
rational fraction of 2π ; in effect even in a classical model the perihelion preces-
sion is still possible, although insufficient to explain the astronomical observa-
tions. Here this condition is replaced by the quantum condition of an integer 
number of wavelengths in an elliptic orbit. 
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(ii) The second one lucidly shows step by step how to infer classically this 
famous Einstein formula of Mercury perihelion simply comparing two forms of 
potential energy of orbiting system; the mathematical formulation introduces 
first the mere Newtonian potential 1NU rβ=  and then also assumes an ex-
tended potential form 2

2U rζ β= , where 1β  and 2β  are appropriate con-
stants. Of course the plain Newton law does not justify Uζ , so that the ap-
proach shown in the book had mere speculative/didactic character. Nevertheless 
the procedure therein reported, very instructive and significant in principle, has 
actual interest here because the present theoretical frame does admit in fact 
higher order potential terms like Uζ  besides NU  once replacing the determi-
nistic r with rδ . Indeed (4.23) and (4.3) yield according to (1.2) and (2.12) 

( )

2

3

1 1

1 1 :

x nforce n n
t x t xx
n v n v x

x x x x

δ δ δ
δ δ δ δδ

δεδ δ δ δ
δ δ δ δ

   = = − = −   
   

   = − = − =   
   




 

 

       (5.114) 

the notation emphasizes that the time derivative xδ   is actually regarded as 
ratio of ranges ( )1xδ −  and tδ  as previously explained in the sections 2.6 and 
2.7. The former is in particular relevant: it reminds the curvature of space time, 
as explained in (4.15) and (4.16). Since the last equality of the chain yields in 
turn 

( )3 3 3 3 ,

,

n v n v t n x n xforce x x x x
t tx x x x

tx v t
n

δ δ δ δ δδ δ δ δ δ
δ δδ δ δ δ

δεδδ δ

′ ′ ′
′= = = =

′ ′
′

′ ′= =

   





 (5.115) 

is clear the implication here: requiring that 0x const xδ δ′ ′= =  with an ap-
propriate choice of tδ ′ , the result due to the space time curvature reads 

0
2 , .

n x xforce x x
x tx
δ δ δδ δ
δ δδ

′′
′′= =

′


             (5.116) 

It is evident that the reasoning from (5.114) to (5.116) just shown can be re-
peated, thus obtaining higher power potential terms. So the simple fact of having 
justified via (1.2) the potential (5.116) allows obtaining with elementary methods 
of classical mechanics the sought result, the perihelion precession tentatively 
exemplified classically in the quoted textbook. Here has been proposed an alter-
native derivation just to show that (5.105) is enough to obtain a crucial result of 
general relativity. Now, after having introduced the conceptual frame outlined 
by (1.1) and (1.2), it is sensible to proceed with calculations implementing (1.5). 

6. Cosmological Calculations 

62 3 1
2 7.8 10 m sG

c
− −= × ⋅

                     (6.1) 

In this section are calculated the numerical values of some relevant formulas 
inferred in the previous sections; after having outlined the theoretical frame, the 
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aim to show how the values (1.5) at today’s time fit the concepts hitherto intro-
duced. The strategy of the calculation scheme is that of implementing the values 
(1.5) more than once in various equations, whose global self-consistency sup-
ports the validity of the single results and outlines a unique conceptual frame. 
The fact of having inferred relativistic concepts via (1.2), see for example (5.93) 
(5.95) and (5.113) and the results in [16], shows that in fact even cosmological 
information should be sensibly accessible despite the agnosticism of the quan-
tum uncertainty. The following calculations are carried out assuming the value 
of π  approximately equal to that of the flat Euclidean space. The paper 
sketches also a few results already published in order to be as self-contained as 
possible. For sake of clarity the calculations are listed one by one in the various 
points below. 

1) Examining the numerical values quoted in (1.5), it appears that 24 uHΛ ≈ . 
This numerical evidence suggests that actually the true relationship between the 
literature estimates of 2

uH  and Λ  is reasonably 

24 .
3 uHπΛ =                         (6.2) 

This fact is interesting because an energy density η  is calculable via (2.2) as 
( )2 1c Gτ −  according to (1.4); in particular the 2time−  dependence inherent 
Λ  is 4 3π  times that calculated via 2

uH  because, despite the same physical 
dimensions, the former contains geometrical information with respect to the 
latter. Since η  is anyway energy/volume, (6.19) calculated as a function of 2

uH  
and Λ  read 

( )
2 2 2

3 :
4 343

uc H c
G G δ

Λ
= =

π π 

                  (6.3) 

hence according to the first equality the energy density η V  involving 2
uH  

implies the total energy   calculated in the total volume ( ) 334Vη δπ=  , 
whereas according to the second equality involving Λ  the volume pertinent   
is in fact expressed via 3V δ=  . In other words uH  requires explicitly the 
space time curvature implied by spherical geometry of mass containing universe, 
Λ  does not. For this reason Λ  and uH  are numerically interchangeable via 
a coefficient ~2 apart. Note now that 

18 1 18 12 4.33 10 s , 4.36 10 s , ,u u
u u

c c
r r

ω ν− − − −= = × Λ = × =π     (6.4) 

which shows the link between the cosmological constant and the estimated un-
iverse radius. This link is further confirmed considering that 2c Λ  and uc H  
are lengths; then calculate 

25 266.88 10 m, 1.36 10 mH
u

c c
HΛ = = × = = ×

Λ
          (6.5) 

and implement the quantum definition 2 r nδ λπ =  of (2.26), whose right hand 
side reads n   in (4.22) after having replaced λ  with the reciprocal curva-
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ture radius 1 1
r rλ λ− −′ ′′= −  via the De Broglie momentum wavelengths. Taking 

appropriately rδ  as the universe radius in the estimates (1.5), the numerical 
result is 

1

2
2 1 1

26 26

2

2

4.32 10 m 4.35 10 m

u u

r n

c nr r c r

n

δ

δ

−

− −

=

= =

×

π Λ =
Λ

= ×

π
 

 



     (6.6) 

With 1n =  the agreement of ur  with the estimates (1.5) is surprisingly de-
cent. On the one hand this result highlights the link of Einstein cosmological 
constant Λ  and today’s radius of Universe via the early quantum condition 
(2.23) in agreement with (6.4): as expected the estimated value ur  is related to 
the reciprocal curvature radius   of the Universe, here defined by the range of 
wavelengths 1δλ−  corresponding to rδ . 

On the other hand it is possible to match the dimensional definition of space 
time by defining the functions ( )3

uc HΛ  and ( )3
uc H Λ  along with 

3
u ur t  that share the dimensional property 3 1length time−× . A reasonable 

chance to merge these definitions in a self consistent way is in fact owing to (6.2) 
33 3

61 3 1 61 33 11.16 10 m s , 1.10 10 m s .u
u

u u

rc cH
t H

− −  
= × ⋅ Λ = × ⋅  Λ   

  (6.7) 

It is worth noticing that 

( )
3

23 1
2 1 m s .

u

G c
Hc

− 
Λ ≈ ⋅ 
 



                 (6.8) 

Combining together these equations thanks to their numerical values nicely 
coincident, one finds via Λ  the link between the fundamental cosmological 
parameters 

33 3 3 3 5 2
62 3 1

7, . . 1.70 10 m s ;u u
u

u u u u

r rc c cH i e
t H t H

−  Λ 
= Λ = = × ⋅  Λ   

  (6.9) 

it appears in particular the link between the estimated volume of of universe, 
proportional to 3

ur , and its estimated age ut . Owing to the physical dimensions 
of Λ  and uH  and their time dependence, one expects 

( )
3

2 .u

u

r
function of time

t
∝                   (6.10) 

Whatever this time function ( )2X X tδ=  might be, the fact that the depen-
dence of the ratio at the left hand side involves 2tδ  means that tδ  can be 
identically positive or negative, i.e. the time can run in principle away from or 
back towards the initial big bang. It is worth noticing a numerical accident, i.e. 
both today’s values (6.7) are reciprocal of 62 37.83 10 m s−×  calculable directly 
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with the fundamental constants of (1.1). 
2) In (6.4) Λ  was related to uω  pertinent to ur ; now, to extend further the 

link between theoretical results and (1.5), implement uH  too. Are relevant in 
this respect the Equations (5.64) to (5.65) that define mass, density and energy 
density as a function of the frequency ω  appearing in (5.62) and (5.63). Indeed 
via fk  it is possible to identify further mass density and mass directly related to 
the gravitational effect of matter in the universe, which clarify the meaning of 
such ω ; it has also to do with the geometrical implication of matter on the 
space time curvature, introduced in (6.2) and emphasized in (6.6). So uω  is a 
property of the space time, as it results in (6.4) regardless of any mass, instead 
ω  is related to the gravitational effect of matter in the universe. To clarify this 
point, let us introduce the following definitions 

2 ,
2

u
u

Hcr ξ ω
ω

= =                     (6.11) 

The first definition is nothing else but a way to express length c frequency=  
via the proportionality constant 2ξ , the second expresses ω  as a function of uH  
via the coefficient 1/2; in this way 2uH  takes the meaning of zero point energy 
of the universe, which of course is sensible once having introduced (5.60), (5.77) 
and (5.79). These positions are useful to obtain via the first and second (5.64) 

32
27

3

kg0.8, 14.4 10 ;
4 16 m

u u u ur H r H
c G cGω

ωξ ρ ξ −= = = = = ×       (6.12) 

as reasonably expected 1ξ  , whereas instead a proportionality constant very 
different from 1 would have suggested that something important was neglected 
when formulating the pertinent dimensional definition. However the value of ξ  
is not the only reason to justify the definitions (6.11). Indeed note that 

23 3
532 2.93 10 kg :

4 2
u u u

u

r H r cc cm
G c H G Gω ξ

ω
= = = = ×         (6.13) 

this result is significant because thanks to (6.11) it acknowledges the familiar 
(5.25), i.e. the link between *m mω =  and the universe radius *

ur δ=   of that 
equation. Eventually it is easy to calculate also 

( )

( )

2 3
9

3

2
2 17

2

J1.30 10 ,
16 m

kg3.54 10 .
8 8 s

u u

u u u vac
f

c r H c
G G

r H c r
k m

G

ω

ω

ω
η ξ

η
ω

−= = = ×

= = = = ×

         (6.14) 

It has been shown in (5.79) and (5.77) that the Newton gravity energy is ex-
pressible via a harmonic oscillator whose energy is governed by the force con-
stant fk . Here is a confirm of this idea calculating fk  via uH  while involving 
also the estimated size of the universe; indeed, defining by dimensional reasons 

27 3 53
3 3

kg8.03 10 , 6.61 10 kg.
m8

f u
kf kf kf u

u u

k H c
M r

r G r G
ρ ρ−= = = × = = ×   (6.15) 

This gravitational contribution due to the mass density 
fkρ  results thus de-
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cently comparable with the literature critical value 27 38.6 10 kg mcrρ − −= × ⋅  [6] 
quoted in (1.6) and with the value 27 39.9 10 kg m−×  reported in [5]. It is worth 
emphasizing again in this respect that even small deviations of ur  and uH  
from the estimates (1.5) can alter the conclusions here affordable, e.g. the com-
parison of ωρ  and crρ  of the Friedman equations; the comparison here pro-
posed aims to check that the present calculations yield, at least in principle, 
sensible numbers compatible with other literature outputs. As a further check 
about the link between (6.13) and (5.25), with *

urδ =  the value of *m  is 
greater than obm  in (1.6), as it must be, and fulfills (5.27). In fact, *

ut tδ =  and 
*m mω=  just calculated fulfill 32ut m G cω≤ ; indeed 

17 184.35 10 1.1 10 s.× < ×  
3) Note that 2

uH c  and cΛ  have both physical dimensions of force; in-
troduce thus an arbitrary length   according which holds the following corre-
lation 

22

2 2 :tot
tot u

u

Mmm G M r G
r

Λ = ⇒ Λ =



           (6.16) 

the first equation is a mere dimensional definition of force, in the second 
equation the dimensional mass and length are identified with the respective ac-
tual properties (1.5) of the universe. Considering the latter for the calculation, 
write then owing to (6.2) 

2 55
3

4 , 2.34 10 kg,
3

tot
u tot

u

M
H G M

r
= = ×πΛ =           (6.17) 

i.e. 
2

tot u uM G V H=  involves through uH  the geometrical volume uV  of the 
universe. 

4) Consider first (2.3) in the particular case where tδ , in principle arbitrary 
likewise any uncertainty range, is taken equal to the reciprocal Hubble parame-
ter measured today 

1 6 1 32 2
1 1

2 , .u u
G c G H t H

c
δ

η
− −   = =   

  

 

            (6.18) 

Then one finds 

( )2
9 36.52 10 J m :u

vac

cH
G

η −= = ×                (6.19) 

since no mass appears explicitly in this calculation, the energy density calculated 
in this way is reasonably regarded as, and in fact its order of magnitude agrees 
with, the acknowledged vacuum energy density in the Universe [23]. So vacη  is 
related to the swelling rate uH  of the universe; also, right hand side of (6.18) 
yields 

1 3
15

2 3.2 10 m.
u

G
c H

− 
= × 

 



                  (6.20) 

The value of this length fits well the order of magnitude of four neutron radii; 
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indeed 
1 3

1 16 16
2

1 8.10432 10 m, 8.0 10 m
4

calc estim
u neut neut

G H r r
c

− − −  = = × = × 
 

  [24],  (6.21) 

which suggests that vacη  is due to barionic matter consisting of two virtual 
neutrons. This indeed reminds the concepts of virtual particles introduced in 
(3.9) and (3.12); this estimate does not require that two corpuscles of neutral 
matter are actually present in Vη , indeed no mass appears explicitly in (6.19) 
despite its dimensional meaning of mass is due to G; rather the reasoning simply 
establishes an energy/volume ratio equivalent to that of two virtual barions, i.e. 
energy fluctuation driven time transients in Vη . The fact that vac Vη ηη =   of 
(6.19) is defined by an energy η  corresponding to two diametric sizes of 
neutron, suggests that Vη  should define one quantum state of vacuum with 
energy η  equivalent to that of two virtual barions; in principle two neutrons 
with opposite spins could fit one allowed quantum state. As vacη  corresponds 
to two virtual particles supposed non interacting in a volume Vη , about 

0.93 2 GeVη ×  , the volume size of one quantum state of vacuum should be of 
the order of 9 191.86 10 1.6 10 vacη−× × × , i.e. 

30.047 m .Vη                        (6.22) 

It is worth emphasizing that the energy density (6.19) is likely an upper limit: 
indeed no more than two neutrons with opposite spins can occupy one quantum 
state defined by (6.22), so that a lower energy density is in principle still possible 
e.g. with one virtual neutron only and an unoccupied state in Vη . This could 
happen for example when a black hole traps either m or om  of (3.12) only; in-
deed even vm  and *

vm  are rδ  apart in (3.9), according to the well known 
Hawking mechanism [25]. It appears that in fact (6.19), greater than ωη  of 
(6.14) although having the same order of magnitude, is upper limit of vacuum 
energy density. 

In summary, the universe is definable as a space time environment characte-
rized by its own size, energy and energy density, which in turn implies 
straightforwardly pressure as shown in the appendix A. These features introduce 
in a natural way another thermodynamic property, the temperature; this topic is 
concerned in 6). 

5) Since 2 2G c  has physical dimensions of energy volume× , define via 

vacη  and ωη  the energies 

2 2,
4

u u u
vac u

H r HG GH
cc cη ω ωη η= = = =


 

   
     

 (6.23) 

calculated implementing respectively the maximum and actual vacuum energy 
densities (6.19) and (6.14). This is interesting because it is possible to calculate 

52 52 522.32 10 J, 1.04 10 J, 1.28 10 J;vacη ω η ωδε− − −= × = × = − = ×      (6.24) 

these figures compare well with 
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52 18 11 1.15 10 J, 1.22 10 s ,
2 2

vac u
u

H
H

δε− − −= × = × =



       (6.25) 

in agreement with the definition (6.11). It appears that the quantum energy ηε  
directly implied by the Hubble constant is just that given by (2.2). This calcula-
tion is interesting as it emphasizes the direct link between Hubble constant and 
definition of space time (1.1) through the vacuum energy density, while also con-
firming (2.2) and thus the Newtonian (2.11) via the concept of acceleration (2.8). 

6) Implement (3.23) that yields 

( )
2

2 3
2, v x

t c
η

δ
′

′= = ∆


                    (6.26) 

where   and ′  are in general time dependent energies related to the initial 
energy density η . The physical meaning of these energies results particularly 
significant rewriting the first (6.26) as follows 

( )2

2, , , .B

B B

k
T T

k ktδ
′

′= = = =




  
           (6.27) 

The first equation is tested with the help of the universe timeline temperature 
vs time published by the Fermilab and reported in [26]. This point has been al-
ready concerned in [20], where it is shown through the plot of temperature vs 
time implementing the timeline data; it appears that actually   is a constant, it 
is the best fit coefficient of T vs 1 2tδ . In principle the result ′ = const  can be 
understood thinking a series expansion of ′  as a function of time with con-
stant zero order term and neglecting the possible time dependent higher order 
terms. To infer ′  of (6.27) and justify the linear plot calculable via (6.27), note 
that merging the Stefan Boltzmann black body constant σ  and the Boltzmann 
constant Bk  it is possible to define a new constant whose physical dimensions 
are 

2
2 2 ,Bk energy time length temperature= × × ×

σ  
whence the chance of defining in turn also 

2
* 2

2 .Bk temperature time
length energy

= = ×
× ×

σ
σ  

This suggests in turn implementing 
2

2
2, .BkconstT const

t
ζ

δ σδ ε
= =



               (6.28) 

Here T fulfills an equation similar to (6.27) despite the different definition of 
const replacing  ; the proportionality factor ζ  is justified when converting 
any dimensional relationship into an equation containing the corresponding 
dynamical variables. Of course if this equation is physically sensible one expects 

1ζ ≈ . To calculate (6.28) it is necessary to identify the physical meaning of ε  
and δ  . 

(i) As concerns  , merge (6.28) and (6.27) to obtain 
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2

2 2δ ζ
σδ

′
= =








B

B

kT t
k

 

so that 
4 4 3 2

2
2 2

60, ;B Bk k cζ
σδ σ

′ = =
π






                 (6.29) 

the second equation is the well known definition of σ . Hence 
2 2 2 2

2 2
2 2 2 2

60 60 ,
2
ζ ζ ν ν

δ δ
′

′′ ′′
π π

= = =
   

  c c
 

and eventually 
2

2

60 , , .ν ν ζ ν ν
ν ν π
′ ′

′= = =
′′ ′′

 

 
               (6.30) 

(ii) As concerns δ  , note that defining 2 2 3
P G cδ = =    and replacing in 

(6.29), trivial algebraic steps yield 
5

260 , .ζ′ = =  P P
cW W
G

 

At this point, assuming 
2 35, , 1.6 10 mν ν ν δ −′ ′′ ′= = = = ×   P  

(6.29) yields 

42
2 9

20.4, 0.16 , 1.9 10 J.
60

B

P

k
ζ

σ
= = = = ×

π
 

          (6.31) 

The numerical value of ζ  is acceptable. It is possible now to calculate (6.27), 
which reads 

91.9 10 ;T
tδ

×
=                       (6.32) 

two significant particular cases of photon energies at Pt t=  and ut t=  are 

( ) ( )308 10 K, 2.73 K.P uT t T t= × =              (6.33) 

This result has been already concerned in [20], where the coefficient const has 
been described in more detail. 

(iii) It is possible to confirm (6.32) considering now that the Stefan Boltzmann 
constant cσ  that has physical dimensions 4energy density temperature−× ; 
since the energy density has physical dimensions ( )2mass length time×  a sim-
ple dimensional analysis brings to 

2
1 2

1
mass cT t

length
δ

σ
− ×

=  × 
                  (6.34) 

i.e. also now appears the dependence of T upon 1 2tδ −  via the ratio 
m length ; so, equating the dimensional definition (6.34) and (6.27) via an ap-
propriate proportionality constant ζ , it is possible to write 
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1 4

2
B

mc T t
k
′  = = 

 





εζ δ
σδ  

and therefore 

2
2 4 2. . 1.31 10 J.Bk m mi e

c
ζ ζ

δ δσ
−

 
′ ′= = ×  

   



 
      

 (6.35) 

This equation contains two unknown ε ′  and m δ   and reads also, ac-
cording to (6.14), 

22 2 4 2

4 4 32

7.8 10 , .
4

f uB k Hk Ga
c ca

ζ ω δ
σ ζ ζω δ

  ×′  = = = =
 
 

 







  
 (6.36) 

The definition of acceleration appearing here is analogous to that of (4.13) a 
constant 4ζ −  apart. 

7) The dimensional analysis, proven useful to infer (5.25) by implementing 
(3.17), allows once more to obtain valuable information via (3.1). Replacing now 
in this equation 2 urδ = , the diametric size of the Universe, one finds the in-
teresting numerical correspondence 

3
54 54

2

2
, 1.17 10 kg, 1.11 10 kg,u u

st ob ob
st u

r rG M M m
M ctc

 
= = × = = × 

 




  (6.37) 

being obm  the estimated value reported in (1.6) of light emitting mass by ob-
servable stars only, whereas the subscript st stands for “space time”; so, owing to 

u ur ct>  and assuming a uniform dissemination of stars and galaxies in the 
whole Universe, the second (6.37) scales up obm  to the total light emitting mass 

obM  including all stars really existing, all observable if the light speed would be 
infinite: in other words it means to extrapolate the features of the observable 
universe even to that non observable from our standpoint. Therefore, owing to 
the physical meaning of 2G c , the left hand side of the first (6.37) concerns 
the ability of space time to generate light emitting mass st obM M=  throughout 
its volume per unit time, i.e. it yields the total mass of “ordinary” observable 
matter existing in the Universe regardless of the ability of its emitted light to 
reach any particular observation point. If so, then 

3

2

2
,u u

ob ob
u

r r
m M

ctG c
 

= = 
 

                 (6.38) 

i.e. 
5 3

2

21 .
2

ob u
u

ob

M G c t
r

m Gc
= =                    (6.39) 

The first equality relates ur  to the total amount obM  of ordinary matter 
known to us. It is attracting at this point the chance of comparing this partial 
value of mass to that totM  effectively existing in the universe. So, whatever the 
numerical values of totM  might be, nothing hinders to think 
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( )
2

1 , ,
2

tot x
u ob tot x

M M G
r M M M

c
−

= = −            (6.40) 

being xM  an extra amount of mass additional to that observable, to be defined 
according to the idea that it collects other possible mass contributions additional 
to that of all observable stars. Note that this conclusion is not due to experimen-
tal evidences on motion of celestial bodies, but to the numerical definition of 

tot obM M> . So, regarding xM  as a sum of possible extra-masses not yet consi-
dered, let us write in general 

.tot ob i
i

M M m= +∑                     (6.41) 

8) At this point, comparing (6.13) and (6.37) one finds 
54 544 1.17 10 kg, 1.1 10 kg.obm Mω = × = ×            (6.42) 

and then (6.40) reads 

4 .tot x obM M M mω− = =                   (6.43) 

On one hand 4obM mω=  supports the idea of regarding 4tot xM M mω= +  
with the coefficient 4 of mω  agreeing the idea of sum of masses in (6.41), while 
being ( )2

ob uM H mω≈ Λ  according to (6.2). On the other hand let us calculate 
and compare now the vacuum mass calculated through the vacuum energy den-
sity 

2
3 3 3

2

4 4 .
3 3

vac u
vac u u u

H
M r r r M

G Gc
η

Λ
Λ

= = =π= π           (6.44) 

Clearly both sides are an identity owing to (6.2), i.e. vacM MΛ=  the factor 
4 3π  has been included in agreement with (6.3) and (6.17) owing to (6.19): the 
fact that vacη  has been calculated as a function of 2

uH  whereas here totM  has 
been identified as a property related to Λ  justifies the necessity of introducing 
the geometrical coefficient. Clearly vacM  concerns the total mass of the un-
iverse related to *

v vm m+  inferred in (3.11); in other words the total virtual 
mass originated by the vacuum cannot overcome the actual visible mass existing 
in the universe, otherwise energy and energy density of the virtual and real un-
iverse could not be in equilibrium. First of all it appears that total real mass and 
vacuum mass fluctuation corresponding to the vacuum energy density are sys-
tems in equilibrium, i.e. according to (6.17), 

55; 2.34 10 kg.vac tot totM M M MΛ = = = ×            (6.45) 

As MΛ  is gravitational mass, it follows that vacη ηΛ= , i.e. vacuum and gra-
vitational matter with the same energy density are a system in equilibrium; also, 
both densities are representative of the mass and vacuum energy of the whole 
universe. As an immediate corollary of this result it is possible to calculate 

0.048,ob

tot

M
M

=                       (6.46) 

i.e. the whole observable mass in the universe, the one we know, is about 5% 
only of the whole actual mass. This acknowledged result is interesting because 
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obM  has been calculated in (6.43) via mω , which in turn shows that ur  fulfills 
the black hole condition (5.25). Moreover it is possible to write vac totη η=  and 
thus 2 2

vac u tot uV c V cη η= , while being 2
tot u totV c Mη =  by definition the total 

in the volume uV  of the universe. 
9) Concern now the residual mass xM  prospected by (6.43) and (6.41). With 

reference to (3.11) and (3.12): 
-one of these terms, call it *

obM , should concern the antimatter virtual mass 
*
vm  created along with the matter virtual mass vm  with the condition 
*
v vm m= ; 
-a second term, call it mδε , should concern the energy gap 2

v cδε  due to 
fluctuation frequency 1

vtδ
−  of (3.12); 

-a third term, call it mm , should be directly related to v  accounting for the 
fluctuation energy driven formation of the virtual masses themselves. 

Without excluding in principle possible additional terms, let us examine these 
terms only; write then 

( )*
m .tot ob obM M M m m= + + + δε  

First of all, let be reasonably *
ob obM M= , i.e. the amount of visible matter is 

equal to the amount of visible antimatter; without concerning now for the 
present purposes where the antimatter should actually be, a glance to (3.12) 
suggests that this last equation reads 

m2tot obM M m m= + + δε  
and yields 

m2 1;ob

tot tot tot

M mm
M M M

+ + ≈δε

 
The notation emphasizes that are considered in this estimate two terms mm  

and mδε  of the sum (6.41) only. Owing to (6.46) this result reads 

m 0.9.
tot tot

mm
M M

δε+ ≈                      (6.47) 

Next it is reasonable to assume 

m2 :
tot tot

m m
M M

≈δε

 
indeed m2m mδε =  because the mass equivalent of the fluctuation energy v  in 
(3.11) is twice that of 2 * 2

v vm c m c= . This last position inserted in (6.47) is 
enough to conclude 

m 0.3, 0.6, 0.1.ob

tot tot tot

m Mm
M M M

δε≈ ≈ ≈              (6.48) 

These terms estimate quite well the known ratios between the amounts of 
dark matter and dark energy with respect to the amount of familiar visible mat-
ter in the universe. 

10) This last point concerns the black holes. Consider δ   and m of (5.25) 
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omitting the asterisks for brevity; then define the following feature of the black 
hole 

( ) ( )
6

3 2 3 .
4 3 32 3

m c
m G

ρ
δ

=
π

=
π 

               (6.49) 

To examine the physical implications of ρ  multiply both sides of 1ρ−  by 
an arbitrary mass m′ , reciprocal volume 3rδ −  and c via a proportionality fac-
tor ζ ; noting that ( )3m c rρδ′  has physical dimensions length/time, one finds 
according to (4.2) 

3 2

3 3 5

32 , .
3

m c G m mr r r
tr r c

ζ δδ ζ δ δ
δδ ρ δ

′ ′
′ ′= =

π ′=           (6.50) 

The ratio at the left hand side has been indicated as rδ ′  to emphasize that it 
is in general different from rδ  and its sign depends on ζ . The physical rea-
son of these steps appear recalling (3.9); rewriting the right hand side as follows 

2

2 5

32
3

Gm Gm Gr
r r c

ζδ
δ δ

′
′ =

π
                   (6.51) 

it is possible to implement (3.9) and the position 2
om m m= , as already ex-

plained in (2.11). Hence 

2 5
124 , ;
32

oGm mGm Gr
r r c

δ ζ
δ δ

π
′

′− = = −               (6.52) 

even in this case the proportionality constant is of the order of unity. At this 
point it is also legitimate to regard the arbitrary m′  as om m m′ = +  so that 

3 2 2
1 14 , , o

o
Gm mG Gmr F m m m F

n c c r n r
δ

δ δ
′

′ ′= = = + =
′

π −
′

      (6.53) 

and then 
2 2 2

2 2 2

222 2

4 4 4

,
4 4

P P P

P P
r

r r

n n r n rF r
t t n

p pn n p
t p p

   ′ ′ ′ ′ ′
′= = =   ′   

   ′ ′
′= = −   

π π π

π ′   π′

  



   



δ δ δ δδ
δ δ

δ δ
δ δ δ  

being Pp  the Planck momentum. Note eventually that it is possible to put 

r Pp n pδ ′ ′= , in which case the last equality of the chain reads 4 rF pδ ′= −π , so 
that the last (6.53) yields 

34 4 , o
r r

mF G m r p p
t r
δρ δ δ δ ρ
δ δ

′ ′= − =π − = =π −  

i. e. F is proportional to rpδ   as it must be. Then, owing to (4.2) and regard-
ing m as a constant, 

( )

( ) ( )
2

2 2

2 2 2

1 1 14

, .

r
tG p

m r t m r t r m r
m m

r r r m

δ δεδ δ δεδρ δ
δ δ δ δ δ δ

δ δε δ ε δ φ εφ
δ δ δ

′− = − = − = −

= − = − = − =

π
 

This result is nothing else but the gravitational Poisson’s equation whereas 
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contextually φ  yields energy per unit mass i.e. the gravitational potential, 
which shows that the definition (6.52) of ζ  is sensible. As stated in (5.70) and 
(5.71) the factor 4π  fits well the numerical coefficient 64/5, the deviation being 
a few % only; so with the definitions of ζ  and m′  (6.51) reads 

( )
2 54 ,o oG m m Gm m Gr n r

r r c
δ δ

δ δ
+

π′ ′= = −               (6.54) 

which is is nothing else by the Einstein collapse rate of two orbiting masses: rδ   
has the correct relativistic form expected for the orbit radius contraction of a 
gravitational system due to its energy dissipation rate via gravitational waves, but 
now it is quantized in agreement with (5.74). Hence (6.49) is sensible starting 
point to calculate the dynamics of a gravitational system compliant at least in 
principle with the general relativity. Of course here the reasoning has been sim-
plified and shortened for sake of brevity only; the aim of this last point is to jus-
tify the validity of (6.49) and its ability of defining the black hole energy density 

( )
8

2
2 332 3

cc
m G

η ρ
π

= =                   (6.55) 

To examine (6.49) and (6.55), rewrite first as usual m as w times the solar 
mass SM  that is 

301.989 10 kg;SM = ×  
so one obtains 

19 36
3 3

2 2

1.9 10 1.7 10kg m , J m , 0 .tot
w w

S

M
w

Mw w
ρ η× ×

= = < <    (6.56) 

Also, noting that 2density G time−× = , it is possible to relate a time range wtδ  
to the first (6.56) given by 

5
3

32 3
2.8 10 s.S

w
M G

t w w
c

δ −= ×
π

=              (6.57) 

These values have been expressed via the arbitrary factor w as a function of 
the Sun mass, which as such has no particular physical meaning; this position 
simply helps to express the results of the following calculations in term of solar 
masses, as it is usual in astrophysics. A first interesting corollary implied by 
(6.55) is that if it is correct, as in effect it seems sensible owing to its reasonable 
implication (6.54), then it happens that η  diverges for 0m → : this means that 
there must be a lower limit of m to allow in practice the rising of the expected 
black hole behavior. In other words, the smaller m, the smaller the probability of 
forming a black hole for example by end life collapse of a low w star; the proba-
bility of forming small black holes should likely decrease with 2w−

 . 
Note that (6.56) and (6.57) have been inferred implementing exclusively 

(5.25), i.e. in (6.49) 3m δ   has been calculated with a unique m fulfilling also 
δ   of (5.25). So (6.56) and (6.57) refer to the black holes according to (6.49) 
and evidence the chance of a huge range of mass and energy densities in prin-
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ciple possible, regardless of the specific explanation about their actual formation 
mechanism/process. 

The black hole density introduced in (6.49) can be rewritten according to the 
following equivalent forms 

( ) ( ) ( ) ( )
6 2

3 2 3 2 2

1 .
4 3 32 3 3 3

m c c
m G G G t

ρ
δ δ δ

= = =
π π 8π

=
8π 

   (6.58) 

As expected, in the first equality the density is proportional to this mass con-
tained in a space time volume 3δ  . Yet (5.25) allows introducing the second 
expression where ρ  is proportional to 2m−  and even other forms where the 
mass does not appear at all explicitly; in the last equality does not appear even 
the size of the black hole, rather ρ  depends on 2tδ  via G, thanks to the phys-
ical dimensions of this latter. These terms are not trivial duplicates of the first 
standard definition: the third equality depends on 2δ −

 , and thus is particularly 
interesting to describe the black hole evaporation rate, which is clearly a surface 
phenomenon, whereas the last equality introduces explicitly the time. The phys-
ical interest of (6.58) is confirmed calculating ρ  with ut tδ =  of (1.5); the re-
sult is 

27 3
2

3 9.45 10 kg m
8u

uGt
ρ −=

π
= ×                (6.59) 

in agreement with (6.15) and [5]. Also note in particular 

( )
2 2

2
2 2 2

3 3 2 , 4 :
23 4

c c A A
G G G c

ρ δ
δ δ

π
8π π

= = = =
  



   

     (6.60) 

this result is significant as it introduces the space time definition (1.1) and the 
black hole surface A. It is evident that all ways to define ρ  can be legitimately 
implemented; since these ways are of course self consistent, the choice of the 
most appropriate form depends on its ability to describe the evaporation time 

evtδ  as a function of the initial black hole volume bhV . The ability of a black 
hole to evaporate is now assumed to be a property of the space time defined in 
(1.1); write then the last equation according to (1.3) as 

2

2 2 2

3 3 3, ,
2

2
2

A t A A A
V G c G c G c

ρ ρ δρ δ= = = = −
 

   

     (6.61) 

where the first equality has been written by dimensional reasons. Once again 
therefore it is possible to specify this equation to the case of interest via a pro-
portionality constant ζ ; writing ev bht V t Vζ δ=  yields 

3 3 3 3
3

2 6 6

8 83 4 4, ,
2 3 3

bh bh S
ev bh

V m G M G
t V w

G c c c
= = =

π π


ζδ
 

whence the result 
3 3

3
2 6

32
,S S

ev S
V M G

t w V
G c c

δ ζ
π

= =


             (6.62) 

whose value calculated with (6.1) is 
72 34.2 10 s.evt w= ×δ ζ  
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The problem is now to determine ζ , which is not mere numerical propor-
tionality factor; rather it is a multiplicative factor of V introduced in (6.61). In-
deed during evaporation V cannot simply be the initial volume bhV  of the eva-
porating black hole, whereas after evaporation the region of space time pre-
viously occupied by the black hole turns into vacuum; this implies a change of 
local space time curvature, initially equal to that of the black hole surface. 
Eventually also consider that any evaporation process is a surface driven event; 
thus one expects that the black hole surface swells progressively and diffuses into 
vacuum with respect to the initial volume of black hole matter, whatever it con-
sists of. So one expects reasonably 1ζ > , which explains while the time calcu-
lated here is smaller than that inferred by Hawking, about 746 10 s× . 

Admitting an effective volume bhV ′  of evaporating black hole, which reason-
ably implies a reduced average density due to a decreased local density at and 
below the surface, it is possible to rewrite (6.62) as 

( )
3

33 3
2 2

4 4 2, , ,
3 3

bh
ev bh

V mGt w V
G c c
′ ′ ′ ′ ′= = =

π
=



π







ζδ ζ δ ζ ζ
 

being ζ ′  the swelling parameter such that by definition δ ζ δ′ ′=  . To ac-
count for the loss of curvature after evaporation it is reasonable to implement 
(6.2) that relates uH  to Λ ; so, putting 2

uHζ ′ = Λ , the last equation reads 
3

2 2

4 2
3bh

u

mGV
c H

 Λ′ 


π
= 

  

so that the order of magnitude of this value 74 32.7 10 sevt wδ = ×  fits that calcu-
lated by Hawking. 

7. Discussion 

The present theoretical model has shown the chance to infer quantum and rela-
tivistic outcomes starting neither from the deterministic metrics of special and 
general relativity nor from the operator formalism of the wave quantum theory, 
which is actually a byproduct of (1.2) as shown in the section 2.8. 

This preliminary idea was suggested by the textbook [13] where, starting from 
the metrics to infer the Lorentz transformations, are determined in particular 
the transformation properties of three components of angular momentum. On 
the one hand this result is unavoidable, because the reasoning underlying the al-
gebraic steps is correctly exposed in the quoted book; unfortunately however the 
quantum theory admits one component of angular momentum only, through 
which is calculable even M2 itself as shown in the section 5.3. Clearly the wrong 
point is not the theoretical reasoning implied while implementing the determi-
nistic metrics, but just the fact of starting from such a metrics in a self contained 
way regardless of its quantum compliance. On the other hand an analogous dif-
ficulty also rises when relativistic features are sought starting from the funda-
mental postulates of the wave quantum mechanics: it is difficult to acknowledge 
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what have to do the Lorentz transformations with the indistinguishability of 
identical particles and their reference to Bose or Fermi statistics. 

In other words, merging quantum theory and relativity into a unique concep-
tual frame is problematic because the two-way correspondence “deterministic 
metrics   wave quantum theory” doesn’t work. 

This conceptual gap is in turn due to the initial purposes of either theory: the 
wave quantum theory was in fact born to explain why the electron does not fall 
into the nucleus, the relativity to formulate a covariant approach to the nature 
laws. The right direction to follow is thus to merge not the whole theories them-
selves, but rather their fundamental roots from which everything follows. It is 
intuitive that the physical frame able to account for the conceptual pillars of both 
theories consequently will also be able to account for their specific topics; in 
effect it has been easy to show throughout the exposition of the present model 
that relativistic and quantum outcomes are contextually inferred in a 
straightforward and simple way. Thus the strategy of the present model follows 
the idea of waiving the standard premises of both theories, not because they are 
wrong per se but because they are incompatible, at least in the usual form cur-
rently implemented: instead of thinking an advanced relativistic formulation of 
problems into which to include successively also the quantum requirements, or 
vice versa, seems more practicable the idea of identifying a common conceptual 
root to start with, in order to infer as a natural corollary the fundamental axioms 
of both theories. In principle it seems hard the idea of abandoning the determinis-
tic metric able to formulate covariant laws of physics, although it conflicts with the 
Heisenberg principle and the non locality/non reality; likewise it seems equally 
hard to give up the corpuscle wave dualism capable of explaining the tunnel effect, 
although it has seemingly nothing to do with the perihelion precession. 

In addition this preliminary intent is still not enough to outline adequately the 
physical problem, there is a further conceptual difficulty. 

Usually, the idea of quantum relativity reminds concepts like quantization or 
gravitational interaction between particles moving at speed near c or even su-
perposition of gravitational states. In this respect nothing hinders in principle to 
conceive the actual corpuscles as waves: then, since F p=  , it is anyway possible 
to introduce p h λ=  and next to define 2F hλ λ= −  . Eventually, introduc-
ing the uncertainty (2.41), it is possible to proceed towards a gravity field valid in 
all reference systems. 

This outline of alternative approach shortly sketched as a corollary of De 
Broglie momentum would certainly allow an innovative relativity without in-
surmountable efforts. But unfortunately this is not the true crucial point: the 
classical mechanics or standard relativity could not fit the conceptual character 
of the quantum world without accounting for two points that no mathematical 
code could ever introduce: the non locality and non reality, without which phe-
nomena like the entanglement could never be explained or even conceived. 
Without these distinctive quantum features, would be out of our mind the Bell 
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inequality, which instead is a fingerprint of the gap between relativistic and 
quantum theories as shortly sketched in Appendix C. 

Actually the most important problem is to obtain a non-local and non-real 
general relativity. 

These features seem oxymora when concerning real corpuscles that someway 
must be referred sooner or later to the Newton law, may be as a particular case 
or limit condition. In other words the crucial point is either to make relativity 
non local and non real or to demonstrate that quantum physics is local and real. 
Yet the experimental data show that the second alternative is unphysical; so the 
only attempt to formulate a successful connection between the theories is the 
first chance, which however requires a new conceptual reformulation well 
beyond the mere mathematical strategies. 

In this respect the results of the present model indicate that (1.2) are a simple 
and reliable candidate to account for both theories. The standard quantum me-
chanics implements the operator formalism that by definition is related to the 
wave behavior of particles; yet to match relativity it is more sensible to imple-
ment the corpuscular behavior of particles according to the uncertainty, which 
inherently imply both delocalized mass and wave behavior. This intuitive state-
ment summarizes the basic idea on which has been conceived the strategy of this 
paper. Clearly the mathematical formulation of the theoretical model must be 
consistent with these premises. 

The universe implies the uncertainty. Indeed the mere definition (1.1) of 
space time takes implementable physical meaning when written first as in (1.3), 
which in turn provides physical information when rewritten further as in (2.1) 
and then as in (2.2) and next as in (2.29). 

Often the algebraic steps have been inspired by and based on initial dimen-
sional relationships, rather than on mathematical equations: the former are 
actually conceptual similarities, the latter prospect specific local values. This is 
for example the case of Equations (2.9) or (3.1) or (2.29); yet (1.3) and (3.20) are 
examples of how the dimensional premises turn into a physical formulation to 
be compared with the experience. But just this comparison rises a further crucial 
point: the concept of measurement. 

As in fact the strategy of the present paper has followed these ideas, anyway 
the resulting (2.40) of the section 2.6 can be nothing else but agnostic relation-
ships between ranges of dynamical variables preliminarily introduced in (1.2); 
strictly speaking their agnostic essence is a corollary of the initial abstract con-
siderations, in turn based on the physical dimensions of the fundamental con-
stants of nature. The physical kernel of these constants contains however all in-
gredients necessary to “materialize” their dimensional implications: as a matter 
of fact the uncertainty ranges of dynamical variables inferred in this way, see e.g. 
(2.29) and (2.35) or (5.45) and (5.46), fulfill not only the same relativistic trans-
formation properties of the local dynamical variables but also the Heisenberg 
requirement. It is then evident the more general character of the present ap-
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proach and thus its comprehensiveness even of the relativity: (1.2) ensure an ap-
proach more general than that of the standard wave mechanics, because they in-
clude this latter: the results evidence that one thing is the wave mechanics, other 
thing is the quantum theory based on (1.2) that appears compliant even with the 
relativity. 

In particular, the remarkable Einstein intuitions of regarding the force as 
space time curvature and the equivalence principle that unifies the concepts of 
force and accelerated reference system, are here corollaries of the heuristic con-
cept (1.1) of space time that bypasses the deterministic tensor formalism to de-
scribe a curved space geometry. Actually even the curvature (4.22) and (4.25) is 
the particular case of a more general concept of space time deformation (4.23), 
in turn due to the agnostic idea of replacing local coordinates, regarded as ran-
dom, unknown and unknowable and thus unphysical, with uncertainty ranges. 
Is crucial the fact that these uncertainty ranges surrogate not only the relativistic 
equations defined by local coordinates of the standard relativity but also the de-
terministic metrics itself, thus demonstrating their fundamental physical meaning. 

It has been emphasized that (1.2) remind standard concepts of statistical 
measure errors: just as no one trusts the reliability of a single measure in its ex-
perimental error bar, likewise (1.2) waive the signification of a local dynamical 
variable in its uncertainty range. Regarded in this way, the uncertainty has 
nothing weird or puzzling: yet its conceptual requirement makes the local dy-
namical variables elusive and in fact non existing, just as do not exist in principle 
measurements absolutely exempt of any errors. Yet this simple idea becomes in 
the quantum world a conceptual limitation of the human knowledge, thus de-
monstrating that the reality we see is elusive like that resulting by unavoidable 
measurement errors affecting the “true” ideal value. Nonetheless it would be 
wrong to regard the uncertainty with mere negative and reductive meaning: 
considering uncertainty ranges instead of deterministic local values is crucial to 
infer the equivalence principle of the general relativity, section 5.2, and even the 
Newton law, section 2.2. 

First of all, it is worth noticing that even combinations of uncertainty ranges 
additional to (1.2) have physical meaning and allow defining characteristic fea-
tures of quantum matter even without necessarily pairing conjugate dynamical 
variables. A short example is sketched just below with reference to Equations 
(2.43) to (2.46): 

( )2 2 2

,

0, 0, 0,

δεδ
δ δ

′
′ ′= = = − = −

′ ′ ′
′ ′ ′ ′ ′= − = − = −





 

r r

r r

n Ze r Ze mp p m
t r r t t
p p t t

 

whence 

( )2

2 .
n tr

tZe m
δ

δ
′

= −


                      (7.1) 

Let be by definition 
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( )00 , , , , ,t nt t t t r r n n n
t t n

δδ δ δ
δ

′ ′ ′′−′ ′ ′′ ′ ′′− ≥ = − = =
′ ′′ ′′ ′−




      (7.2) 

consistently with the arbitrariness of ranges in (1.2). On the one hand with the 
equality sign, possible in (7.2) in the particular case 0t′′ = , (7.2) reduces to 
Bohr’s radius; it answers the early question about why the electron does not fall 
into the nucleus. On the other hand, excluding 0rδ =  incompatible with (1.2), 
it also appears that electron transitions between states with different energy are 
also allowed as a function of time, along with the necessity of quantum numbers 
additional to n to account for the related variety of spectral lines. 

Thus appears appropriate to start with is the definition (1.1) of space time, 
which in addition to the concept of uncertainty brings to invariants of special 
relativity in (2.47) and appendix B, contextually to the dual wave corpuscle be-
havior of matter, section 2.4, the quantization and the indistinguishably of iden-
tical particles, section 2.6, along with the rationale of the non local and non real 
properties of the quantum world, section 2.7. 

The arbitrariness of uncertainty ranges hitherto invoked is thus not purpose-
ful; it is a fundamental concept that pervades systematically any algebraic step of 
the present model, including even the relativistic formulas. Accordingly both 
theories become non real and non local because of the conceptual lack of deter-
ministic dynamical variables. On the one hand this lack prevents knowing the 
intrinsic physical properties of a quantum corpuscle, being instead accessible its 
status perturbed by the measure process; indeed this perturbation driven range 
of values is just that appearing in (1.2). On the other hand this lack also prevents 
defining deterministic space distances and time lapses and regarding separately 
luminal or superluminal states: the corpuscle is not “here” or “there” but simply 
is in its space time uncertainty range. These concepts, previously considered dis-
tinctive of the quantum world only, become shared in the present model even 
with the relativistic world. 

Coherently the Schrödinger cat simultaneously dead and alive teaches that the 
quantum world admits the superposition of states each one of which corres-
ponds to a real chance for the usual classical world. This way of thinking, widely 
accepted as unavoidable weirdness, appears instead legitimated now even for a 
gravitational system; the failure of the concept of trajectory in the quantum 
world results here through an orbit circular but simultaneously elliptic whose 
geometrical parameters, like major and minor semi-axes, are someway hidden in 
the unknowable parameter 0rp  of (2.28). Put in this way, the superposition of 
states appears coherent the idea that a planet orbit is neither circular not elliptic; 
it is a superposition of chances “per se” legitimate and thus not singularly refut-
able without a valid reason, which actually does not exist. 

On the one hand the outline just proposed supports the idea that the space 
time of (1.1) is a physical entity characterized by its own properties like energy 
density, pressure, energy and force. In other words, the volume 3xδ  expressing 
the dimensional definition 3length  of (1.3) is a physical entity that can be fur-
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ther implemented according to its own properties in the various sections. 
On the other hand the uncertainty is regarded without having in mind only its 

original quantum implications, for this reason has been emphasized its imme-
diate derivation from the operative definition of space time proposed in (1.1) as 
early exposed in [4]. In other words have physical meaning the uncertainty 
ranges, and not the random local dynamical variables. 

To link quantum and relativistic physics implies a conceptual cost; for example 
the Lorentz transformation of x and x’ does not read ( ) ( )x Vt x Vtβ β′ ′− → +  
because the local time and space coordinates are unknown, it is only possible to 
consider x xδ δ ′→  but only the origins of the inertial reference systems. As a 
first remark about the quantum theory in this respect, note that the previous 
considerations are enough to bypass a wave based quantum approach only, as it 
is currently done, to start instead from the (1.2) totally agnostic but just for this 
reason more general; nevertheless the wave formalism and all its well known 
implications are in effect a straightforward corollary of the quantum uncertainty. 
As a further remark, is worth emphasizing that in this model are missing equa-
tions of motion to be solved; yet it is natural because (1.2) skip even the proba-
bility of local position. So also concepts like “comoving coordinates” are useless 
because is missing the concept itself of local coordinate, systematically replaced 
throughout this model by the physical concept of coordinate ranges; nothing is 
assumed known about these latter, while the same holds for any other dynamical 
variable. Nevertheless, just this agnostic approach allowed to obtain in a 
straightforward way relevant outcomes of general relativity and numerical re-
sults of the section 6 skipping crucial concepts like distances between objects, 
classically defined. Although the present model waives concepts definable in the 
frame of a deterministic metric, the conceptual limit put by the uncertainty se-
lects the allowed knowledge actually accessible to the observer; e.g. by this 
reason one component of angular momentum is physically definable. Without 
being aware of this conceptual limit, relativistic and quantum theories would 
remain incompatible with each other. 

Also note that aim and formulation of the present model are in principle dif-
ferent from that of Dirac in describing the relativistic hydrogenlike atoms: in His 
model, Dirac implements known relativistic concepts to infer a wave equation 
consistent with the ideas already formulated by Einstein. Here instead the fun-
damental principles of both theories are consistently cogenerated “ab initio” in a 
self contained way. The only common premise is that both (1.1) and in turn 
(1.2) merge together space and time, which therefore are meaningless separately: 
the former implicitly by dimensional reasons, the latter explicitly. Thus it is evi-
dent that (1.2) cannot imply any metrics, i.e the chance of defining lengths, an-
gles and so on, just because size and orientation in the space time of all uncer-
tainty ranges are completely unknown by definition; nevertheless the conceptual 
physical formulation of vectors follows by extrapolating physical concepts, i.e. 
simply guessing the meaning of dynamical variables corresponding to the range 
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sizes. An example is (4.12) inferred from (4.11), whereas a Dirac-like equation 
including also the Lamb term has been inferred in [9]. 

In this context, special attention deserves the quantization, which is not mere 
mathematical feature of the quantum reality but has a general valence in that 
involves even the relativity for the reasons already emphasized in the sections 2.6 
and 2.7 and further sketched here thinking in particular to (2.41). It has been 
shown that n arbitrary integer makes indistinguishable x pδ δ  from x pδ δ′ ′  
and thus tδεδ  from tδε δ′ ′  in the respective R and R’; accordingly is also lost, 
by quantum reasons, the concept of simultaneity initially proposed by Einstein 
through the invariance of c. Not only is missing “a priori” the existence of privi-
leged reference systems, but also becomes inessential the requirement of the dif-
ferent form of equations in R and R'. Since this holds for any uncertainty range 
by definition, in fact (2.41) bypasses the necessity of specifying inertial or 
non-inertial reference systems of the dynamical variables; accordingly it is possi-
ble to regard the ranges of (1.2) independently of how is defined their own R. 

The last remark to be emphasized at this point is the kind of mathematical 
approach compliant with the premises of the present model, i.e. the dimensional 
analysis. To exemplify shortly how an elementary dimensional equation carries 
effectively physical information, consider mass velocity length= × ×  and turn 
in into mvζδ=  ; as previously explained, the dimensionless proportionality 
constant ζ  aims to convert abstract dimensional concepts into operative dy-
namical variables of physical interest. At the right hand side appear four quanti-
ties that do not need being constant themselves, must be constant their product. 
Putting 

0 ,=
β

ζ
β  

where 0β  is a constant, one finds 

0 0, , .mv mvp p′ ′= = = =    β δ δ δ β δ
β β  

Hence it is also possible to write 
2 2

0 02 2, , ,v mc mv mct t
c c

  ′ ′= = = = 
 





δβ εβ δ δ ε
β β  

which yield 

0

, tt t′= =

δεδ δ
β  

and then also 
.t t′ ′ = δ δ δ δ  

Specify now 

( )
2 2
00

2 2

1
, :

1

v c
v

v c

−
= =

−

β
ζ ζ

β
 

this last position defines the momentum p, the energy  , the Lorentz transfor-
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mations of δ   and tδ  and the space time invariant of the special relativity; 
δ   and tδ  are proper length and time. The second statement has introduced 
a condition on ζ  additional to mv constζ δ = , which in fact reads  
( )f v m constδ = ; i.e. three arbitrary and independent variables concur to de-

fine const to obtain the given results. This actually leaves undetermined the nu-
merical specification of  , whose unique value holds for any δ   and m what-
ever ( )f v  might be. It is interesting a remark: the consequence of having in-
troduced 0β  and β  is that the mere definition of   introduces physical de-
finitions of new values of dynamical variables tanks to the Lorentz factor, which 
not only codes their transformation between inertial reference systems but also 
concurs to a dynamic physical reality coming up to the static initial one. It 
should be clear now why the dimensional equations previously introduced effec-
tively enable a theoretical model based on arbitrary quantities that, as such, can 
be nothing else but non-real and non local by definition. At this point is attract-
ing the idea of verifying the effectiveness of such a dimensional analysis for (1.1) 
too, the starting point of this paper. Consider thus the following chain of equali-
ties with the help of (1.2) 

3 2 2
20 0 0 0 0

0 0 02 2 2 2 3 2
00 0 0 0 0

0
0 0 2

0 0

,

, ;

n n vG x v
pc c m t c m p m c

v
p m c

δ δε δ
τ δ δ

δδ δ
δε

τ
δ

= = = =

= =

  
   



      (7.3) 

then write 

( )
2

2 0 0
0 0 0 0 0 0 0 0 02

0

, , ,
xG x v v v

c
= = = =




 

δ δ
τ δ δ δ δ τ δ τ δ

τ  
which yields 

2 22 4
2 2 2 2 2 2 2 2 20

0 0 0 0 0
0 0 0 0 0 0

1 .
G cG c G cc c c c

x x x
 

− = − = − = − 
 


 



τ
τ δ τ τ τ

δ τ δ τ δ τ  
Hence 

2 2
2 2 2 2 2 0

0 0 0 02
0 0

1 , ,
v G cc c v

xc
 

− = − = 
 



τ δ τ
δ τ  

which reads thus 
2

2 2 2 2 2 2 2 2 0
0 0 0 0 2, 1 .

v
c c

c
 

′ ′∆ = − = ∆ ∆ = − 
 

   τ δ τ
 

It means: 2 2
0c τ  less something yields Lorentz contraction of 2 2

0c τ  itself in a 
different inertial reference system moving at relative constant rate 0v . 

8. Conclusions 

The basic assumption of the present physical model, surprisingly simple and in-
tuitive despite the complexity of the concerned task, implies a huge amount of 
further considerations; a more systematic examination has been carried out in 
[16]. This paper does not aim to introduce new equations to be solved to infer 
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information: yet, owing to (1.2), quantum systems for which a simple analytical 
solution exists are described in complete agreement with the wave formalism 
without solving any equation. The same holds for relativistic quantities, e.g. 
(2.35), (5.113) and (5.79). 

The implications of the approach hitherto introduced consist of at least four 
open points. (i) According to (3.10) the gravitational interaction between matter 
and antimatter is repulsive, being found with a positive sign. On the one hand it 
has been found in other papers [9] that both signs are compatible with the New-
ton law inferred in the present conceptual frame, as it results also in (2.11) and 
(4.9); this follows from ( ) 2p n x xδ δ δ−= − 

 , examined in section 5.2, whose 
sign depends uniquely on the size change rate xδ   of xδ  that in principle can 
swell or shrink. If this reasoning would find experimental confirm, then would 
be validated the idea prospected in [4] i.e. the antimatter originated contextually 
to the ordinary matter as in (3.11) could be repelled at the boundary of the un-
iverse, which should consist of an outer shell of antimatter. 

(ii) Various definitions of acceleration have been found in this paper, e.g. 
c   in (2.9) and vω  in (5.77), to which in principle correspond respective 

forces. It is sensible to ask at this point whether these definitions are redundant 
repetitions of a unique force, while being however formally different only, or in 
fact these definitions concern forces of different physical nature. Seemingly (2.9) 
and (5.77) can be regarded as analogous results, because they merge into ω=   
a factor v c  apart. However this is not generally true, because   is not neces-
sarily replaceable with ω  only. For example a tidal force does not involve the 
Planck constant. In effect 2x tδ δ  of (4.13), 2v δ   of (4.14) and 2c δ   of 
(5.32) appear profoundly different; the arbitrary ranges defining these expres-
sions share only the physical dimensions 2length time . So it is sensible to ex-
amine the problem of establishing if and when the various forces in principle 
implied are effectively reducible to a unique concept or instead to the funda-
mental forces of nature, e.g. typical of subnuclear interactions. 

(iii) The fundamental structure of Nature of physical interest is actually en-
closed in the three constants of (1.1); the existence of a fourth essential concept, 
the charge, is revealed by (5.36) and also appears in connection to G, as shown 
by the numerical evidence involving the fine structure constant 

10

8 3 1 2

, 4.80320 10 u.e.s.

6.67408 10 cm g s , 0.007297,

e G e
G

−

− − −

= = ×

= × ⋅ ⋅ =

κ α

α  
which holds with a value of the dimensional constant 3 2 3 20.98628 g cm sκ −= ⋅ ⋅  
implementing of course c.g.s.e system where the charge is directly defined 
through the usual dynamical variables. The deviation of e from Gα  is 1.37% 
only; 1κ ≈  and α  suggest non accidental link between e and G that deserves 
being investigated. 

(iv) Assume the presence of a massive object of mass  , e.g. supermassive 
black holes or galaxies, in an arbitrary region of space time and consider (5.95) 
in a surrounding region of space time arbitrarily apart with respect to the local 

https://doi.org/10.4236/jamp.2021.97114


S. Tosto 
 

 

DOI: 10.4236/jamp.2021.97114 1801 Journal of Applied Mathematics and Physics 
 

position of the object; it is nevertheless reasonable the fact that according to 
(5.30) and (5.94) in proximity of the massive object the local time run tδ  due 
to the gravitational field is slowed down with respect the proper time range 0tδ  
in an empty space time. The time delay 0t tδ δ δ= −  between two points δ  
apart of these space time regions implies the rising of an energy gap 

nδ δ=    between the respective regions; this gap in turn implies by conse-
quence the existence of a momentum nδ δ=    in the intermediate region 
δ  of space time. Also now δ  and δ  are defined by an appropriate in-
terval of allowed values 1 2n n n≤ ≤  of n, of course arbitrary. This implies that 
someway massive objects and surrounding space time interact. The question 
arises: are δ  and δ  anyhow related to dark energy and dark matter, as 
prospected in Equations (6.24) to (6.27) of [9]? 
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Appendix A 

In principle the quantum energy density η =  V  in a given three dimensional 
space time volume V can be expressed as 3δ x  or 2

0δ δ x x  or 2
0δ δ x x : 

any value allowed to the first definition of η  is identically allowed to the 
second and third definitions as well for 0x xδ δ= . Yet it does not hold when 
considering the change δη  if 0x constδ =  whereas xδ  is allowed to change; 
clearly the three definitions imply different δη . Define 

3 3
0

, , 1, 2,3η η
δ δ δ−= = =

 
k k k k

x x x
 

so that, implementing the dimensional analysis likewise as in (2.9), 

1 3
0

δδη η
δδ δ+ −

∆
= − ∆ = − = − = − =

∆
 k

k k k kk k
k k

x x Fk x k k k P
x V x Sx x

 

and for 3k =  in particular 

3 3 3 ;δδη η
δ
∆

= − = − = − =
∆

x x F P
x V x S

 

by definition F is force while kx∆  and x∆  are arbitrary displacements of the 
boundaries defining the initial volume defining η , so that kP  and P are pres-
sures because S and kS  are surfaces. In other words the energy density inside V 
is assumed to change at constant   merely because of the change of space time 
volume. Hence, taking the ratios side by side to eliminate δ= F x , the first 
and last terms of the two chains yield 

, .
3

k k k k
k k

P xk r r
P x

∆
= = =

∆
δη η
δη η  

Split now this result in order that 

, .
3k k

k

kP P
r
ηη= =                     (2.13) 

Introduce at this point the concept of uncertainty, which implies lack of any 
information about the actual sizes not only of xδ  and kxδ  but also of x∆  
and kx∆ . This implies in turn that P corresponding to xδ  must fulfill the 
same rule of the three kP  allowed. This is in fact possible defining 

3 ,k
k

x
r

x k
∆

= =
∆  

owing to the boundary condition kx x∆ = ∆  for 3k = . So P is one of the values 
resulting by merging (2.13) 

, 1, 2,3
3
kP kη= =                      (A.1) 

as it is known. Indeed this result is just that of the first (2.13), which merely spe-
cifies kP  as a function of the respective kη , whereas in the second (2.13) P 
coincides with the first one thanks to the definition of kk . 
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Appendix B 

The starting point is the space time swelling Equation (3.22) 
3

2 2
3

xc v
x

∆
=
δ  

rewritten as 

( )
3

2 2
1 2 1 23, ,xc q q v q q

xδ
∆

= + = +                 (B.1) 

where 1q  and 2q  are appropriate factors expressing the swelling ratio. Hence, 
multiplying by 2tδ  both sides of the first equation, ( )2 2 2 2

1 2c t q q v tδ δ= +  
yields 

( )2 2 2 2 2 2
1 2 , ,c t q q v tδ δ δ δ= + =                (B.2) 

from which one obtains 
2 2

2 2 21
221

q tc t q
c

 
− = 

 





δ δ
δ δ

 
i.e. 

2 2
2 2 2 2

2 12 2

v1 , v .c t q q
c t

δδ δ
δ

 
− = = 

 




              (B.3) 

From this result one finds 
2

2 2 2 2 2
2 2

v, 1 ,c t q r r
c

= = − =δ β δ β
 

that in turn yields two chances via the positions 
22 2

2 22
2

2

,p p
qc t t

q c
δδ δ δ= =



                  (B.4) 

where 
2

2 2 2 2
2, ;p

p

t
t

δ
β δ δ δ

β
= =                    (B.5) 

these equations imply also 
2 2 2 2 .p pt tδ δ δ δ=                        (B.6) 

Let the subscript p mean proper, so that 2 2tδ δ  refers to proper length and 
time; i.e. 2 2

p ptδ δ  is defined in an inertial reference system pR  where the par-
ticle is at rest, moving at constant rate v with respect to R defining the left hand 
side. Let us show that the space time invariant (B.6), inferred contextually to the 
time dilation and space contraction via the Lorentz factor β , implies the inter-
val rule 

2 2 2 2 2 2 .p pc t c tδ δ δ δ− = −                    (B.7) 

The key equations are that already introduced, i.e. owing to (B.5) 

2 2 2 2 2, .p p p p
p

tt t r= = = = −


   



δ δδ βδ δ δ β δ δ
δ  
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To show that (B.7) reduces to an identity owing to (B.4), write 
2 2

2 2 2 2
2

2

;c tc t q
q
δδ δ δ− = − 

                 (B.8) 

in effect this is an identity for 2 1q = − . As expected (B.4) requires then 

p ic tδ δ= ± . So (B.1) reads 

( )
3

2 2
1 131 , 1,xc q v q

x
∆

= − = −
δ  

whence 
2

12
1

1 , 2 .
1

v q
qc

= < < ∞
−  

If 3 3x xδ∆ =  for 1 2q =  the universe would be steady. As in general 1 2q ≠ , 
(B.7) and (B.8) hold even for an expanding universe. 

Appendix C 

Consider three terms 

( ) ( ) ( ), , , , ,n n nN A B N B C N A C               (C.1) 

that represent the occurrence/non-occurrence numbers ( )...,...N  of three val-
ues , ,A B C  of arbitrary physical events corresponding to the physical proper-
ties , ,A B CP P P ; the subscript n stands here for not, i.e. the given physical prop-
erty does not hold. Regard separately the chance of equality 

( ) ( ) ( ), , ,n n nN A B N B C N A C+ =                (C.2) 

and then also the chances of inequality 

( ) ( ) ( ), , , :n n nN A B N B C N A C′ ′+ ≠                (C.3) 

(C.2) means that a value C exists for a given physical property CP  such that 
its corresponding nC  is compatible with the equality sign. Moreover, to ac-
count also for the inequality chance (C.3), it is necessary that a different value 
C C′ ≠  of the given CP  also exists in relation to the same AP  and BP  
represented by the values A and B along with the corresponding nA  and nB . 

Let CP  take first the values C and nC , and consider (C.2). Summing 
( ),n nN A C  at both sides of (C.2) yields 

( ) ( ) ( ) ( ) ( ), , , , ,n n n n n n nN A B N B C N A C N A C N A C+ + = +  
equal to 

( ) ( ) ( ) ( ), , , ;n n n n nN A B N B C N A C N C+ + =            (C.4) 

indeed, summing both occurrences and non-occurrences of the property A at 
the right hand side means considering the occurrence of nC  only. Adding also 

( ),n nN B C  at both sides of this last equation, one finds 

( ) ( ) ( ) ( ) ( ) ( ), , , , ,n n n n n n n n nN A B N B C N A C N B C N C N B C+ + + = +  
that is equal to 
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( ) ( ) ( ), , , .n n n n nN A B N A C N B C+ =  
Subtracting now side by side (C.2) from this last equation one finds 

( ) ( ) ( ) ( ), , , ,n n n n n nN A C N B C N B C N A C− = −  
and thus 

( ) ( ) ( ) ( ), , , , .n n n n n nN A C N A C N B C N B C+ = +  
( ) ( ).n nN C N C=                       (C.5) 

This identity is inferred from and thus agrees with the initial (C.2). It is clear 
that reverting the order of these steps starting from this identity, one finds again 
(C.2). Let now CP  take different values C′  and nC′ , in which case the equality 
does no longer hold with the same values pertinent to AP  and BP . In general, 
with the same reasoning repeated for initial ( ),A C′  and ( ), nA C′ , one expects 
that (C.3) yields ( ) ( )nN C N C′ ′≠ : an initial discrepancy cannot result in a final 
identity through the same steps that have converted an initial identity into a final 
identity. Repeat now the reversed steps (C.5) to (C.2) starting from this inequa-
lity; it is clear that now one finds the corresponding inequality (C.3), rewritten in 
general  

( ) ( ) ( ), , ,n n nN A B N B C N A C′ ′+                 (C.7) 

via two inequalities. To understand whether (C.7) is consistent with (C.5) it is 
necessary to specify the properties , ,A B CP P P : the problem is comparing “de-
terminism vs non-determinism”. In this paper determinism has been referred to 
either existence or not of local space time coordinates; now this concept is ex-
tended to the properties of the values (C.1) and concern non locality and non re-
ality of the quantum world. The problem of interest is thus to establish whether 
or not the physical properties of a system of particles do exist “a priori” or are 
created by the interaction with the experimental apparatus that perturbs the ini-
tial unknown system. (C.1) have been written in order that the property CP  
appears with not value nC  only and the property AP  with occurrence value A 
only, whereas B appears in both forms; to infer information about non local and 
non real systems in comparison with real and local systems, consider a possible 
scheme where B is a property like particle spin or photon polarization. In the 
case of spin let B and nB  represent the respective chances of spins paired or 
not. The scheme implements the following attributions of values  

, , , ,
, ,

n n

n

A non real A real B spin B spin
C local C non local
= = = ↑↓ = ↑

= =



 
of the properties , ,A B CP P P  that imply by consequence the following interpre-
tation  

( ) ( ) ( ), , , .

, , ,
n n nA B B C A C

non real non local non real non local

+ ≥

↑ ↑↓

         (C.8) 

At the right hand side of the inequality is concerned the quantum theory, 
which is both non real and non local; indeed the sections 2.6 and 2.7 have shown 
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that the uncertainty requires contextually these features. At the left hand side is 
concerned any non-quantum theory, which is either non local or non real only. 
The symbol ≥ is understandable regarding ( )...,...N  as probabilities, which is 
possible simply introducing a normalization factor to unity; obviously the sum 
of probabilities of either property verified is higher or at least equal to that de-
scribing both probabilities contextually verified. The first column represents 
therefore the values A and B of the properties AP  and BP  in a non-quantum 
local theory, because it is non real only, and thus without spin correlation; this 
correlation requires indeed a non local spooky action to occur. In the second 
column the values B and C of the properties of BP  and CP  represents again a 
non-quantum theory, because of its non locality only, but now with spin correla-
tion just due to its non locality. The third column represents the quantum 
theory, which is both non local and non real. The symbol ≥ identifies the Bell 
inequality. Predetermined physical properties, typical of non-quantum physical 
theories, classical and even relativistic as well, fulfill the inequality: the deter-
minism of relativistic metrics belongs to a classical vision of universe, although 
enriched by covariance of physical laws, four dimensional premise, invariant 
light speed introduced by Einstein. The violation of the inequality does not re-
quire the existence of “hidden variables” to bypass the difficulty of a superlu-
minal action between particles. In fact, hidden variables are excluded in the 
present conceptual frame based on (1.2) and bypassing the wave functions where 
these hypothetical variables could be somehow encoded. A further remark on 
the Bell inequality is that it reads  

( ) ( )( ) ( ) ( )( )1 2 1 2, , , , 0, 1,n n n nN A B N A C N B C N A Cξ ξ ξ ξ− + − ≥ + =   (C.9) 

having moved to the left side and split ( ), nN A C ; i.e., since (C.1) are in fact 
numbers, 2 2

1 2N N c vδ δ≥ ↔ ≥  show that the Bell inequality consists of arbi-
trary ranges constrained similarly to 2c  with respect to 2v . 
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