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Abstract

In this paper, we develop an a-priori error analysis of a new unified mixed fi-
nite element method for the coupling of fluid flow with porous media flow in
R", N e{2,3} on isotropic meshes. Flows are governed by the Stokes and

Darcy equations, respectively, and the corresponding transmission conditions
are given by mass conservation, balance of normal forces, and the Beav-
ers-Joseph-Saffman law. The approach utilizes a modification of the Darcy
problem which allows us to apply a variant nonconforming Crouzeix-Raviart
finite element to the whole coupled Stokes-Darcy problem. The well-posedness
of the finite element scheme and its convergence analysis are derived. Finally,
the numerical experiments are presented, which confirm the excellent stabili-
ty and accuracy of our method.

Keywords

Coupled Stokes and Darcy Flows, Nonconforming Finite Element Method,
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1. Introduction

There are many serious problems currently facing the world in which the coupl-
ing between groundwater and surface water is important. These include ques-
tions such as predicting how pollution discharges into streams, lakes, and rivers
its way into the water supply. This coupling is also important in technological
applications involving filtration. We refer to the nice overview [1] and the ref-
erences therein for its physical background, modeling, and standard numerical
methods. One important issue in the modeling of the coupled Darcy-Stokes flow

is the treatment of the interface condition, where the Stokes fluid meets the
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porous medium. In this paper, we only consider the so-called Beavers-Joseph-
Saffman condition, which was experimentally derived by Beavers and Joseph in
[2], modified by Saffman in [3], and later mathematically justified in [4] [5] [6]
[7].

It is well known that the discretization of the velocity and the pressure, for
both Stokes and Darcy problems and the coupled of them, has to be made in a
compatible way in order to avoid instabilities. Since, usually, stable elements for
the free fluid flow cannot been successfully applied to the porous medium flow,
most of the finite element formulations developed for the Stokes-Darcy coupled
problem are based on appropriate combinations of stable elements for the Stokes
equations with stable elements for the Darcy equations. In [4] [6] [8]-[25], and
in the references therein, we can find a large list of contributions devoted to nu-
merically approximate the solution of this interaction problem, including con-
forming and nonconforming methods.

There are a lot of papers considering different finite element spaces in each
flow region (see, for example, [21] [26] [27] and the references therein). In con-
trast to this, other articles use the same finite element spaces in both regions by,
in general, introducing some penalizing terms (ref. for examples [10] [14] [22]
and the references therein).

In [22], a conforming unified finite element has been proposed for the mod-
ified coupled Stokes-Darcy problem in a plane domain, which has simple and
straightforward implementations. The authors apply the classical Mini-element
to the whole coupled Stokes-Darcy coupled problem. An a-priori error analysis
is performed with some numerical tests confirming the convergence rates.

In this article, we propose a modification of the Darcy problem which allows
us to apply a variant nonconforming finite element to the whole coupled
Stokes-Darcy problem. We use a variant nonconforming Crouzeix-Raviart finite
element method that has so many advantages for the velocities and piecewise
constant for the pressures in both the Stokes and Darcy regions, and apply a sta-
bilization term penalizing the jumps over the element edges of the piecewise
continuous velocities. We prove that the formulation satisfies the discrete
inf-sup condition, obtaining as a result optimal accuracy with respect to solution
regularity. Numerical experiments are also presented, which confirm the excel-
lent stability and optimal performance of our method. The difference between
our paper and the reference [22] is that our discretization is nonconforming in
both the Stokes domain and Darcy domain (in QcR", N =2 or 3). As a
result, additional terms are included in the priori error analysis that measures
the non-conformity of the method. One essential difficulty in choosing the uni-
fied discretization is that, the Stokes side velocity is in H' while the Darcy side
velocity is only in H (div). Thus, we introduce a variant of the nonconforming
Crouzeix-Raviart piecewise linear finite element space (larger than the space
H, used in [14]). The choice of H, [see (34)] is more natural than the one
introduced in [14] since the space H, approximates only H (div,Q;) and not
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[H ! (Qd )JN , while our a priori error analysis is only valid in this larger space.
The rest of the paper is organized as follows. In Section 2 we present the mod-
ified coupled Stokes-Darcy problem in Q< R", N =2 or 3, notations and
the weak formulation. Section 3 is devoted to the finite element discretization
and the error estimation.
In Section 4, we present the results of numerical experiments to verify the
predicted rates of convergence. Finally, we offer our conclusion and the further

works in Section 5.

2. Preliminaries and Notation
2.1. Model Problem

We consider the model of a flow in a bounded domain Q<R (N =2 or3),
consisting of a porous medium domain €, , where the flow is a Darcy flow, and
an open region Q =Q\Q,, where the flow is governed by the Stokes equa-
tions. The two regions are separated by an interface I'; =0Q, 10C . Let
I' =0Q,\T',, I =s,d.Each interface and boundary is assumed to be polygonal
(N =2) or polyhedral (N =3). We denote by n, (resp. n,) the unit outward
normal vector along 0€), (resp. 0€),). Note that on the interface I'|, we have

Ny =-N, . Figure 1 and Figure 2 give a schematic representation of the geome-

try.
For any function v defined in €, since its restriction to €2, or to Q,
could play a different mathematical roles (for instance their traces on I'|), we

will set vy =V, and v, =V, .

Ty
L’ (),: Fluid Region s
1™ N
—
’Tj l ng
s . ~
— Q4: Porous Medium —

Ly
Figure 1. A sketch of the geometry of the problem (case: o6Q, =T, ).

(,: Fluid Region

Qg4 : Porous Medium

ng
=
Tj

L'y

Figure 2. A sketch of the geometry of the problem (case oQ, =T, ).
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In Q, we denote by u the fluid velocity and by p the pressure. The motion
of the fluid in €, is described by the Stokes equations
—2udivD(u)+Vp=f inQ,,

divu=g in Q, (1)
u=0 onl,

while in the porous medium €, , by Darcy’s law

uKu+vp=Ff inQ,,
divu=g inQ,, (2)
u-n, =0 onTy,

Here, x>0 isthe fluid viscosity, D the deformation rate tensor defined by

1( oy, 81//1' .
D(y). == —+——|, 1<i,j <N,
(V/)” Z[GXJ- OX :

and K a symmetric and uniformly positive definite tensor representing the

rock permeability and satisfying, for some constants 0< K, < K" < +o0,
KETESETK(X)ESKTETE, VxeQy, EeR.

2 N 2
fe [L (Q)J is a term related to body forces and ¢ €L’(Q) a source or
sink term satisfying the compatibility condition

_[Qg(x)dx =0.

Finally we consider the following interface conditionson T',:

ug-ng+u,-n, =0, (3)
p, —2ung-D(ug)-ng = pg, (4)

& .
—2nS-D(uS)-rj:—us-rj, j=1,--,N-1. (5)

o

Here, Equation (3) represents mass conservation, Equation (4) the balance of
normal forces, and Equation (5) the Beavers-Joseph-Saffman conditions. More-

over, {Ti} denotes an orthonormal system of tangent vectors on I,

j=lN-1
xk;=7;-K-7;,and ¢, isa parameter determined by experimental evidence.
Equations (1) to (5) consist of the model of the coupled Stokes and Darcy

flows problem that we will study below.

2.2. New Weak Formulation

We begin this subsection by introducing some useful notations. If W is a
bounded domain of R" and m is a non negative integer, the Sobolev space
H™(W)=W"(W) is defined in the usual way with the usual norm ||||mW
and semi-norm |'|mw . In particular, H° (W) =12 (W) and we write ””w for
o ' 2 2 N 2 NxN
||||0W Similarly we denote by (--), the L*(W) [L U )] or [L (W )]
inner product. For shortness if W is equal to €2, we will drop the index Q,
whie for any 20, |y =Flg » Moy =g a0 () =)y » fo
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I=5,d The space Hg (Q) denotes the closure of Cy(Q) in H™(Q). Let
[H " (Q)]N be the space of vector valued functions Vv =(V;,---,vy ) with com-
ponents V, in H"(Q). The norm and the semi-norm on [Hm(Q)JN are
given by

N Y2
Mo =( S| a9 b =[S | ®

For a connected open subset of the boundary T’ < dQ,UdQ, , we write <., .>F

for the L° (F) inner product (or duality pairing), that is, for scalar valued

functions A, 7 one defines:
(am). = [ A(s)n(s)ds )
We also define the special vector-valued functions space
H(div,Q) = {VE[LZ(Q)]N rdivve LZ(Q)} (8)
To give the variational formulation of our coupled problem we define the fol-
lowing two spaces for the velocity and the pressure:

H C:{VE H(div,Q): v, e[Hl(QS)]N ,v=0onT, and v-n, =0 on Fd}
equipped with the norm
IVl = (1, + IV +leiv ) )
and
Q=L (Q)={ael’(Q): ] a(x)dx=0}. (10)

Multiplying the first equation of (1) by a test function v e H and the second
one by qeQ, integrating by parts over Q, the terms involving divD(u)

and Vp, yield the variational form of Stokes equations:
(Vo). =24(D(u,),D(v, ))Qs ~(p,.divvy),,
+({ps—2,un5-D(u5).nS},vs.ns)rl (11)

N-1
+ _ 1(—2,unS -D(us)-z'j,vS ‘T )F|
j=

(0. divu, ), =-(9..0), (12)

Using interface conditions (4) and (5) in (11), we obtain:

(. v),, =2u(D(y,), D(v))Qs ~(p,.divv),

N-1 (13)
+(pd’vs'ns)r|+§j%(us'ri’vs'ri)r. vveH
—(q,div us)gs =—(gs,q)Qs vqeQ (14)

We apply a similar treatment to the Darcy equations by testing the first equa-
tion of (2) with a smooth function veH and the second on by qeQ, inte-
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grating by parts over ), the terms involving Vp, , yield the variational form

of Darcy equations:

(,uK—lud,v)Qd :(pd,divv)Qd +(fd,V)Qd —( Py, Vy -nd)rl YweH (15)

(divud,q)Qd :(gd,q)Qd vqeQ (16)

Now, incorporating the first boundary interface condition (3) and taking into
account that the vector valued functions in H have (weakly) continuous nor-
mal components on I', (see [28], Theorem 2.5), the mixed variational formula-
tion of the coupled problem (1)-(5) can be stated as follows [10]: Find
(u,p)eHxQ that satisfies

{a(u,v)+b(v, p)=L(v), WveH,
b(u,q)=G(q), vgeQ.

where the bilinear forms a(-,-) and b(-,~) are defined on HxH and

(17)

H x Q, respectively, as:
a(u,v)=2u(D(u),D(v)) + Z%(us 75V, 'Tj>r. +,u(|<-1u,v)d
j

b(v,q):=—(q,div V)QS —(q,div v)Qd

By last, the linear forms Z and Gare defined as:
L(v)=(f,v),, +(f.v),, and G(a):=—(g.q), —(9.0),, -

Theorem 2.1. If f € [L2 (Q)JN and €L(Q), there exists a unique solu-
tion (u, p) e HxQ fo the problem (17).

Proof. We will establish the existence and uniqueness of a weak solution by
using the classical theory of mixed methods so-called Brezzi conditions (see, e.g.,
[28], Theorem and Corollary 4.1 in Chapter I).

e [tis easy to prove that a and b are continuous. It is also clear that Fand
G are continuous and bounded. In summary, the triangular inequality and

Cauchy-Schwarz inequality lead to:
[auv)[<full, M, YuveH,
b(v.q)| <Ml flal vveH.vaeQ,
LV <M, wveH,
G(a)| <[] vaeQ.

e Now we define the null space of b ie Z= {V € H,b(V, q) =0 vgel] (Q)} .
From the classical Korn’s inequality ([8], Section 5), it follows that there is a

positive constant Csuch that:

a(v, V)ZC("VV

I, ) ez, (18)

Let qel® (Q) Because LZ(Q)=L€(Q)®R, then there exists unique
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(ql, qo) el? (Q)XR such that g =(, +, . Thus, we obtain:
b(v.q)=b(v,q,)+b(v,q,)=0+0,b(v,1)
- _qOJ.QV'V - _qo.[rSUrd v-n=0.
Hence, the coercivity of the bilinear form a,
a(v,v)=C ||v||i| vweZ

follows.
e The second Brezzi condition that we need to verify is the inf-sup condition.
N
Let qeQ= L(Z) (Q) , then there exists Ve [Hé (Q)J \{O} c H such that,

V.v=—qin Q, (19)
with the estimation
[Vl S Vllg <ol (20)
Thus, from (19) we have
b(v,q)=—_[QqV-v=||q||2. (21)
Using the estimate (20), we obtain
P00 W o o
IV~ vl ™
Hence, the inf-sup condition,
sup b(v.q) Zla| vaeQ (23)

veH,v=0 "V"H

follows.

Remark 2.1. Note that if g is of mean zero, (17) directly implies that (1), (2)
and (3) hold (the differential equations being understood in the distributional
sense), while the interface conditions (4) and (5) are imposed in a weak sense.
Also, we observe that the mixed variational formulation of the coupled problem
(1)-(5) is equivalent to weak formulation (2.4) (and also (2.5) of [11]), with the
particularity that, in our case, for any V € H , we have that
(v, —vd,nsps)rl =0.

Now we introduce a modification to the Darcy equation, with the purpose in
mind of the development of a unified discretization for the coupled problem,
that is, the Stokes and Darcy parts be discretized using the same finite element
spaces. The modification that we apply to the Darcy equation follows the idea
(same argument) given in [22]. Indeed, we observe that taking the second equa-

tion of Darcy’s problem (2) we can write, forany veH,

'[Qd (divuy —g,)divv=0. (24)

Then, by adding this equation to the first equation of the variational form in

(15), we get:
(,uK‘lud,v)Qd +(divug,divv), —(pg.divv), +(pg.Ve-Ng);

(25)
:(fd,v)Qd +(divv, g, )Qd vveH
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(divuy.q), =(9q.9), VaeQ (26)

From now on, we work with this modified variational form of Darcy equa-
tions.

In the same way that before, incorporating the boundary conditions (3) and
remambering that, since v e H , it was (weakly) continuous normal compo-
nents on I'|, the variational form of the modified Stokes-Darcy problem can be
written as follows: Find (u, p)e HxQ satisfying

{é(u,v)+b(v, p)=L(v), VveH,
b(u,q)=G(q), vgeQ.
where the bilinear forms &(.-) and b(--) are defined on HxH, HxQ,

respectively, as:

a(u,v)= 2,u(D(u), D(v))s +':Z_;lﬂal <uS T,V -rj>

5

+;1(K‘1u,v)d +(div ug, div v)

(27)

r

Qg
and
b(v,q):=—(q,div v)gs —(q,div v)Qd :
By last, the linear forms L and Gare defined as:

E(v)::(f,v)gs +(f,v)Qd +(g,divv), and G(q)::—(g,q)ﬂs —(g,q)Qd .

Then, applying the classical theory of mixed methods it follows the well-posedness
of the continuous formulation (27).

Theorem 2.2. There exists a unique (u, p) e HxQ solution to modified
formulation (27). In addition, there exists a positive constant C, depending on
the continuous inf-sup condition constant for b, the coercivity constant for a

and the boundedness constants for 4 and b, such that.
Jull, +1pl, < €(If,

We end this section with some notation. In 2D, the curl of a scalar function w

N ) (28)

o, lfolla, +19al, +llo.

T

oW

is given as usual by curlw:=| —,——— | while in 3D, the curl of a vector
oX, OX

function W is given as usual by curl w:=Vxw . Finally, let P* be the space
of polynomials of total degree not larger than 4 In order to avoid excessive use
of constants, the abbreviations X Sy and X~y stand for x<cy and

C,X <Y < C,X, respectively, with positive constants independent of X,y or 7.

3. A Priori Error Analysis
3.1. Finite Element Discretization
In this subsection, we will use a variant of the nonconforming Crouzeix-Raviart

piecewise linear finite element approximation for the velocity and piecewise

constant approximation for the pressure.
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Let {Th}h>o

ments (Ze. triangles for N =2 and tetrahedrons for N =3). Forany T €7,

be a family of triangulations of ) with nondegenerate ele-

we denote by h; the diameter of 77and p; the diameter of the largest ball in-
scribed into 7"and set

h=maxh; and o, = maxi (29)
TeTh TeTh 2rT
We assume that the family of triangulations is regular, in the sense that there
exists o >0 such that o, <o, for all h>0. We also assume that the trian-
gulation is conform with respect to the partition of Q into Q. and €,
namely each T €7, iseitherin Q  orin Q, (see Figures 3-5).
Let 7° and 7,° be the corresponding induced triangulations of Q. and
Q, . For any T €7, we denote by £(T) (resp. N (T)) the set of its edges
(N =2) or faces ( N = 3) (resp. vertices) and set &, = U S(T) ,

TeTy

N,=JN(T).For AcQ we define

e,
& (A)={Ee& Ec A},
Notice that &, can be split up in the form
& =& (Q0)U&, (2)UE, (02y) (30)

where Q; =Q UT,. Note that & (T',) isincludedin & (6Q).

<+ >

diam(7T) = hy

Figure 3. Isotropic element 7'in 2d.

Figure 4. Example of conforming mesh in 2d.

Figure 5. Example of nonconforming mesh in 2d.
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With every edges E €&, we associate a unit vector N. such that ng is
orthogonal to E and equals to the unit exterior normal vector to 0Q if
E c0Q. For any E €& and any piecewise continuous function ¢, we de-

note by [(p]E its jump across £in the direction of n:

Iim go(x+tnE)— Iir(p @(x—tng) for an interior edge/face E,

Lo (x)= - I|m p(x—tng) for a boundary edge/face E

t—>0+

For ie {0, - N} , we set (see Figure 6 in 2.D for illustration):

i (p) |E|-[ p,VpeP'(T), where E, e £(T) (31)

ocicny 18 finite element [[29], Page

The triplet {T,IP’l (T),Z} with X = {O’i}
83]. The local basis functions are defined by:
w; (T)=1-NA(T), ie{0,--,N}, (32)

where for each i€{0,---,N}, 4 (T) isbarycentric coordonates of T €7, .

In classical reference element T , the basis fonctions are given in R? by:

‘/70(7'7):1_27’
v, (X,¥)=-1+2X+2y, (33)
7,(%.y)=1-2%

Figures 7-9 represent the surface of these functions in space.

The measure of an element or edge/face is denoted by |T| =meas, (T) and
|E|:=meas,_, (E), respectively.

Based on the above notation, we introduce a variant of the nonconforming
Crouzeix-Raviart piecewise linear finite element space (larger than the space
H, usedin [14])

H, ::{vh vy €[B(T)]" VT e ([v,], 1), =0 VE<£, (7).
(Vo Nl 1), =0 VE € &, (@, )UE, (0 )}
and piecewise constant function space
Q, ::{qh el2(Q):qy eP°(T) VT eTh},

where P" (T) is the space of the restrictions to 7 of all polynomials of degree

(34)

less than or equal to m. The space Q, is equipped with the norm |||| while
Yy
as
®
aq ®
a9 xr

Figure 6. P'-nonconforming finite element 7'in 2d.
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Figure 7. y,.

Figure 8. y,.
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Figure 9. y,.

the norm on H, will be specified later on. The choice of H, is more natural
than the one introduced in [14] since the space H, approximates only
H (div,Q) and not [Hl (Qd )JN , while our a priori error analysis is only valid
in this larger space.
Let us introduce the discrete divergence operator div, € £(H,;Q,)NL(H;Q)
by
(divyvy ), =div(vy ), VT €7, (35)

Then, we can introduce two bilinear forms

N-1
Ho

a,(uv)= ZyTEZT:s(D(u), D(v)), + ,Z:; \/KT<US TV T >F|

+y(|<—1u,v)9d +(div,u,div,v), , vu,ve HUH,
and
b, (v.q):= —(q,divhv)Q , WweHUH,,VqeQ,.

Then the finite element discretization of (27) is to find (uy, p,)eH, xQ,
such that
{éh(uh,vh)+bh(vh, P )+3(uy vy )=L(v,), Vv, eH,,

(36)
bh(uhth):G(qh): va, €Q,.

This is the natural discretization of the modified weak formulation (27) except
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that the penalizing term J(u,,v,) is added. This bilinear form J(.,.) is de-
fined by following the decomposition (37) of &, :

J(uv)=3_, (U v)+3g, (Uv)+354, (U, V) (37)
where |
3, (uv): =(1+2y)EE£hZ(:Q )h g -[v]e ds,
Jg, (uv)= EEE h H_[u]e [v]e ds.
and :

Jog, (W)= hgle[u-nE]E[v~nE]Eds.

Ec&(00Qqg)
Here, h. is the length (N =2) or diameter (N =3) of E Note that each
element of &, only contributes with one jump termin J(u,Vv).
Remark 3.1 The Equation (36) have the matrix representation
M, U+M{P+M,U=F
M,U=G

where U (resp. P) denote the coefficients of U, (resp. p,) expanded with
respect to a basis for H, (resp. Q).

We are now able to define the normon H, (see [14]):
12

ML =| XM+ Z(vs Vet )+ IV, vV, +3(vv)

TET

In the sequel, we will denote by «,f and C; various constants indepen-

dent of A. For the sake of convenience, we will define the bilinear form:
A (u,v) =4, (u,v)+J(u,v).

From Holder’s inequality, we derive the boundedness of A, (-,-) and b (--):
Lemma 3.1. (Continuity of forms) There holds:.

IC(v)| <Cufvafl,. vy eH, UH, (38)
G(a,)[<C, Jan]. va, €Q,, (39)

A (U Ve )| < Colull IVall, - Yuqo v, € HL UH, (40)
Ioy (v, )| <Colvall ] ¥, € Hy UM, Vg, €Q,. (41)

Lemma 3.2, (Coercivity of Ay) Thereisan a >0 such that

A (Vh, vy )2 a||vh||i v, eH,. (42)

Proof Let v, € H,.We have
N=

A ) =22 2 [P +a(K ), + 85 o

TeTh ]=

+||divhv||;d+JQ;(vh, 0)+30, (Vi Vv )+Jaﬂd(vh,vh)
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We introduce the local space
{VG[LZ(T)]Z:curIVE LZ(T)} if N=2
{v € [Lz (T)]3 eurlve [LZ (T)T} if N=3
and for y €[ H*(T)]", we define

Wty fN=2
v = ; _ _
wxng ifN=3(r-n=00naT),

H (curl,T) =

with the semi-norm:

#(vy)=| > [ curlv,| , (wherel=1or1=3). (43)

s
TeT,

R

Using Young’s inequality and Green formula, we have:

$(vy)= ‘_[Qs curl v, . LQS 7. (vy)
J.rs 7. (V) jF. Ve (Vh)RI
S ,[rs ‘ (Vh )|]R| + r Ve (Vh )|]R' '

e Estimate ZEegh(l_ )_[E 7. (v, )|R, (I=1 or I=3).Wehave by
Cauchy-Schwarz inequality:

R

+
R

12
PRI R (TN
Y
< D {hEW(IE Vr(Vh)|;) ZhE}
Ec&y(Ts)

[V ]2E

12 12
Ecén(Ts)

12
> h <1 (44)
Eeé’h(l"s)

S[ > e

Ec&(Ts)

Also, we have:

Then,
"
D CACA FE IR A U S
Hence we deduce
ol ) £(0,, (vh,vh))”. (46)

Ecén(Ts)

e Now we estime the term ZEesh(n).[E 7. (Vi )LR, . By Cauchy-Schwarz, we
obtain:

12
Ve (Vh )|;' ) |F| |]/2 <a, (thVh )1/2

> [l =([;

Ee&(T))

DOI: 10.4236/jamp.2021.97112 1686 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2021.97112

H. K. Wilfrid

Thus we deduce the estimation:
(¢(Vh))2 S‘JQ; (Vh’vh)+é‘h(vhlvh)' (47)
Then,

3, (Vv )2, (v, v+ X IP(v, ||

TETh

2 2 [p(v, ": ()’ +30; (Vi vi)-

eTs

We apply Korn’s discrete inequality [30] and we get:

SRURARNTRA RS U8 5[ LY S
Te’]’hS

Thus

I(Vi Vi )+, (Vi vy ) + Z ”D Vi " ZT: "V(Vh)"j +J (Vi V),
TeT?

Hence,
AV V)2 X Vv +3(vv,). (49)
TEThS
We have,
N-1
A, (Vi Vi) Z;"Vh ” (50)
=
A1(Vh’vh)2||vh"(2d (51)
A, (Vv ) 2 |div, v, ||zd (52)

The estimates (49), (50), (51) and (52), lead to (42). The proof is complete. O

In order to verify the discrete inf-sup condition, we define the space:

W::{VeH:vIQd e[Hl(Qd)]N}. (53)

We define also the Crouzeix-Raviart interpolation operator I, :W — H, by:
[L(rv),ds=] v,ds, VE €& (Q) WeW, (54)

jE(rhv)d ds:jE v ds, VE €& (Qy), YveW. (55)

Lemma 3.3. The operator 1, is bounded- there is a constant C; >0 de-
pendingon o, u and N such that

12
vl <S5 (IVE, +MES ) vvew. (56)

Proof. The proof is similar to ([14], Lemma 4.5, Page 2695). O

Then, we have the following result

Lemma 3.4. (Inf-Sup condition) There exists a positive constant 3 de-
pendingon o, u and N such that

inf su el qh)—
Gh <Qh Vns'eh "Vh”h ” h"

2 p. (57)
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Proof. We use Fortin argument [31], e for each ¢, €Q,, we find v, € H,
such that:

by (Vi @) =[anl, and [val, Sl

Let ¢, €Q, = Q. Then from ([28], Corollary 2.4, Page 24), there exist vecto-
N
riel function Ve [H(l, (Q)] satisfying

divv=-q,, in Q
{nvnm <lal, Y
[HY(Q)]" €W, hence veW.Wetake V, =f,veH, andwe have:
b, (V-1,v,q,) quhdlv V-T1,V),
T,
= —T;Th LT g,n; -(V-1,V)
Eeghz(:QS)J Wi (v =hv) Echrae) J e -(V=1Y)
= 0(from the identities (54) and (55)).
Thus, we obtain
b, (v.a,)=b,(rV.0,)-
Using the system (58), we have:
by (V.0 ) = =, 60V (v) = o [ 2 [Vl o | (59)
Also,
[vally =lvll, < vl (60)
From (59) et (60), we deduce:
by (1,0 ) Z [Vl o Vo, € Q. (61)

The Inf-Sup condition holds and the proof is complete. O

From Lemma 3.2 and Lemma 3.4 we have the following result:

Theorem 3.1. There exists a unique solution (u,,p,)eH, xQ, to the prob-
lem (27).

3.2. A convergence Analysis

We now present an a priori analysis of the approximation error: The use of
nonconforming finite element leads to H, Z H, so the approximation error
contains some extra consistency error terms. In fact, the abstract error estimates
from [14] give the following result:

Lemma 3.5. Let (u, p) e HxQ be the solution of problem (27) and
(uy, py) € H, xQ, be the solution of the discrete problem (36). Then we have

Jumunl, o= f Ju-val, 0t [0+ Byt B (e

VheHy

where E;, and E,, are the consistency error terms define by:
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‘Ah (U vy) +By (Vi P) = (F.Vy )y = (94 iV, v, ),

B = o A (©3)
b 1 1
E,, = sup oy () +(9 q“)9|. (64)
R

Note that b, (u,q,)=b(u,q,), thus E, =0.

For estiming the approximation error, we assume that the solution (u, p) of
problem (27) satisfies the smoothness assumptions:

Assumption 3.1.

D ueH, ue[H(Q,)]", u, e[H3 Q)]

2) peQ, p,eH(Q), pseH (Q).

We begin with an estimate for the terms inf, _, ||u -V, ||h and

ianhEQh " P—=0, ” :
Lemma 3.6. (Ref- [14]) There hold:

vigtih "u B Vh"h N h(|u|2,s +|u|2,d )* (65)
qiggh p-a] < h(| p|1,s +| p|1,d ) (66)

Finally, let us consider the term Ah(uh,vh)+bh (Vh,ph)—E(Vh). The
smoothness assumption of U implies J(u,vh):O,thus
A (uv,)=4a(u,v,),vv, e H, . Clearly,
—I:(vh)z—(f,vh)Q—(g,divhvh)Qd
:—(f,vh)ns _(f’vh)nd —(g,divhvh)gd
= (2udiv D(u)-Vp,v, ) —(;1K’1u+Vp,vh)Q ~(div u,div,v, ),
S d
=2u(div D(u),vh)gs —(Vp,v, )QS _ﬂ(Kflu,vh )Qd

—(Vp,vh)Qd —(div u,div,v,)

=2 {2u(divD(u).v, ), -(Vt:, Vi) |

+T:ZTd {(K2u,v, ) = (Vpov, ), = (div udivyy, ),
=T§5h{‘2ﬂ(D(U):D(Vn))T +2u(ny-D(u), v, ) +(podivy, ),
—(\h/nﬂw P} X {-u(Kuv,), +(pudivy, ),

d
TeT,

~(v, -y, p)BT}—(div u,div, v, )Qd

:_{ > 2u(D(u),D(v, ))T}er(Klu,vh)Qd =(p.div,v,),

s
TeT,

—(div u,div,v, )Qd + {Zy(nT -D(u),v, )BT —(Vp Ny, D)BT}

s
TeTy,

- z (Vh ‘N, p)aT

d
TeT,
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N-1
Hoy

2 (e ), o ()
w2 Y (neDL) - X ([vnelep),

E
Ecéy(0F) Eeé (Qq U (%)

- Z ([Vh'nE]E'pS)E'

Ecs, (Q;)

Thus, we have

a(u,v,)+J(u,v, ) +by (u,v,)-L(v,) .
=R (Vy)+ Ry (Vi) + Ry (Vi )+ R, (V)
where
Rl(vh)=Nil Hey

In order to evaluate the four face integrals, let us introduce two projections
operators in the following.

Forany T €7, and Ee&(T), denote by P° (E) the constant space of the
restrictions to £ and 7. the projection operator from L* (E) onto P° (E)
such that

IE AT IE vds. (68)
The operator 7. has the property [32]:

[v=rc]ye SHE|V],, wveH!(T). (69)

0,E ~~

For any Ve[LZ(E)JN , we let TI.V be the function in [PO(E)]N such
that
(Mev), =7y, 1<i<N.

Using inequality (69), we obtain
N
V=TIV, ShE V], wve[HY(T)] . (70)
Then we have the following lemma:

Lemma 3.7. (Estimation the four face integrals) There holds:

Ho
IRl(Vh>|Sg?§aNX_1[ Jk—thllusll,gs Val, (71)
IR, (Vi )| S Ul [Vvall, (72)

DOI: 10.4236/jamp.2021.97112 1690 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2021.97112

H. K. Wilfrid

|R Vi | (|p|1s +|p|1d )"Vh"n (73)

|R4 (Vh )| S h(| p|1,d )”Vh”h ' (74)

Proof.

1) Estimate (71): We begin with an estimate for the first term R, (v, ). For
any face Ee& (Q:) , there exists at least one element T 7. such that
E € &(T). Then, from condition (68), Hoder’s inequality and inequality (70), it
follows that

N-1 Y2 2
|Rl(vh)|£zﬂal(r ts Ti|2) (Ir |Vh,s'Tj|2)
=1 4K ! |
& ua 2\l/2
< — K% ”uS|1,QS (Ir, |Vh,s 'Tj| )

1,04 Vi "h '

< max ”1]h||u|

1<jEN-L| g
i

2) Estimate (72): |
We have {nE~D(u)}|Ee[L2(E)J , hence HE(nE-D(u))e[PO(E)] .

IEHE (ne -D(u))[va]e =g (ne 'D(u)).[E[Vh]E =0. (75)

N

Thus,
J.ne D(u)-[vy ] = [ (ne -D(u) =TI (g -D(u)))-[v, .
f I )(ng -D(u))-[v, ]
Sllhiz (1=11e)(ne)-D(u)], [ne*? [vi el
She D), he?[Ivi . -

E

Furthermore, summingon E €& (Q;) faces, we obtain the estimate:
[Re ()] < hlul, vl (76)

3) For the terms R;(Vv,) and R,(V,), we use the same techniques as in the
proof of the bounds for R, ( ) , e {1 2} and we obtain:

R (vi)| h(lpl, + 1ol JIVall

|R4 Vi | S h(' p|l,d )"Vh"h :

The proof is complete. OI

From Lemma 3.5, Lemma 3.6 and Lemma 3.7, now we derive the following
convergence theorem:

Theorem 3.2 Let the solution (u, p) of problem (27) satifies the smoothness
assumption (Assumption 3.1). Let (u,,p,) be the solution of the discrete
problem (36). Then there exists a positive constant C depending on

N,u,K.,K',e, and o such that.

"U _uh"h +" P ph” < Ch(|u|21$ +|u|2,d +| p|1,s +| p|1,d ) (77)
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4. Numerical Experiments

In this section we present one test case to verify the predicted rates of conver-
gence. The numerical simulations have been performed on the finite element
code FreeFem++ [33] [34] in isotropic coupled mesh of Figure 10.

The solutions have been represented by Mathematica software. For simplicity
we choose each domain Q, le {S, d} as the unit square, o = =1, and the
permeability tensor K is taken to be the identity. The interface I'|, is the line
x=1,ie Q=0 UQ, like the show Figure 11.

We consider the application

¢:(x,y)eR2|—>¢(x,y)=x2(x—1)3y2(y—1)zeR on the open domain

Q=0,UQ,. In Q, we define u=(u,u,)=curl ¢:(—%,?] and we ob-
X

oy
tain:
U (%, y)=—2(=1+x)° x* (~1+y) y(-1+2y) (78)
Uy (%, y) = (=14 )" x(-2+5x)(-1+y)" y? (79)
We choose quadratic pressure p € L2 (Q) by
p(x,y):x2—2xy+y72—l. (80)

Thus,

Figure 10. Isotropic mesh 7,,, on coupled domain Qc R?.

(0.1) (1,1) (2,1)

(2,0)

(0,0) (1.0)

Figure 11. The domain Q in 2d.
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[, p(x y)dxdy =0 and Vp =(2x—2y,-2x+Yy). (81)

The exact solution (u, p) satisfies the following condition:
divu=0=gin Q, (82)
u=0o0n oQ, (83)

and the Beavers-Joseph-Saffman interface conditionson I', [, :x=1]:

u,-n,+u,-n,=0onT, (84)
p, —2un,-D(uy)-ng=p, on T, (85)

J |
~—2n,-D(u,)-7; =-u,-z, on T}, j=1---,N-1 (86)

o

Furthermore, we obtain the right-hand terms f define by
{fs =—2udivD(u)+Vp in Q,

¢k . (87)
¢ =uKUu+Vp inQ,.

Thus, (X y)=(f,(xy),f,(xy)) in Q, leadsto
f, (X y) = 4(~1+ %) (=1+2y)(-6x* +3x" +(-1+y) y—8x(-1+y)y
X* (3+10(-1+y)y))+2x-2y,

f,(xy)= —2(9(—1+ y)'y? —12x° (1+6(-1+y)y)+5x* (1+6(-1+Yy)y)
—2x(1+6(-1+y) y(1+3(-1+y)y))
+X (9+ (-1+y)y(9+5(- 1+y)y)))—2x+y,
andin Q,, f, (% y)=(k (X y).k(x,y)) is given by:
k (%, y) = (=1+ %) x(=2+5%)(~1+ y)* y* +2x -2y,
k, (%, y)=(-1+ x)2 X(-2+5x)(-1+ y)2 Y2 —2X+Y.

Figure 12 and Figure 13 give an illustration of isotropic and anisotropic
meshes.

We study now the convergence of the speed and the pressure in each subdo-
main on a triangulation 7;,,,, for the non-conforming finite elements of Crou-
zeix-Raviart. The results obtained are consistent, as shown in Figures 14-17. The
order of convergence in norm L* approximately equal to 2 for the speed in
each domain Q, le{s,d} and of order 1 for the pressure. Then, we represent
on the same triangulation, the curves of isovalours of each component of the
speedin Q, le{s,d} (seeFigures18-21).

Finally, we study the structure of the stiffness matrix in €2 on a uniform tri-
angulation. We find that, when the discretization step 4 becomes more and more
infinitely small, the matrix becomes more and more sparse (cf. Table 1), which
partly shows the effectiveness of the method digital used.

The exact solutions U=(u,,U,) and p are represented by Figures 22-24,
while the second members f,, f,, k; and Kk, are represented respectively
by Figures 25-28.
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Figure 14. Error for the velocity ||u - uh"h in Q. (log/log plot).

«
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-1.8
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I y Y Y ¥ ©

-3.4

Figure 15. Error for the pressure |p—p,| in Q, (log/log plot).
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Figure 16. Error for the velocity ||u - uh"h in Q, (log/log plot).
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Figure 17. Error for the pressure |p—p,| in Q, (log/log plot).
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courbe d'isoleure: Premiere composante de la vitesse

Figure 19. The isovalue of the second velocity component u, in Q.

s
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courbe d’isoleure: Premiere composante de la vitesse

TR

v o

Figure 20. The isovalue of the first velocity component u, in Q.

courbe d’isoleure: Deuxieme composante de la vitesse

e

Figure 21. The isovalue of the second velocity component u, in Q,.
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Table 1. Structure of rigidity Matrix on 10 iterations.

Parameter A % of Coefs. # 0
1/16 79.668827
1/22 66.405634
1/28 41.751001
1/34 28.652204
1/40 20.873193
1/46 15.879941
1/52 12.485349
1/58 10.073294
1/66 08.298201
1/70 06.954061

Figure 22. Component u, in Q.

5. Summary

e In this contribution, we have investigated a new mixed finite element method
to solve the Stokes-Darcy fluid flow model without introducing any Lagrange
multiplier. We have proposed a modification of the Darcy problem which al-

lows us to apply a slight variant nonconforming Crouzeix-Raviart element to
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Figure 23. Component u, in Q.

Figure 24. Pressure pin Q.
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Figure 25. Right-hand term  f, in Q.

s

Figure 26. Right-hand term  f, in Q..

s
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Figure 27. Right-hand term k, in Q,.

Figure 28. Right-hand term k, in Q,.
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the whole coupled Stokes-Darcy problem. The proposed method is probably
the cheapest method for Discontinuous Galerkin (DG) approximation of the
coupled system, has optimal accuracy with respect to solution regularity, and
has simple and straightforward implementations. Numerical experiments
have been also presented, which confirm the excellent stability and accuracy
of our method.

Further works: Further it is well known that an internal layer appears at the
interface I'| as the permeability tensor degenerates, in that case anisotropic
meshes have to be used in this layer (see for instance [8] [35]). Hence we in-

tend to extend our results to such anisotropic meshes.

. Nomenclatures

QcR",N€{2,3} bounded domain

), : the porous medium domain

Q. =0\Q,

I, =0Q,N0Q,

I,=0,\T,,l=s,d

N, (resp. N,) the unit outward normal vector along 0€), (resp. 0Q;)
u : the fluid velocity

p: the fluid pressure

In 2D, the curl of a scalar function wis given as usual by

[ ow  ow !
curlw=| —,———
X, O

In 3D, the curl of a vector function W =(W,,W,,W;) is given as usual by

curl w:=Vxw namely,

PP*: the space of polynomials of total degree not larger than &

7, : triangulation of Q

7, : the corresponding induced triangulation of Q, I <{s,d}

For any T €7, h is the diameter of 7and p; =2r; is the diameter of
the largest ball inscribed into 7

h:=maxh, and o, = maxi
TeTy TeTy, Pr

&, : the set of all the edges or faces of the triangulation
£(T): the set of all the edges (N = 2) or faces (N =3) of a element 7'

& = U E(T)

TeTy

N (T) : the set of all the vertices of a element T’
Ny=J N(T)

TeTy

For AcQ, & (A)={Ee& EcA}
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e For E €&, we associate a unit vector Ng such that n; is orthogonal to £
and equals to the unit exterior normal vector to 0Q
e For E€§, [¢]E

e In order to avoid excessive use of constants, the abbreviations X <y and

is the jump across E'in the direction of ng

X~y stand for x<cy and CX<Y<C,X, respectively, with positive con-
stants independent of X,y or 7.
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