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Abstract 
In this paper, we develop an a-priori error analysis of a new unified mixed fi-
nite element method for the coupling of fluid flow with porous media flow in 

N , { }2,3N ∈  on isotropic meshes. Flows are governed by the Stokes and 
Darcy equations, respectively, and the corresponding transmission conditions 
are given by mass conservation, balance of normal forces, and the Beav-
ers-Joseph-Saffman law. The approach utilizes a modification of the Darcy 
problem which allows us to apply a variant nonconforming Crouzeix-Raviart 
finite element to the whole coupled Stokes-Darcy problem. The well-posedness 
of the finite element scheme and its convergence analysis are derived. Finally, 
the numerical experiments are presented, which confirm the excellent stabili-
ty and accuracy of our method. 
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1. Introduction 

There are many serious problems currently facing the world in which the coupl-
ing between groundwater and surface water is important. These include ques-
tions such as predicting how pollution discharges into streams, lakes, and rivers 
its way into the water supply. This coupling is also important in technological 
applications involving filtration. We refer to the nice overview [1] and the ref-
erences therein for its physical background, modeling, and standard numerical 
methods. One important issue in the modeling of the coupled Darcy-Stokes flow 
is the treatment of the interface condition, where the Stokes fluid meets the 
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porous medium. In this paper, we only consider the so-called Beavers-Joseph- 
Saffman condition, which was experimentally derived by Beavers and Joseph in 
[2], modified by Saffman in [3], and later mathematically justified in [4] [5] [6] 
[7]. 

It is well known that the discretization of the velocity and the pressure, for 
both Stokes and Darcy problems and the coupled of them, has to be made in a 
compatible way in order to avoid instabilities. Since, usually, stable elements for 
the free fluid flow cannot been successfully applied to the porous medium flow, 
most of the finite element formulations developed for the Stokes-Darcy coupled 
problem are based on appropriate combinations of stable elements for the Stokes 
equations with stable elements for the Darcy equations. In [4] [6] [8]-[25], and 
in the references therein, we can find a large list of contributions devoted to nu-
merically approximate the solution of this interaction problem, including con-
forming and nonconforming methods.  

There are a lot of papers considering different finite element spaces in each 
flow region (see, for example, [21] [26] [27] and the references therein). In con-
trast to this, other articles use the same finite element spaces in both regions by, 
in general, introducing some penalizing terms (ref. for examples [10] [14] [22] 
and the references therein). 

In [22], a conforming unified finite element has been proposed for the mod-
ified coupled Stokes-Darcy problem in a plane domain, which has simple and 
straightforward implementations. The authors apply the classical Mini-element 
to the whole coupled Stokes-Darcy coupled problem. An a-priori error analysis 
is performed with some numerical tests confirming the convergence rates. 

In this article, we propose a modification of the Darcy problem which allows 
us to apply a variant nonconforming finite element to the whole coupled 
Stokes-Darcy problem. We use a variant nonconforming Crouzeix-Raviart finite 
element method that has so many advantages for the velocities and piecewise 
constant for the pressures in both the Stokes and Darcy regions, and apply a sta-
bilization term penalizing the jumps over the element edges of the piecewise 
continuous velocities. We prove that the formulation satisfies the discrete 
inf-sup condition, obtaining as a result optimal accuracy with respect to solution 
regularity. Numerical experiments are also presented, which confirm the excel-
lent stability and optimal performance of our method. The difference between 
our paper and the reference [22] is that our discretization is nonconforming in 
both the Stokes domain and Darcy domain (in NΩ ⊂  , 2N =  or 3). As a 
result, additional terms are included in the priori error analysis that measures 
the non-conformity of the method. One essential difficulty in choosing the uni-
fied discretization is that, the Stokes side velocity is in 1H  while the Darcy side 
velocity is only in ( )divH . Thus, we introduce a variant of the nonconforming 
Crouzeix-Raviart piecewise linear finite element space (larger than the space 

hH  used in [14]). The choice of hH  [see (34)] is more natural than the one 
introduced in [14] since the space hH  approximates only ( )div, dH Ω  and not 
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( )1 N

dH Ω  , while our a priori error analysis is only valid in this larger space. 
The rest of the paper is organized as follows. In Section 2 we present the mod-

ified coupled Stokes-Darcy problem in NΩ ⊂  , 2N =  or 3, notations and 
the weak formulation. Section 3 is devoted to the finite element discretization 
and the error estimation. 

In Section 4, we present the results of numerical experiments to verify the 
predicted rates of convergence. Finally, we offer our conclusion and the further 
works in Section 5. 

2. Preliminaries and Notation 
2.1. Model Problem 

We consider the model of a flow in a bounded domain NΩ ⊂   ( 2N =  or 3), 
consisting of a porous medium domain dΩ , where the flow is a Darcy flow, and 
an open region \s dΩ = Ω Ω , where the flow is governed by the Stokes equa-
tions. The two regions are separated by an interface I d sΓ = ∂Ω ∂Ω . Let 

\l l IΓ = ∂Ω Γ , ,l s d= . Each interface and boundary is assumed to be polygonal 
( 2N = ) or polyhedral ( 3N = ). We denote by sn  (resp. dn ) the unit outward 
normal vector along s∂Ω  (resp. d∂Ω ). Note that on the interface IΓ , we have 

s d= −n n . Figure 1 and Figure 2 give a schematic representation of the geome-
try. 

For any function v defined in Ω , since its restriction to sΩ  or to dΩ  
could play a different mathematical roles (for instance their traces on IΓ ), we 
will set | ssv vΩ=  and | ddv vΩ= . 

 

 
Figure 1. A sketch of the geometry of the problem (case: d I∂Ω ≠ Γ ). 

 

 
Figure 2. A sketch of the geometry of the problem (case d I∂Ω = Γ ). 
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In Ω , we denote by u  the fluid velocity and by p the pressure. The motion 
of the fluid in sΩ  is described by the Stokes equations 

( )2 div in ,
div in ,

on ,

s

s

s

p
g

µ− +∇ = Ω
 = Ω
 = Γ

D u f
u

u 0
                 (1) 

while in the porous medium dΩ , by Darcy’s law 
1 in ,

div in ,
on ,

d

d

d d

p
g

µ − +∇ = Ω


= Ω
 ⋅ = Γ

K u f
u

u n 0
                    (2) 

Here, 0µ >  is the fluid viscosity, D  the deformation rate tensor defined by 

( ) 1: , 1 , ,
2

ji
ij

j i

i j N
x x

ψψ
ψ

 ∂∂
= + ≤ ≤  ∂ ∂ 

D
 

and K  a symmetric and uniformly positive definite tensor representing the 
rock permeability and satisfying, for some constants *

*0 K K< ≤ < +∞ , 

( )T T * T
* , , .N

dK x K xξ ξ ξ ξ ξ ξ ξ≤ ≤ ∀ ∈Ω ∈K  
( )2 N

L ∈ Ω f  is a term related to body forces and ( )2g L∈ Ω  a source or 
sink term satisfying the compatibility condition 

( )d 0.g x x
Ω

=∫  
Finally we consider the following interface conditions on IΓ : 

0,s s d d⋅ + ⋅ =u n u n                        (3) 

( )2 ,s s s s dp pµ− ⋅ ⋅ =n D u n                    (4) 

( )
1

2 , 1, , 1.j
s s j s j j N

κ
τ τ

α
⋅ ⋅ = − ⋅ = −n D u u             (5) 

Here, Equation (3) represents mass conservation, Equation (4) the balance of 
normal forces, and Equation (5) the Beavers-Joseph-Saffman conditions. More-
over, { } 1, , 1j j N

τ
= −

 denotes an orthonormal system of tangent vectors on IΓ , 

j j jκ τ τ= ⋅ ⋅K , and 1α  is a parameter determined by experimental evidence. 
Equations (1) to (5) consist of the model of the coupled Stokes and Darcy 

flows problem that we will study below. 

2.2. New Weak Formulation 

We begin this subsection by introducing some useful notations. If W is a 
bounded domain of N  and m is a non negative integer, the Sobolev space 

( ) ( ),2m mH W W W=  is defined in the usual way with the usual norm ,m W⋅  
and semi-norm ,m W⋅ . In particular, ( ) ( )0 2H W L W=  and we write W⋅  for 

0,W⋅ . Similarly we denote by ( ), W⋅ ⋅  the ( )2L W  ( )2 N
L W    or ( )2 N N

L W
×

    
inner product. For shortness if W is equal to Ω , we will drop the index Ω , 
while for any 0m ≥ , , , lm l m Ω

⋅ = ⋅ , , , lm l m Ω
⋅ = ⋅  and ( ) ( ).,. .,.

ll Ω
= , for 
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,l s d= . The space ( )0
mH Ω  denotes the closure of ( )0C∞ Ω  in ( )mH Ω . Let 

( )
NmH Ω   be the space of vector valued functions ( )1, , Nv v= v  with com-

ponents iv  in ( )mH Ω . The norm and the semi-norm on ( )
NmH Ω   are 

given by 

2 2

, ,, ,
0 0

1 2 1 2

: and : .
N N

i im mm m
i i

v v
Ω ΩΩ Ω

= =

   = =   
   
∑ ∑v v           (6) 

For a connected open subset of the boundary s dΓ ⊂ ∂Ω ∂Ω , we write .,.
Γ

 
for the ( )2L Γ  inner product (or duality pairing), that is, for scalar valued 
functions λ , η  one defines: 

( ) ( ), : ds s sλ η λ η
Γ Γ
= ∫                      (7) 

We also define the special vector-valued functions space 

( ) ( ) ( ){ }2 2div, : : div 
N

L L Ω = ∈ Ω ∈ Ω H v v             (8) 

To give the variational formulation of our coupled problem we define the fol-
lowing two spaces for the velocity and the pressure: 

( ) ( ){ }1: div, : , on and 0 on
N

s s s d dH = ∈ Ω ∈ Ω = Γ ⋅ = Γ H v H v v 0 v n
 

equipped with the norm 

( )2 2 12 2

1,: div ,s d d= + +Hv v v v                  (9) 

and 

( ) ( ) ( ){ }2 2
0 : : d 0 .Q L q L q x x

Ω
= Ω = ∈ Ω =∫              (10) 

Multiplying the first equation of (1) by a test function ∈v H  and the second 
one by q Q∈ , integrating by parts over sΩ  the terms involving ( )div D u  
and p∇ , yield the variational form of Stokes equations: 

( ) ( ) ( )( ) ( )

( ){ }( )

( )( )
1

1

, 2 , ,div 

2 ,

2 ,

s ss

I

I

s s s s s s

s s s s s s

N

s s j s j
j

p

p

µ

µ

µ τ τ

Ω ΩΩ

Γ

−

Γ
=

= −

+ − ⋅ ⋅ ⋅

+ − ⋅ ⋅ ⋅∑

f v D u D v v

n D u n v n

n D u v

          (11) 

( ) ( ),div ,
s ss s s sq g q

Ω Ω
− = −u                   (12) 

Using interface conditions (4) and (5) in (11), we obtain: 

( ) ( ) ( )( ) ( )

( ) ( )
1

1

1

, 2 , ,div 

, ,

s ss

I I

s s s

N

d s s s j s j
j j

p

p
k

µ

µα
τ τ

Ω ΩΩ

−

Γ Γ
=

= −

+ ⋅ + ⋅ ⋅ ∀ ∈∑

f v D u D v v

v n u v v H
     (13) 

( ) ( ),div ,
s ss sq g q q Q

Ω Ω
− = − ∀ ∈u                (14) 

We apply a similar treatment to the Darcy equations by testing the first equa-
tion of (2) with a smooth function ∈v H  and the second on by q Q∈ , inte-
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grating by parts over dΩ  the terms involving dp∇ , yield the variational form 
of Darcy equations: 

( ) ( ) ( ) ( )1 , ,div , ,
d d Id

d d d d d dv p pµ −
Ω Ω ΓΩ

= + − ⋅ ∀ ∈K u v f v v n v H    (15) 

( ) ( )div , ,
d dd dq g q q Q

Ω Ω
= ∀ ∈u                 (16) 

Now, incorporating the first boundary interface condition (3) and taking into 
account that the vector valued functions in H  have (weakly) continuous nor-
mal components on IΓ  (see [28], Theorem 2.5), the mixed variational formula-
tion of the coupled problem (1)-(5) can be stated as follows [10]: Find 
( ), p Q∈ ×u H  that satisfies 

( ) ( ) ( )
( ) ( )

, , , ,

, , .

p L

q G q q Q

+ = ∀ ∈


= ∀ ∈

a u v b v v v H

b u
               (17) 

where the bilinear forms ( ),⋅ ⋅a  and ( ),⋅ ⋅b  are defined on ×H H  and 
Q×H , respectively, as: 

( ) ( ) ( )( ) ( )
1

11

1
, : 2 , , ,

I

N

s j s js dj j

µα
µ τ τ µ

κ

−
−

Γ
=

= + ⋅ ⋅ +∑a u v D u D v u v K u v
 

( ) ( ) ( ), : ,div ,div 
s d

q q q
Ω Ω

= − −b v v v
 

By last, the linear forms L and G are defined as: 

( ) ( ) ( ) ( ) ( ) ( ): , , and : , , .
s d s d

L G q g q g q
Ω Ω Ω Ω

= + = − −v f v f v
 

Theorem 2.1. If ( )2 N
L ∈ Ω f  and ( )2

0g L∈ Ω , there exists a unique solu-
tion ( ), p Q∈ ×u H  to the problem (17). 

Proof. We will establish the existence and uniqueness of a weak solution by 
using the classical theory of mixed methods so-called Brezzi conditions (see, e.g., 
[28], Theorem and Corollary 4.1 in Chapter I). 
• It is easy to prove that a  and b  are continuous. It is also clear that F and 

G are continuous and bounded. In summary, the triangular inequality and 
Cauchy-Schwarz inequality lead to: 

( ), , ,∀ ∈ H Ha u v u v u v H
 

( ), , ,q q q Q∀ ∈ ∀ ∈ Hb v v v H
 

( ) ,L ∀ ∈ Hv v v H
 

( ) .G q q q Q∀ ∈
 

• Now we define the null space of b  i.e. ( ) ( ){ }2
0, , 0q q L= ∈ = ∀ ∈ ΩZ v H b v . 

From the classical Korn’s inequality ([8], Section 5), it follows that there is a 
positive constant C such that: 

( ) ( )2 2, , .
s d

C
Ω Ω

≥ ∇ + ∀ ∈a v v v v v Z               (18) 

Let ( )2q L∈ Ω . Because ( ) ( )2 2
0L LΩ = Ω ⊕ , then there exists unique 

https://doi.org/10.4236/jamp.2021.97112


H. K. Wilfrid 
 

 

DOI: 10.4236/jamp.2021.97112 1679 Journal of Applied Mathematics and Physics 
 

( ) ( )2
1 0 0,q q L∈ Ω ×  such that 0 1q q q= + . Thus, we obtain: 

( ) ( ) ( ) ( )1 0 0

0 0

, , , 0 ,1

0.
s d

q q q q

q q
Ω Γ Γ

= + = +

= − ∇ ⋅ = − ⋅ =∫ ∫


b v b v b v b v

v v n
 

Hence, the coercivity of the bilinear form a , 

( ) 2, C≥ ∀ ∈Ha v v v v Z  
follows. 
• The second Brezzi condition that we need to verify is the inf-sup condition. 

Let ( )2
0q Q L∈ = Ω , then there exists ( ) { }1

0 \ 0
N

H ∈ Ω ⊂ v H  such that, 

in ,q∇⋅ = − Ωv                        (19) 

with the estimation 

1, q
ΩHv v                        (20) 

Thus, from (19) we have 

( ) 2, .q q q
Ω

= − ∇ ⋅ =∫b v v                    (21) 

Using the estimate (20), we obtain 

( ) 2,
.

qq
q

H H

b v
v v

                       (22) 

Hence, the inf-sup condition, 
( )

,

,
sup .

q
q q Q

∈ ≠
∀ ∈

v H v 0 H

b v
v

                  (23) 

follows. 
Remark 2.1. Note that if g is of mean zero, (17) directly implies that (1), (2) 

and (3) hold (the differential equations being understood in the distributional 
sense), while the interface conditions (4) and (5) are imposed in a weak sense. 
Also, we observe that the mixed variational formulation of the coupled problem 
(1)-(5) is equivalent to weak formulation (2.4) (and also (2.5) of [11]), with the 
particularity that, in our case, for any ∈v H , we have that  

, 0
Is d s sp

Γ
− =v v n . 

Now we introduce a modification to the Darcy equation, with the purpose in 
mind of the development of a unified discretization for the coupled problem, 
that is, the Stokes and Darcy parts be discretized using the same finite element 
spaces. The modification that we apply to the Darcy equation follows the idea 
(same argument) given in [22]. Indeed, we observe that taking the second equa-
tion of Darcy’s problem (2) we can write, for any ∈v H , 

( )div div 0.
d

d dg
Ω

− =∫ u v                    (24) 

Then, by adding this equation to the first equation of the variational form in 
(15), we get: 

( ) ( ) ( ) ( )

( ) ( )

1 , div ,div ,div ,

, div ,
d d Id

d d

d d d d d d

d d

p p

g

µ −
Ω Ω ΓΩ

Ω Ω

+ − + ⋅

= + ∀ ∈

K u v u v v v n

f v v v H
   (25) 
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( ) ( )div , ,
d dd dq g q q Q

Ω Ω
= ∀ ∈u                 (26) 

From now on, we work with this modified variational form of Darcy equa-
tions. 

In the same way that before, incorporating the boundary conditions (3) and 
remambering that, since ∈v H , it was (weakly) continuous normal compo-
nents on IΓ , the variational form of the modified Stokes-Darcy problem can be 
written as follows: Find ( ), p Q∈ ×u H  satisfying 

( ) ( ) ( )
( ) ( )

, , , ,

, , .

p L

q G q q Q

 + = ∀ ∈


= ∀ ∈



a u v b v v v H

b u
               (27) 

where the bilinear forms ( ),⋅ ⋅a  and ( ),⋅ ⋅b  are defined on ×H H , Q×H , 
respectively, as: 

( ) ( ) ( )( )

( ) ( )

1
1

1

1

, 2 , ,

, div ,div 

I

d

N

s j s js
j j

dd

µα
µ τ τ

κ

µ

−

Γ
=

−
Ω

= + ⋅ ⋅

+ +

∑a u v D u D v u v

K u v u v
 

and 

( ) ( ) ( ), : ,div ,div .
s d

q q q
Ω Ω

= − −b v v v
 

By last, the linear forms L  and G are defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ): , , ,div and : , , .
s d s ddL g G q g q g q

Ω Ω Ω Ω
= + + = − − v f v f v v

 
Then, applying the classical theory of mixed methods it follows the well-posedness 

of the continuous formulation (27). 
Theorem 2.2. There exists a unique ( ), p Q∈ ×u H  solution to modified 

formulation (27). In addition, there exists a positive constant C , depending on 
the continuous inf-sup condition constant for b , the coercivity constant for a  
and the boundedness constants for a  and b , such that: 

( ).
s d d ss d d sQp C g g

Ω Ω Ω Ω
+ ≤ + + +

Hu f f          (28) 

We end this section with some notation. In 2D, the curl of a scalar function w 

is given as usual by 
2 1

curl : ,w ww
x x

Τ
 ∂ ∂

= − ∂ ∂ 
 while in 3D, the curl of a vector  

function w  is given as usual by curl := ∇×w w . Finally, let k  be the space 
of polynomials of total degree not larger than k. In order to avoid excessive use 
of constants, the abbreviations x y  and x y  stand for x cy≤  and 

1 2c x y c x≤ ≤ , respectively, with positive constants independent of ,x y  or h . 

3. A Priori Error Analysis 
3.1. Finite Element Discretization 

In this subsection, we will use a variant of the nonconforming Crouzeix-Raviart 
piecewise linear finite element approximation for the velocity and piecewise 
constant approximation for the pressure. 
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Let { } 0h h>
  be a family of triangulations of Ω  with nondegenerate ele-

ments (i.e. triangles for 2N =  and tetrahedrons for 3N = ). For any hT ∈ , 
we denote by Th  the diameter of T and Tρ  the diameter of the largest ball in-
scribed into T and set 

max and max
2h h

T
T hT T

T

hh h
r

σ
∈ ∈

= =
 

                 (29) 

We assume that the family of triangulations is regular, in the sense that there 
exists 0σ >  such that hσ σ≤ , for all 0h > . We also assume that the trian-
gulation is conform with respect to the partition of Ω  into sΩ  and dΩ , 
namely each hT ∈  is either in sΩ  or in dΩ  (see Figures 3-5). 

Let s
h  and d

h  be the corresponding induced triangulations of sΩ  and 

dΩ . For any hT ∈ , we denote by ( )T  (resp. ( )T ) the set of its edges  
( 2N = ) or faces ( 3N = ) (resp. vertices) and set ( )

h

h
T

T
∈

=




  ,  

( )
h

h
T

T
∈

=




  . For ⊂ Ω  we define 

( ) { }: .h hE E= ∈ ⊂     
Notice that h  can be split up in the form 

( ) ( ) ( )h h s h d h d
+= Ω Ω ∂Ω                     (30) 

where s s s
+Ω = Ω Γ . Note that ( )h IΓ  is included in ( )h d∂Ω . 

 

 
Figure 3. Isotropic element T in 2d. 

 

 
Figure 4. Example of conforming mesh in 2d. 

 

 
Figure 5. Example of nonconforming mesh in 2d. 

https://doi.org/10.4236/jamp.2021.97112


H. K. Wilfrid 
 

 

DOI: 10.4236/jamp.2021.97112 1682 Journal of Applied Mathematics and Physics 
 

With every edges hE∈ , we associate a unit vector En  such that En  is 
orthogonal to E and equals to the unit exterior normal vector to ∂Ω  if 
E ⊂ ∂Ω . For any hE∈  and any piecewise continuous function ϕ , we de-
note by [ ]Eϕ  its jump across E in the direction of En : 

[ ] ( )
( ) ( )
( )

0 0

0

lim lim for an interior edge/face ,
:

lim for a boundary edge/face
E Et t

E
Et

x t x t E
x

x t E

ϕ ϕ
ϕ

ϕ
→ + → +

→ +

+ − −= 
− −

n n

n
 

For { }0, ,i N∈  , we set (see Figure 6 in 2D for illustration): 

( ) ( ) ( )11: , , where
i

i iE
i

p p p T E T
E

σ = ∀ ∈ ∈∫             (31) 

The triplet ( ){ }1, ,T T Σ  with { }0i i N
σ

≤ ≤
Σ =  is finite element [[29], Page 

83]. The local basis functions are defined by: 

( ) ( ) { }1 , 0, , ,i iT N T i Nψ λ= − ∈                 (32) 

where for each { }0, ,i N∈  , ( )i Tλ  is barycentric coordonates of hT ∈ . 
In classical reference element T , the basis fonctions are given in 2  by: 

( )
( )
( )

0

1

2

, 1 2 ,

, 1 2 2 ,

, 1 2 .

x y y

x y x y

x y x

ψ

ψ

ψ

= −


= − + +
 = −

                   (33) 

Figures 7-9 represent the surface of these functions in space. 
The measure of an element or edge/face is denoted by ( ): measNT T=  and 

( )1: measNE E−= , respectively. 
Based on the above notation, we introduce a variant of the nonconforming 

Crouzeix-Raviart piecewise linear finite element space (larger than the space 

hH  used in [14]) 

( ) [ ]( ) ( ){
[ ]( ) ( ) ( )}

1
|: : , , 0 ,

,1 0

N

h h h T h h h sE E

h E h d h dE E

T T E

E

+ = ∈ ∀ ∈ = ∀ ∈ Ω 

⋅ = ∀ ∈ Ω ∂Ω

H v v v 1

v n

  

 
   (34) 

and piecewise constant function space 

( ) ( ){ }2 0
0 |: : ,h h h T hQ q L q T T= ∈ Ω ∈ ∀ ∈ 

 
where ( )m T  is the space of the restrictions to T of all polynomials of degree 
less than or equal to m. The space hQ  is equipped with the norm ⋅  while  

 

 
Figure 6. 1 -nonconforming finite element T in 2d. 
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Figure 7. 0ψ . 

 

 
Figure 8. 1ψ . 
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Figure 9. 2ψ . 

 
the norm on hH  will be specified later on. The choice of hH  is more natural 
than the one introduced in [14] since the space hH  approximates only  

( )div, dH Ω  and not ( )1 N

dH Ω  , while our a priori error analysis is only valid 
in this larger space. 

Let us introduce the discrete divergence operator ( ) ( )div ; ;h h hQ Q∈ H H   
by 

( ) ( )||
div div , .h h h T hT

T= ∀ ∈v v                   (35) 

Then, we can introduce two bilinear forms 

( ) ( ) ( )( )

( ) ( )

1
1

=1

1

, : 2 , ,

, div ,div , ,

Is
h

dd

N

h s j s jT
jT j

h h h

µα
µ τ τ

κ

µ

−

Γ
∈

−
ΩΩ

= + ⋅ ⋅

+ + ∀ ∈

∑ ∑





a u v D u D v u v

K u v u v u v H H
 

and 

( ) ( ), : ,div , , .h h h hq q q Q
Ω

= − ∀ ∈ ∀ ∈b v v v H H  
Then the finite element discretization of (27) is to find ( ),h h h hp Q∈ ×u H  

such that 

( ) ( ) ( ) ( )
( ) ( )

, , , , ,

, , .
h h h h h h h h h h h

h h h h h h

p L

q G q q Q

 + + = ∀ ∈


= ∀ ∈



a u v b v J u v v v H

b u
      (36) 

This is the natural discretization of the modified weak formulation (27) except 
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that the penalizing term ( ),h hJ u v  is added. This bilinear form ( ).,.J  is de-
fined by following the decomposition (37) of h : 

( ) ( ) ( ) ( ), , , ,
d ds

J J+ Ω ∂ΩΩ
= + +J u v J u v u v u v             (37) 

where 

( ) ( )
( )

[ ] [ ]1, : 1 2 d ,
s

h s

E E EE
E

h sµ+
+

−
Ω

∈ Ω

= + ⋅∑ ∫


J u v u v

 
( )

( )
[ ] [ ]1, : d ,

d
h d

E E EE
E

h s−
Ω

∈ Ω

= ⋅∑ ∫


J u v u v
 

and 

( )
( )

[ ] [ ]1, : d .
d

h d
E E EE EE

E
h s−

∂Ω
∈ ∂Ω

= ⋅ ⋅∑ ∫


J u v u n v n
 

Here, Eh  is the length ( 2N = ) or diameter ( 3N = ) of E. Note that each 
element of h  only contributes with one jump term in ( ),J u v . 

Remark 3.1 The Equation (36) have the matrix representation 
T

A B J+ + =M U M P M U F  

B =M U G  
where U  (resp. P ) denote the coefficients of hu  (resp. hp ) expanded with 
respect to a basis for hH  (resp. hQ ). 

We are now able to define the norm on hH  (see [14]): 

( )
1 2

1 22 2

1,
1

: , div , .
d dIs

h

N

s j s j hh T
jT

τ τ
−

Ω ΩΓ
=∈

 
 = + ⋅ ⋅ + + +
 
 
∑ ∑


v v v v v v J v v
 

In the sequel, we will denote by ,α β  and iC  various constants indepen-
dent of h. For the sake of convenience, we will define the bilinear form: 

( ) ( ) ( ), , , .h hA = +u v a u v J u v  
From Hölder’s inequality, we derive the boundedness of ( ),hA ⋅ ⋅  and ( ),h ⋅ ⋅b : 
Lemma 3.1. (Continuity of forms) There holds: 

( ) 1 , ,h h h hhL C≤ ∀ ∈

v v v H H                (38) 

( ) 2 , ,h h h hG q C q q Q≤ ∀ ∈                  (39) 

( ) 3, , , ,h h h h h h h hh hA C≤ ∀ ∈ u v u v u v H H           (40) 

( ) 4, , , .h h h h h h h h hhq C q q Q≤ ∀ ∈ ∀ ∈b v v v H H         (41) 

Lemma 3.2. (Coercivity of Ah) There is an 0α >  such that: 

( ) 2, .h h h h h hhA α≥ ∀ ∈v v v v H                 (42) 

Proof. Let h h∈v H . We have 

( ) ( ) ( )

( ) ( ) ( )

1 22 1 1

=1

2

, 2 ,

div , , ,

Ids
h

d dd s

N

h h h h h h h jT
j jT

h h h h h h h

A µα
µ µ τ

κ

+

−
−

ΓΩ
∈

Ω ∂ΩΩ Ω

= + + ⋅

+ + + +

∑ ∑


v v D v K v v v

v J v v J v v J v v
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We introduce the local space 

( )
( ) ( ){ }
( ) ( ){ }

22 2

3 32 2

: curl if 2
curl, :

: curl if 3

L T L T N
H T

L T L T N

  ∈ ∈ = 
= 
    ∈ ∈ =   

v v

v v
 

and for ( )1 N
H Tψ  ∈   , we define 

( )
|

|

if 2,
:

if 3, 0 on ,
T

T

N
N Tτ

ψ τ
γ ψ

ψ τ
∂

∂

⋅ ==  × = ⋅ = ∂ n n
 

with the semi-norm: 

( ) ( )curl , where 1 or 3 .
s

lh

h hT
T

l lφ
∈

= = =∑ ∫v v
 

          (43) 

Using Young’s inequality and Green formula, we have: 

( ) ( )

( ) ( )

( ) ( )

curl 

.

l ls s

lls I

l l
s I

h h h

h h

h h

v τ

τ τ

τ τ

φ γ

γ γ

γ γ

Ω ∂Ω

Γ Γ

Γ Γ

= =

= +

+

∫ ∫

∫ ∫

∫ ∫

 



 


v v

v v

v v
 

• Estimate ( ) ( ) lh s hE E τγ∈ Γ∑ ∫ v


 ( 1l =  or 3l = ). We have by  
Cauchy-Schwarz inequality: 

( )
( )

( )
( )( )

( )
( )( )

( )
[ ]

( )

1 2 1 2

1 2

2

1 2

21

2

1 2 1 2

2

l l

h s h s

l

h s

N
h s h s

h h EE E
E E

E h EE
E

E h EEE
E E

h

h h

h h

τ τ

τ

γ γ

γ

∈ Γ ∈ Γ

−

∈ Γ

−

∈ Γ ∈ Γ

 ≤  
 

 ≤  
 

   
≤       
   

∑ ∑∫ ∫

∑ ∫

∑ ∑∫

 





 



 

v v

v

v
 

Also, we have: 

( )

2

1 2

1,
h s

E
E

h
∈ Γ

 
  
 
∑


                       (44) 

Then, 

( )
( )

( )
[ ] 2

1 2

1 .l N
h s h s

h E h EE E
E E

hτγ
−

∈ Γ ∈ Γ

 
  
 

∑ ∑∫ ∫v v
 

 
           (45) 

Hence we deduce 

( )
( ) ( )( )1 2

, .l
s

h s
h h hE

E
τγ +Ω

∈ Γ
∑ ∫ v J v v



               (46) 

• Now we estime the term ( ) ( ) lh I hE E τγ∈ Γ∑ ∫ v
 

. By Cauchy-Schwarz, we 
obtain: 

( )
( ) ( )( ) ( )

1 2 1 21 22
, .l l

I
h I

h h I h h hE
E

τ τγ γ
Γ

∈ Γ

≤ Γ∑ ∫ ∫ 

 



v v a v v
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Thus we deduce the estimation: 

( )( ) ( ) ( )2
, , .

s
h h h h h hφ +Ω

+ v J v v a v v               (47) 

Then, 

( ) ( ) ( )

( ) ( )( ) ( )

2

2 2

, ,

, .

s s
h

ss
h

h h h h h h T
T

h h h hT
T

φ

+

+

Ω
∈

Ω
∈

+ +

+ +

∑

∑





J v v a v v D v

D v v J v v
 

We apply Korn’s discrete inequality [30] and we get: 

( ) ( ) ( ) ( )2 2
, , .

s s s
h h

h h h h h h hT T
T T

+Ω
∈ ∈

+ + ∇∑ ∑J v v a v v D v v
 

       (48) 

Thus 

( ) ( ) ( ) ( ) ( )2 2
, , , ,

s s
h h

h h h h h h h h hT T
T T∈ ∈

+ + ∇ +∑ ∑ 
 

J v v a v v D v v J v v
 

Hence, 

( ) ( ) ( )2
, , .

s
h

h h h h h hT
T

A
∈

∇ +∑v v v J v v


             (49) 

We have, 

( )
1 2

1
, ,

I

N

h h h h j
j

A τ
−

Γ
=

≥ ⋅∑v v v                    (50) 

( ) 2,
dh h h hA

Ω
≥v v v                       (51) 

( ) 2, div
dh h h h hA

Ω
≥v v v                     (52) 

The estimates (49), (50), (51) and (52), lead to (42). The proof is complete.  
In order to verify the discrete inf-sup condition, we define the space: 

( ){ }1
|: : .

d

N

dHΩ  = ∈ ∈ Ω W v H v                 (53) 

We define also the Crouzeix-Raviart interpolation operator :h h→r W H  by: 

( ) ( )d d , , ,h s h ssE E
s s E= ∀ ∈ Ω ∀ ∈∫ ∫r v v v W            (54) 

( ) ( )d d , , .h d h ddE E
s s E= ∀ ∈ Ω ∀ ∈∫ ∫r v v v W            (55) 

Lemma 3.3. The operator hr  is bounded: there is a constant 5 0C >  de-
pending on σ , µ  and N such that 

( )2 2
5 1,

1 2

1, , .h s dh C≤ + ∀ ∈r v v v v W               (56) 

Proof. The proof is similar to ([14], Lemma 4.5, Page 2695).  
Then, we have the following result 
Lemma 3.4. (Inf-Sup condition) There exists a positive constant β  de-

pending on σ , µ  and N such that 

( ),
inf sup .
h h h h

h h h

q Q
h hh

q
q

β
∈ ∈

≥
v H

b v
v

                   (57) 
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Proof. We use Fortin argument [31], i.e. for each h hq Q∈ , we find h h∈v H  
such that: 

( ) 2, and .h h h h h hhq q q
Ω Ω

= b v v
 

Let h hq Q Q∈ ⊂ . Then from ([28], Corollary 2.4, Page 24), there exist vecto-
riel function ( )1

0

N
H ∈ Ω v  satisfying 

1,

div , in
.

h

h

v q
q

Ω Ω

= − Ω

 v                        (58) 

( )1
0

N
H W Ω ⊂  , hence W∈v . We take h h hr= ∈v v H  and we have: 

( ) ( )

( )

( )
( )

( )
( )

( ) ( )( )0 from the identities 54  and .

, div ,

55

h

h

h dh s

h h h h hT
T

h T hT
T

h E h h E hE E
EE

r q q r

q r

q r q r
+

∈

∂
∈

∈ Ω∈ Ω

− = − −

= − ⋅ −

= − ⋅ − − ⋅ −

=

∑ ∫

∑ ∫

∑ ∑∫ ∫

b v v v v

n v v

n v v n v v







 

Thus, we obtain 

( ) ( ), , .h h h h hq r q=b v b v  
Using the system (58), we have: 

( ) ( ) 2

1,, div .h h h h h hr q q q q
ΩΩ

= − =∫b v v v           (59) 

Also, 

1, .h hh hr
Ω

=v v v                     (60) 

From (59) et (60), we deduce: 

( ), , .h h h h h h hhr q q q Q∀ ∈b v v                (61) 

The Inf-Sup condition holds and the proof is complete.  
From Lemma 3.2 and Lemma 3.4 we have the following result: 
Theorem 3.1. There exists a unique solution ( ),h h h hp Q∈ ×u H  to the prob-

lem (27). 

3.2. A convergence Analysis 

We now present an a priori analysis of the approximation error: The use of 
nonconforming finite element leads to hH H , so the approximation error 
contains some extra consistency error terms. In fact, the abstract error estimates 
from [14] give the following result: 

Lemma 3.5. Let ( ), p Q∈ ×u H  be the solution of problem (27) and  
( ),h h h hp Q∈ ×u H  be the solution of the discrete problem (36). Then we have 

1 2inf inf .
h h h h

h h h h h hh h q Q
p p p q E E

∈ ∈
− + − − + − + +

v H
u u u v      (62) 

where 1hE  and 2hE  are the consistency error terms define by: 

https://doi.org/10.4236/jamp.2021.97112


H. K. Wilfrid 
 

 

DOI: 10.4236/jamp.2021.97112 1689 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) ( )
1

, , , ,div
sup ,d

h h

h h h h h d h h

h
h h

A p g
E Ω Ω

∈

+ − −
=

v H

u v b v f v v

v
     (63) 

( ) ( )
2

, ,
sup .
h h

h h h
h

q Q h

q g q
E

q
Ω

∈

+
=

b u
                (64) 

Note that ( ) ( ), ,h h hq q=b u b u , thus 2 0hE = . 
For estiming the approximation error, we assume that the solution ( ), pu  of 

problem (27) satisfies the smoothness assumptions: 
Assumption 3.1. 
1) ∈u H , ( )2 N

s sH ∈ Ω u , ( )2 N

d dH ∈ Ω u ; 
2) p Q∈ , ( )1

s sp H∈ Ω , ( )1
d dp H∈ Ω . 

We begin with an estimate for the terms inf
h h h h∈ −v H u v  and  

inf
h hq Q hp q∈ − . 

Lemma 3.6. (Ref. [14]) There hold: 

( )2, 2,inf ,
h h

h s dh h
∈

− +
v H

u v u u                 (65) 

( )1, 1,inf .
h h

h s dq Q
p q h p p

∈
− +                  (66) 

Finally, let us consider the term ( ) ( ) ( ), ,h h h h h h hA p L+ − u v b v v . The 
smoothness assumption of u  implies ( ), 0h =J u v , thus  

( ) ( ), , ,h h h h hA = ∀ ∈u v a u v v H . Clearly, 

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )
( ) ( )

1

1

, ,div

, , ,div

2 div , , div ,div

2 div , , ,

, div ,div

d

s d d

ds d

ss d

d d

h h h h

h h h h

h h h h

h h h

h h h

L g

g

p p

p

p

µ µ

µ µ

Ω Ω

Ω Ω Ω

−
ΩΩ Ω

−
ΩΩ Ω

Ω Ω

− = − −

= − − −

= −∇ − +∇ −

= − ∇ −

− ∇ −

 v f v v

f v f v v

D u v K u v u v

D u v v K u v

v u v
 

( )( ) ( ){ }

( ) ( ){ } ( )

( ) ( )( ){ ( )( ) ( )

( ) } ( ){ ( )

( ) } ( )

1

1

2 div , ,

, , div ,div

2 , 2 , ,div 

, , ,div 

, div ,div

s
h

dd
h

s
h

d
h

d

h h TT
T

h h h hTT
T

h T h h TTT
T

h T h hT TT
T

h T h hT

p

p

p

p p

p

µ

µ

µ µ

µ

∈

−
Ω

∈

∂
∈

−
∂

∈

∂ Ω

= − ∇

+ − ∇ −

= − + ⋅ +

− ⋅ + − +

− ⋅ −

∑

∑

∑

∑









D u v v

K u v v u v

D u D v n D u v v

v n K u v v

v n u v
 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ){ }
( )

12 , , ,div

div ,div 2 , ,

,

ds
h

d s
h

d
h

h h h hT
T

h h T h h T TT
T

h T T
T

p

p

p

µ µ

µ

−
ΩΩ

∈

Ω ∂∂
∈

∂
∈

  = − + − 
  

− + ⋅ − ⋅

− ⋅

∑

∑

∑







D u D v K u v v

u v n D u v v n

v n
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( ) ( ) ( )

( )
( ) [ ]( )

( ) ( )
[ ]( )

( )
[ ]( )

1
1

,
=1

, , ,

2 , ,

, .

I

h d h dh s

h s

N

h h s j h s j h h
j j

E h h E dE EE EEE

h E sE E
E

p

p

µα
τ τ

κ

µ
+

+

−

Γ

∈ Ω ∂Ω∈ Ω

∈ Ω

= − + ⋅ ⋅ −

+ ⋅ − ⋅

− ⋅

∑

∑ ∑

∑





 



a u v u v b u v

n D u v v n

v n

 
Thus, we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 2 3 4

, , ,

,
h h h h h

h h h h

L

R R R R

+ + −

= + + +



a u v J u v b u v v

v v v v
              (67) 

where 

( ) ( )
1

1
1 ,

=1
, ,

I

N

h s j h s j
j j

R µα
τ τ

κ

−

Γ
= ⋅ ⋅∑v u v

 

( )
( )

( ) [ ]( )2 2 , ,
h s

h E h E E
E

R µ
+∈ Ω

= ⋅∑


v n D u v

 

( )
( ) ( )

[ ]( )3 , ,
h d h d

h h E dE EE
R p

∈ Ω ∂Ω

= ⋅∑
 

v v n
 

( )
( )

[ ]( )4 , .
h s

h h E sE E
E

R p
+∈ Ω

= ⋅∑


v v n

 
In order to evaluate the four face integrals, let us introduce two projections 

operators in the following. 
For any hT ∈  and ( )E T∈ , denote by ( )0 E  the constant space of the 

restrictions to E and Eπ  the projection operator from ( )2L E  on to ( )0 E  
such that 

d .EE E
v v sπ =∫ ∫                        (68) 

The operator Eπ  has the property [32]: 

( )1 2 1
0, 1, .E EE Tv h v v H Tπ− ∀ ∈                (69) 

For any ( )2 N
L E ∈  v , we let EΠ v  be the function in ( )0 N

E    such 
that 

( ) ,1 .E E ii v i NπΠ = ≤ ≤v  
Using inequality (69), we obtain 

( )1
0, 1

2
,

1 .
N

E EE Th H T −Π ∀ ∈  v v v v              (70) 

Then we have the following lemma: 
Lemma 3.7. (Estimation the four face integrals) There holds: 

( ) 1
1 1,1 1

max
sh s h hj N

j

R hµα
κ Ω≤ ≤ −

 
 ≤
 
 

v u v               (71) 

( )2 2,h hs hR v u v                      (72) 
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( ) ( )3 1, 1,h hs d hR h p p+v v                  (73) 

( ) ( )4 1, .h hd hR h pv v                    (74) 

Proof. 
1) Estimate (71): We begin with an estimate for the first term ( )1 hR v . For 

any face ( )h sE +∈ Ω , there exists at least one element s
hT ∈  such that 

( )E T∈ . Then, from condition (68), Höder’s inequality and inequality (70), it 
follows that 

( ) ( ) ( )
( )

1 2 21
1 ,

1

1/21

1 2 1 2

21
,1,

1

1
1,1 1

max .

I I

s I

s

N

h s j h s j
j j

N

s h s j
j j

s h hj N
j

R

h

µα
τ τ

κ

µα
τ

κ

µα
κ

−

Γ Γ
=

−

Ω Γ
=

Ω≤ ≤ −

≤ ⋅ ⋅

≤ ⋅

 
 ≤
 
 

∑ ∫ ∫

∑ ∫

v u v

u v

u v

 
2) Estimate (72): 
We have ( ){ } ( )2

|

N

E E
L E ⋅ ∈  n D u , hence ( )( ) ( )0 N

E E E Π ⋅ ∈  n D u  . 

( )( ) [ ] ( )( ) [ ] 0.E E h E E hE EE E
Π ⋅ ⋅ = Π ⋅ =∫ ∫n D u v n D u v        (75) 

Thus, 

( ) [ ] ( ) ( )( )( ) [ ]
( ) ( )( ) [ ]
( )( ) ( ) [ ]
( ) [ ]

1 2

1,

1 2

1 2 .

E h E E E hE EE E

E E h EE

E E E E h EE E

E E h ET E

I

h I h

h h

−

−

⋅ ⋅ = ⋅ −Π ⋅ ⋅

= −Π ⋅ ⋅

−Π ⋅

∫ ∫
∫





n D u v n D u n D u v

n D u v

n D u v

D u v
 

Furthermore, summing on ( )h sE +∈ Ω  faces, we obtain the estimate: 

( )2 2, .h hs hR hv u v                     (76) 

3) For the terms ( )3 hR v  and ( )4 hR v , we use the same techniques as in the 
proof of the bounds for ( )i hR v , { }1,2i∈ , and we obtain: 

( ) ( )3 1, 1, ,h hs d hR h p p+v v
 

( ) ( )4 1, .h hd hR h pv v
 

The proof is complete.  
From Lemma 3.5, Lemma 3.6 and Lemma 3.7, now we derive the following 

convergence theorem: 
Theorem 3.2 Let the solution ( ), pu  of problem (27) satifies the smoothness 

assumption (Assumption 3.1). Let ( ),h hpu  be the solution of the discrete 
problem (36). Then there exists a positive constant C depending on  

*
* 1, , , ,N K Kµ α  and σ  such that: 

( )2, 2, 1, 1, .h h s d s dh p p Ch p p− + − ≤ + + +u u u u         (77) 
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4. Numerical Experiments 

In this section we present one test case to verify the predicted rates of conver-
gence. The numerical simulations have been performed on the finite element 
code FreeFem++ [33] [34] in isotropic coupled mesh of Figure 10. 

The solutions have been represented by Mathematica software. For simplicity 
we choose each domain lΩ , { },l s d∈  as the unit square, 1 1α µ= = , and the 
permeability tensor K  is taken to be the identity. The interface IΓ , is the line 

1x = , i.e. s dΩ = Ω Ω  like the show Figure 11. 
We consider the application  

( ) ( ) ( ) ( )3 22 2 2: , , 1 1x y x y x x y yφ φ∈ = − − ∈   on the open domain 

s dΩ = Ω Ω . In Ω , we define ( )1 2, curl ,u u
y x
φ φφ

 ∂ ∂
= = = − ∂ ∂ 

u  and we ob-

tain: 

( ) ( ) ( ) ( )3 2
1 , : 2 1 1 1 2u x y x x y y y= − − + − + − +             (78) 

( ) ( ) ( )( )2 2 2
2 , : 1 2 5 1u x y x x x y y= − + − + − +             (79) 

We choose quadratic pressure ( )2p L∈ Ω  by 

( )
2

2, 2 1.
2
yp x y x xy= − + −                    (80) 

Thus, 
 

 
Figure 10. Isotropic mesh 1/400  on coupled domain 2Ω ⊂  . 

 

 
Figure 11. The domain Ω in 2d. 
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( ) ( ), d d 0 and 2 2 , 2 .p x y x y p x y x y
Ω

= ∇ = − − +∫           (81) 

The exact solution ( ), pu  satisfies the following condition: 
div 0 in ,g= = Ωu                       (82) 

on ,= ∂Ωu 0                         (83) 

and the Beavers-Joseph-Saffman interface conditions on IΓ  [ : 1I xΓ = ]: 
0 on ,s s d d I⋅ + ⋅ = Γu n u n                    (84) 

( )2 on ,s s s s d Ip pµ− ⋅ ⋅ = Γn D u n                 (85) 

( )
1

2 on , 1, , 1.j
s s j s j I

k
j Nτ τ

α
⋅ ⋅ = − ⋅ Γ = −n D u u         (86) 

Furthermore, we obtain the right-hand terms f  define by 

( )
1

2 div in ,

in .
s s

d d

p

p

µ

µ −

= − +∇ Ω


= +∇ Ω

f D u

f K u
                (87) 

Thus, ( ) ( ) ( )( )1 2, , , ,s x y f x y f x y=f  in sΩ  leads to 

( ) ( )( ) ( ) ( )(
( )( ))

3 4
1

2

, 4 1 1 2 6 3 1 8 1

3 10 1 2 2 ,

f x y x y x x y y x y y

x y y x y

= − + − + − + + − + − − +

+ + − + + −
 

( ) ( ) ( )( ) ( )( )(
( ) ( )( )( )
( ) ( )( )( ))

2 2 3 4
2

2

, 2 9 1 12 1 6 1 5 1 6 1

2 1 6 1 1 3 1

9 6 1 9 5 1 2 ,

f x y y y x y y x y y

x y y y y

x y y y y x y

= − − + − + − + + + − +

− + − + + − +

+ + − + + − + − +
 

and in dΩ , ( ) ( ) ( )( )1 2, , , ,d x y k x y k x y=f  is given by: 

( ) ( ) ( )( )2 2 2
1 , 1 2 5 1 2 2 ,k x y x x x y y x y= − + − + − + + −  

( ) ( ) ( )( )2 2 2
2 , 1 2 5 1 2 .k x y x x x y y x y= − + − + − + − +  

Figure 12 and Figure 13 give an illustration of isotropic and anisotropic 
meshes. 

We study now the convergence of the speed and the pressure in each subdo-
main on a triangulation 1/200  for the non-conforming finite elements of Crou-
zeix-Raviart. The results obtained are consistent, as shown in Figures 14-17. The 
order of convergence in norm 2L  approximately equal to 2 for the speed in 
each domain lΩ , { },l s d∈  and of order 1 for the pressure. Then, we represent 
on the same triangulation, the curves of isovalours of each component of the 
speed in lΩ , { },l s d∈  (see Figures 18-21). 

Finally, we study the structure of the stiffness matrix in Ω  on a uniform tri-
angulation. We find that, when the discretization step h becomes more and more 
infinitely small, the matrix becomes more and more sparse (cf. Table 1), which 
partly shows the effectiveness of the method digital used. 

The exact solutions ( )1 2,u u=u  and p are represented by Figures 22-24, 
while the second members 1f , 2f , 1k  and 2k  are represented respectively 
by Figures 25-28. 
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Figure 12. Example of isotropic mesh 1/200  in 2d. 

 

 
Figure 13. Example of anisotropic mesh in 2d. 
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Figure 14. Error for the velocity h h

−u u  in sΩ  (log/log plot). 

 

 
Figure 15. Error for the pressure hp p−  in sΩ  (log/log plot). 

https://doi.org/10.4236/jamp.2021.97112


H. K. Wilfrid 
 

 

DOI: 10.4236/jamp.2021.97112 1696 Journal of Applied Mathematics and Physics 
 

 

Figure 16. Error for the velocity h h
−u u  in dΩ  (log/log plot). 

 

 
Figure 17. Error for the pressure hp p−  in dΩ  (log/log plot). 
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Figure 18. The isovalue of the first velocity component 1u  in sΩ . 
 

 

Figure 19. The isovalue of the second velocity component 2u  in sΩ . 
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Figure 20. The isovalue of the first velocity component 1u  in dΩ . 
 

 
Figure 21. The isovalue of the second velocity component 2u  in dΩ . 
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Table 1. Structure of rigidity Matrix on 10 iterations. 

Parameter h % of Coefs. ≠ 0 

1/16 79.668827 

1/22 66.405634 

1/28 41.751001 

1/34 28.652204 

1/40 20.873193 

1/46 15.879941 

1/52 12.485349 

1/58 10.073294 

1/66 08.298201 

1/70 06.954061 

 

 
Figure 22. Component 1u  in Ω . 

5. Summary 

• In this contribution, we have investigated a new mixed finite element method 
to solve the Stokes-Darcy fluid flow model without introducing any Lagrange 
multiplier. We have proposed a modification of the Darcy problem which al-
lows us to apply a slight variant nonconforming Crouzeix-Raviart element to  
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Figure 23. Component 2u  in Ω . 

 

 

Figure 24. Pressure p in Ω . 
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Figure 25. Right-hand term 1f  in sΩ . 
 

 
Figure 26. Right-hand term 2f  in sΩ . 
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Figure 27. Right-hand term 1k  in dΩ . 
 

 
Figure 28. Right-hand term 2k  in dΩ . 

https://doi.org/10.4236/jamp.2021.97112


H. K. Wilfrid 
 

 

DOI: 10.4236/jamp.2021.97112 1703 Journal of Applied Mathematics and Physics 
 

the whole coupled Stokes-Darcy problem. The proposed method is probably 
the cheapest method for Discontinuous Galerkin (DG) approximation of the 
coupled system, has optimal accuracy with respect to solution regularity, and 
has simple and straightforward implementations. Numerical experiments 
have been also presented, which confirm the excellent stability and accuracy 
of our method. 

• Further works: Further it is well known that an internal layer appears at the 
interface IΓ  as the permeability tensor degenerates, in that case anisotropic 
meshes have to be used in this layer (see for instance [8] [35]). Hence we in-
tend to extend our results to such anisotropic meshes. 

6. Nomenclatures 

• { }, 2,3N NΩ ⊂ ∈  bounded domain 
• dΩ : the porous medium domain 
• \s dΩ = Ω Ω  
• I s dΓ = ∂Ω ∂Ω  
• \ , ,l l I l s dΓ = ∂Ω Γ =  
• sn  (resp. dn ) the unit outward normal vector along s∂Ω  (resp. d∂Ω ) 
• u : the fluid velocity 
• p: the fluid pressure 
• In 2D, the curl of a scalar function w is given as usual by 

2 1

curl : ,w ww
x x

Τ
 ∂ ∂

= − ∂ ∂   

• In 3D, the curl of a vector function ( )1 2 3, ,w w w=w  is given as usual by  
curl := ∇×w w  namely, 

3 32 1 2 1

2 3 3 1 1 2

curl : , ,
w ww w w w
x x x x x x

 ∂ ∂∂ ∂ ∂ ∂
= − − − ∂ ∂ ∂ ∂ ∂ ∂ 

w
 

• k : the space of polynomials of total degree not larger than k 
• h : triangulation of Ω  
• l

h : the corresponding induced triangulation of lΩ , { },l s d∈  
• For any hT ∈ , Th  is the diameter of T and 2T Trρ =  is the diameter of 

the largest ball inscribed into T 

• : max
h

TT
h h

∈
=


 and : max

h

T
h T

T

h
σ

ρ∈
=


 

• h : the set of all the edges or faces of the triangulation 
• ( )T : the set of all the edges ( 2N = ) or faces ( 3N = ) of a element T 
• ( ):

h

h
T

T
∈

=




   

• ( )T : the set of all the vertices of a element T 
• ( ):

h

h
T

T
∈

=




   

• For ⊂ Ω , ( ) { }: :h hE E= ∈ ⊂     
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• For hE∈ , we associate a unit vector En  such that En  is orthogonal to E 
and equals to the unit exterior normal vector to ∂Ω  

• For hE∈ , [ ]Eφ  is the jump across E in the direction of En  
• In order to avoid excessive use of constants, the abbreviations x y  and 

x y  stand for x cy≤  and 1 2c x y c x≤ ≤ , respectively, with positive con-
stants independent of ,x y  or h . 
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