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Abstract 
This paper constructs and studies a nonlinear multivariate regression-tensor 
model for substantiation of necessary/sufficient conditions of optimization of 
technological calculation of multifactor physical and chemical process of 
hardening of complex composite media for metal coatings. An adaptive a 
posteriori procedure for parametric formation of the target quality functional 
of integrative physical and mechanical properties of the designed metal coat-
ing has been proposed. The results of the research may serve as elements of a 
mathematical language when creating automated design of precision nano-
technologies for surface hardening of complex composite metal coatings on 
the basis of complex tribological and anticorrosive tests. 
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1. Introduction 

Researchers pay a lot of attention to increasing the strength characteristics of the 
technological process of hardening metal coatings (see, for example, 1) Munz 
W.-D., Lewis D.B., Hovsepian P.E. et al. Industrial scale manufacturing of su-
perlattice hard PVD Coatings//Surface Engineering. -2001. -V. 17. -pp. 15-17; 2) 
Mitterer C., Holler F., Ustel F. et al. Application of hard coatings in aluminum 
die casting//Surface & Coating Technology. -2000. -V. 125. -pp. 233-239). Non-
linear integrative physical and chemical (PC) processes lie at the root of the me-
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thods of hardening the working surfaces of modern power machines, which ac-
tualizes the issues related to formalization/development of their mathematical 
models. In this context, regression models [1] [2] [3] [4] are still in demand, 
where regression-tensor systems [5] [6] [7] form an important class. These sys-
tems, on the one hand, are obviously close in their predictive properties to po-
lynomial models [2], admitting a detailed analytical description based on tensor 
calculus [7], functional analysis of strong Frechet’s differentials [8] and extre-
mum problems theory. And on the other hand, they acquire an important role in 
the nonlinear analysis of multifactorial tribological and anticorrosion properties 
of complex metal coatings based on mathematical modeling of physical and 
mechanical (PM) properties of composite media, developing a nonlinear predic-
tive analysis of integrative characteristics of metal coatings induced by their na-
nostructure geometry [9] [10]. 

In the article, you will find the development of the tasks set in the conclusions 
of [5]. In this case, the main goal is not so much the formal accuracy of infe-
rences, but rather the clarity of concepts in the development of general problems 
of tribology [11] related to the precision modeling of nanostructures of complex 
metal coatings. In the context of the article, the problem of the formation of the 
PM functional that evaluates the PC mode hardening of composite metal coat-
ings is solved. Analytical interpretations of the multi-connected conditions of 
the PC mode optimization, under the imposed nonlinear (and essentially diffi-
cult to formalize) constraints, are constructed [12] [13]. The regression-tensor 
model for tribological/corrosion tests is substantiated by means of identification 
of multivariate nonlinear PM regression equations with a minimum tensor norm 
by the least squares method (LSM). 

2. Motivations, Terminology and Problem Formulation 

Let R be a field of real numbers, Rn be a n-dimensional vector space over R with 
Euclidean norm nR⋅ , ( )1col , , n

nw w R∈  be a column vector with elements 

1, , nw w R∈  and let ( ),n mM R  be the space of all n m× -matrices with ele-
ments from R. Moreover, let us assume that k

mT  is the space of all covariant 
tensors of k-th valency, i.e. real polylinear forms ,

1:k m m m
kf R R R× × →  with 

norm ( ), 2
... ...

1 2
:k

m

k m
jT

f t= ∑ , where { }... ...jt  is the “coordinate matrix” of the 
tensor ,k mf  with respect to the canonical basis [14] in the space of mR . 

Let mv R∈  be the vector of varying PC predictors [2] for a nonlinear PM re-
gression with a fixed origin in mRω∈  (the reference PM mode of hardening), 
( ) nw v Rω + ∈  be the vector of indices of PM variables. To describe a multifac-

torial physical and chemical process, consider a multidimensional functional 
nonlinear input-output type system described by a vector-tensor k-valent PM 
regression equation of the following form: 

( ) ( ) ( ) ( ), ,
1

0, , 0, ,
col , , , , , , , .j m j m

n
j k j k

w v f v v f v v vω ε ω
= =

 
+ = + 

 
∑ ∑
 

     (1) 

Here ,j m j
i mf T∈ , ( ), : m nR Rε ω ⋅ →  is a nonparameterizable class vec-
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tor-function 

( ) ( )( )22 2
1, n

k

mR
v o v vε ω = + + ,                 (2) 

( )1col , , mv v v=  , 0,m
if  is the 0-rank tensor, representing the tribological 

index , 1,iw i n=  of the PM quality of the investigated PC process in its refer-
ence mode, given by the vector mRω∈ . 

Note 1. The precision of nonlinear simulation of the PC process in the class 
of regression-tensor systems (1) (and adaptation of their parameters) is correct 
because of the continuous dependence ([8], p. 495) of solutions of the diffe-
rential diffusion equation [15] on its initial boundary conditions. The tensor 
structure of the Equation (1) arises in accordance with Theorem 3 ([16], p. 
255) and the polylinear nature ([8], p. 490] of the higher-order Frechet deriva-
tives when computing the strong differentials at a point ω  from the vector 
function ( ) ( ) ( )( )1col , , nw w w⋅ = ⋅ ⋅ . This ultimately summarizes Assertion 2 
from [5] (see Problem (I) below). In this case, the accuracy of the nonlinear PM 
modeling is represented by the function estimate (2) as a remainder term in the 
Peano form related to the k-valence index of the Equation (1). 

The problem of the multidimensional nonlinear regression-tensor modeling 
of multifactor physical and chemical process of hardening of metal coatings, op-
timal with respect to some target “tribological criterion”, was set and investi-
gated in detail in work [5] for the 2-valent model (1). With that, analytical solu-
tions of three methodological positions of this problem of optimal mathematical 
modeling are obtained: 

(I) for a fixed vector-predictor mRω∈  and its open neighborhood mV R⊂ , 
analytical conditions are defined, under which the vector function ( ) : nw V R⋅ →  
of PM property indices satisfies the multivariate regression-tensor system (1); 

(II) a direct algorithm is constructed for identifying tensor coordinates 
, , 1, , 0, 2j m

if i n j= =  in a 2-valent regression-tensor model (1) based on a numer-
ical solution of a two-criteria LSM problem of optimal a posteriori PM modeling 
written as: 

( ) ( ) ( )( ) ( ) ( )( )
2

, ,
1

1, , 0, ,

1 2

0, ,

2,

1, , 0,

1 2

,

min col , , , , , , ,

min ,

n

j
m

j m j m
nl l l l l

l q j k j k R

j m
i Ti n j k

w f v v f v v

f

= = =

= =

       −         
      

∑ ∑ ∑

∑ ∑

  

 

  

  

(3) 

where ( ) ( ), , 1,n m
l lw R v R l q∈ ∈ =  are, respectively, the vectors of experimental 

factor-predictors of the PC process, i.e. ( )lw  is the a posteriori response to the 
target variation ( )lv  relative to the coordinates of the reference vector ω  un-
der the condition ( ) 1

ml R
v <  (this inequality is methodologically dictated by 

condition (2)), q is the number of tribological experiments conducted (deter-
mined by representativeness of model (1)), carried out with the dynamics of PC 
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processes [15]; 
(III) for the 2-valent regression-tensor model (1) with the given predictor 

mRω∈  and nominal condition ( ), 0ε ω ⋅ ≡ , the analytical solution of the opti-
mization problem as a non-linear “v-optimization” of the varied (relative to the 
vector ω ) factor-predictors of the prognostic PM characteristics of the designed 
composite metal coatings was obtained: 

( ) ( ) ( ) ( )T
1 1max :

m n n
v R

F v r w v r w v r w vω ω ω
∈

= + = + + + + ,        (4) 

where the vector function ( ) ( ) ( )( )1col , , nv w v w v w vω ω ω+ = + +   has a 
coordinate representation according to the LSM-identified model (1)-(3), 0ir >  
are weight factors reflecting the priority of PM indices; we can also investigate 
Problem (III) for some 0jr < , which corresponds to the position when jw  
should be minimized in PM indices. 

The significance of the nonlinear multifactor regression-tensor analysis is 
not only in the exact theorems already obtained by this method [4] [5], but al-
so in the simple and clear heuristic rules (e.g. the condition of the experiments 

( ) 1
ml R

v < , or the equality n m=  in Corollary 2) involved in the construction 
of optimal multivariate posterior modeling. Over time, these rules can be 
brought to the level of strict theorems of regression analysis (like [2] [17] [18]), 
but even now their usefulness is undoubted [6]. 

Problem statement (according to analytical conclusions of [5]): 
(i) to determine necessary and sufficient conditions of solvability of the opti-

mization problem (4) for a 3-valent ( 3k = ) functional regression-tensor system 
(1); 

(ii) to construct an algorithm for correction of sufficient conditions of extre-
mum of stationary point of Problem (i) based on the r-parametric adjustment of 
the ( )Tr r w vω +  PM functional 

( ) ( )Tv F v r w vω= + .                    (5) 

3. Optimization of Physical and Mechanical Indices of the 
Hardening Process of Metal Coatings 

Consider Problem (i) on optimization of the PM characteristics of metal coat-
ings at 3k = ; note that the solution of the accompanying Problem (II) of the 
parametric identification for 3k =  is an non-complicated modification of As-
sertion 3 of [5] (see also [17]). 

In such a mathematical formulation, the nonlinear multivariate prognostic 
equation (1) can be given in the following vector-matrix-tensor form: 

( ) ( ) ( )( )
( )

T 3, T 3,
1 1col , , , , , ,

,

m m
n nw v c Av v B v f v v v v B v f v v v

v

ω

ε ω

+ = + + + +

+



   (6) 

where ( ) ( ), ,, , , 1,n
n m i m mc R A M R B M R i n∈ ∈ ∈ = . Without loss of generality, 

we believe that each matrix iB  has an upper triangular structure; this substan-
tially simplifies the numerical implementation of the ANC-algorithm (3). Addi-
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tionally, we note that the vector function ( ), : m nR Rε ω ⋅ →  satisfies (according 
to (2)) the qualitative estimate of ( ) ( )( )2 2

1

3 2
, n mR
v o v vε ω = + + . 

According to (1), at 3k =  PM functional of the total tribological indices (5) 
are twice continuously differentiable, which guarantees the equality of the mixed 
derivatives 

( ) ( )2 2
1 1, , , , , 1, .m g p m p gF v v v v F v v v v g p m∂ ∂ ∂ = ∂ ∂ ∂ ∀ =       (7) 

Therefore, in the solution of optimization Problem (4) for 3-valent model (6) 
the main result, according to Theorem 3 ([8], p. 505) and Theorem 7.2.5 [14], 
can be considered as the following Assertion 1. But first of all, let us first agree 
on a condition that 

( ) ( )* T
,: , 1,i i i m mB B B M R i n= + ∈ = ,                (8) 

where each iB  is a matrix of the system (6) (the matrix of the tensor 2,m
if  in 

such a statement when it is not considered to be symmetric in the system (1)). 
Moreover, let us consider a vector function 

( ) ( ) ( ) ( )( )1* * T 3, 3,
1 1 1: , , , , , , ,m m

n n v v nv v r B r B A f v v v f v v v r
−

 Φ = + + + ∇ ∇     (9) 

where ( )3, , ,m
v if v v v∇  is the gradient of the functional ( )3, , ,m

iv f v v v . 
Assertion 1. The stationary points * mv R∈  of Problem (i) are the essence of 

the solutions of equation 

( )* * 0.v v+Φ =                        (10) 

A sufficient condition ( ) ( ){ }* max : mF v F v v R= ∈  is that *v , as a statio-
nary point of the functional (5), must be of elliptic type. In other words, the 
point *v  for the Hessian ( ),G v r  of the functional (5) must satisfy the inequa-
lities 

det 0, 1, ,ij p
b p m  < =                      (11) 

where ( ), , 1,ij p pp
b M R p m  ∈ =   are the principal submatrices of the Hessian, 

det is determinant 

( ) ( )( )
( )( ) ( )

*

*

* * 2 3,
1 1 1

* 2 3,
,

, , ,

, , ,

m
g p v

m
n n n g p m mv

G v r r B f v v v v v

r B f v v v v v M R

 = + ∂ ∂ ∂ + 

 + + ∂ ∂ ∂ ∈ 



 

which is equivalent: characteristic numbers ( )* ,p v rλ  of the matrix ( )* ,G v r  
satisfy the 

( )* , 0, 1, .p v r p mλ < =                     (12) 

Corollary 1. In case of 2k =  the Hessian of the functional (5) and condi-
tions (11), (12) are invariant to the position of the stationary point *v , and the 
Hessian equals 

( ) * *
1 1 n nG r r B r B= + + ,                    (13) 

which leads to a linear dependence of the numbers ( ) , 1,p r p mλ =  on the 
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normalization of the vector r. 
If ( )rank G r m= , the solution of Equation (10) is unique and has the form of 

( )* 1 Tv G r A r−= − ,                      (14) 

which makes the position of the point *v  invariant to the normalization of the 
vector r. 

According to vector functions ( )3, , ,m
v if v v v∇ , the equation (10) is geometri-

cally defined by the intersection of m quadrics ([16], p. 219]. Local analysis can 
be performed on the basis of the fixed point principle ([8], p. 75]). If inequalities 
(11) (equivalent to (12)) are not fulfilled, i.e. at least one of them has a sign change 
to the opposite, the stationary point *v  is hyperbolic (saddle point). On the other 
hand, changing the inequality < to the reflexive ≤ (i.e. ( )*rank ,G v r m< ) induces 
a parabolic point structure for *v . Thus, in the case of a saddle/parabolic point 

*v , a purposeful parametric correction of the functional (5) is required to ensure 
its elliptic nature (12). It is clear that such a correction can shift the position of 
the stationary point, i.e. a refinement recalculation *v  is required after this 
correction (by virtue of Corollary 1, such a recalculation at 2k = , in turn, no 
longer entails changing the spectrum (12) of the Hessian ( )G r ). 

One of the factors affecting the stationary point *v  geometry of Assertion 1 
is the digital adaptive parametric adjustment of ( )* ,r G v r , which leads to el-
liptic conditions (11) or (12). This is the subject of the next section. 

4. Parametric Correction of the PM Functional Using the 
r-Parameter Family of Its Hessians 

Consider statement (ii): For a stationary point of the optimization problem (i), 
construct a numerical procedure for correction of weight factors nr R∈ , based 
on fulfillment of spectral conditions (12), i.e. providing elliptic nature of the sta-
tionary point *v  of Statement 1. This formulation is relevant for optimization 
of *v -parameters of the PM process when some target PM indices have to be 
minimized (i.e. 0jr < ). 

Note 2. Despite the algebraic equivalence of conditions (11)~(12), the use of ex-
pansion of determinants (11) in construction of adaptive correction ( )* ,r G v r  
is almost inevitably doomed to failure (even by means of computer algebra) due 
to a large number of terms expressed through multivariate regression coeffi-
cients. 

The solvability conditions for a problem similar to (ii) can be obtained only in 
exceptional cases. Therefore, below we shall discuss an approach to this problem 
based on the ideas of the theory of localization and perturbations of eigenvalues 
[14]. Another productive mathematical tool appears to be the transformation of 
conditions (12) to the problem of a “quadratic” stability by constructing a Lya-
punov function ([19], p. 134) (see Conclusion below) in the affine family of Hes-
sians of the optimization Problem (i) on the grounds that this family clearly de-
pends on variations of vector nr R∈  coordinates due to the structure of func-
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tional (5). 
Let some initial vector 0

nr R∈  of weight factors from Statement (ii) be 
given. For example, the heuristic choice of the vector 0r  can be made based 
on the equality of its coordinates 0 , 1,ir i n=  to the values of some functions 

:i R RΨ →  (with a clear physical context) that depend on the values of func-
tionals ( ) ( ): , 1,i iJ v w v i nω= + =  from auxiliary problems of optimal predic-
tion of PM quality by individual target tribological indices iw . In particular, for 
the 2-valent regression model (1), this position, according to Corollary 2 of [5], 
will be characterized by the following simple proposition. 

Assertion 2. If the maximal valency of tensors k is two, then the vector of ini-
tial weight factors ( )0 01 0col , , nr r r=   with coordinates 

( ) ( ){ }0 , max : , 1,m
i i i i ir z z J v v R i n= Ψ = ∈ =

 
has an analytic representation 

( ) ( )( )T * 1 T T * 1 T
0 1 1 1 1 1col 2 , , 2n n n n nr c e AB A e c e AB A e− −= Ψ − Ψ − , 

where { } 1,i i n
e

=
 is the canonical basis in nR . 

Let us denote by 0 mv R∈  some stationary point of the functional (5) in the 
case when the r-priority of the probing points is 0r . Correspondingly, we de-
note by ( )0 ,m mG M R∈  the Hessian of the given functional calculated for the 
pair ( )0

0 ,r v  and let 

( ) 0
* 2 3,: , , , 1,m

i i i g p v
G B f v v v v v i n = + ∂ ∂ ∂ =  . 

Then for the admissible linear variation r∆  of vector ( )0 01 0col , , nr r r=   
coordinates, given (due to comments to formula (4)) by the region of this varia-
tion nW R⊂  written as 

( )1: col , , nr r r W∆ = ∆ ∆ ∈ , 

0 0, 1, ,i i ir r r i n= + ∆ > =  

the r∆ -parametric family of linear variations of the Hessian ( )0
0,G v r r+ ∆  is 

defined by a matrix m m× -multiverse written as: 

0
1, ,

, .i i
i n

G rG r W
=

+ ∆ ∆ ∈∑


                   (15) 

By virtue of (7), the matrices of the family (15) are symmetric. 
For the matrices of the manifold (15), the eigenvalues can be characterized as 

a series of optimization problems by means of the Courant-Fischer Theorem 
[14]. On the other hand, in the circle of analytic applications of this theorem lie 
the reasoning of the Weyl Theorem [11] on the relations between the characte-
ristic numbers of the Hessian and any matrix from the manifold (15), allowing 
to clarify more transparently the geometric meaning of constructions of the li-
near r∆ -correction ( ) ( )T

0r r r w vω∆ + ∆ +  of the target functional (5) car-
ried out below. 

Taking into account the introduced constructions, the adaptive adjustment of 
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the PC process tribological quality functional ( ) ( )TF v r w vω= + , which en-
sures that inequality (12) is fulfilled when varying the vector nr R∈  at the sta-
tionary point, contains the following Assertion 3 below. In essence, this assertion 
is a non-complicated modification (in the version of the strong derivative 

( ) 0

0d , d rG v r r ) of Theorem 6.3.12 [14] based on Theorem 2 ([8], p. 491] and 
Theorem 4.1.3 [14], which takes into account the structure of the manifold (15) 
as symmetric matrices. 

Assertion 3. Let 0r r r= + ∆ , ( )( ){ }0 , , 1, m
p pr x p m R Rλ = ⊂ ×  be the set of 

eigenpairs of the Hessian 0G , i.e. ( )0 0 , 1,p p pr x G x p mλ = = , and let, given the 
realization of the manifold (15), the numbers 

T T , 1, , 1,pi p i p p pg x G x x x p m i n= = =  

are set. 
Then the eigenvalues ( )0

0, , 1,p v r r p mλ + ∆ =  of the Hessian ( )0
0,G v r r+ ∆  

have the form 

( ) ( ) ( )

( ) ( ) ( )

0
1 0 1 0 1

1, ,

0
0 0

1, ,

, ,

, .

n

n

i i R
i n

m m mi i R
i n

v r r r g r o r

v r r r g r o r

λ λ

λ λ

=

=

+ ∆ = + ∆ + ∆

+ ∆ = + ∆ + ∆

∑

∑





          (16) 

System (16) gives an estimate of the sensitivity of the Hessian ( )0
0,G v r r+ ∆  

spectrum to linear variations , 1,ir i n∆ =  of the weight factors. For nonlinear 
variations we can refer to the recurrence formulas from p. (b) ([16], p. 154), 
which can be computed symbolically using computer algebra. Of course, this 
analysis is approximate (valid for small nRr∆ ). It is especially efficient for the 
2-valent model when n m=  (this equality is not difficult to implement due to 
the relative variability of the number of PM indices). 

Corollary 2. Let 2k = , n m= , ( ) ( ) ( )( )0 1 0 0: col , , mr r rλ λΛ =   be a vector 
of characteristic numbers of the matrix ( )* *

01 1 0m mr B r B+ +  and { } 1,p p m
x

=
 be 

their corresponding eigenvectors. Moreover, let ( )* * *
1: col , , mλ λΛ =   be a vec-

tor of characteristic numbers that are “benchmark/reference” by criterion (12), 
and : piB b =    be a m m× -matrix with elements 

T * T
pi p i p p pb x B x x x= . 

Then for 0r r+ ∆ , where the variation vector has the representation  
( )( )1 *

0r B r−∆ = Λ −Λ , the eigenvalues of the Hessian ( )0G r r+ ∆  will be  
( )nRo r∆  close to the benchmark { }*

1,p p m
λ

=
. 

Note 3. Since Corollary 2 is valid for small mRr∆ , the question remains 
whether the iterative computational process will converge to 

( )1 1 , 1, 2,m
j j jr r r R j− −= + ∆ ∈ =  , 

constructed from the calculation ( )( )1 *
1 1j jr B r−
− −∆ = Λ −Λ , if the initial diver-

gence ( )*
0 mR

rΛ −Λ  is significant enough. Moreover, according to the struc-
ture of the target functional (5), at each iteration step j for vector m

jr R∈  
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coordinates it is necessary (within the physical statement of Problem (4)) to 
check the coordinate conditions 0, 1,ijr i n> = . 

Note 4. For adaptive systems, the evaluation of input signals (in our case 

( ) 1
ml R

v <  in (3)) is essential (which is why adaptive techniques with learning 
are used). In this context, it is important to obtain sufficient conditions for the 
adaptive system to have robust bounded solutions [20], with the very fact of ex-
istence of predetermining solutions satisfying these properties being more im-
portant (see (2)) than their specific solutions. Thus, a fixed parameter setting 
providing qualitative (see (12)) control of the predictive system (1), which is not 
very sensitive to the exact value of the parameters, can yield a number of possi-
ble values r∆ , allowing us to determine the optimal values v, guaranteeing the 
target quality (4). 

In the context of Note 3, let us provide the result of calculating an upper 
bound estimate for perturbation mRr∆ . To this end, assume that M⋅  is the 
matrix norm in ( ),m mM R , consistent with the norm in Euclidean space mR⋅ , 
and 1ME = , ( ),m mE M R∈  is the unit matrix. For example, the Frobenius 
norm 

( ) ( )1 2
,

1 2
: ,ij ij m mFD m d D d M R−  = = ∈ ∑ , 

or the spectral (induced) matrix norm 

{ } ( )1 T

1

2: sup : , 1 maxm m
m

iS R R i m
D Dx x R x D Dλ

≤ ≤
= ∈ = =

 
can serve as such. 

Returning to Corollary 2, we have ( )*
0B r r∆ = Λ −Λ , det 0B ≠ . Now sup-

pose that the vector of characteristic numbers ( )*
0rΛ −Λ  turns into a per-

turbed vector ( )*
0r δΛ −Λ +  (in particular, due to the members ( ) mR

o r∆  of 
system (16)), and the matrix B turns into B D+ . Then the vector r∆  will get 
(due to a modification of Corollary 2) some increment θ , passing to the value 

r θ∆ + , which satisfies the equation ( )( ) ( )*
0B D r rθ δ+ ∆ + = Λ −Λ + . 

It is obvious that ( ),,m
m mR D M Rδ ∈ ∈  models the perturbations of the vec-

tor ( )*
0rΛ −Λ , and the inaccuracy of the parametric estimation of the matrix B 

(if 1 1M M
D B− < , then M MD B< ; see ([21], p. 197). The result of calcu-

lating the upper bound estimate of perturbation m mR Rrθ ∆  formulates Co-
rollary 3. For technical details of the accompanying calculations using the con-
struction of the matrix conditional number, see a popular (among graduate stu-
dents) monograph ([21], p. 197). 

Corollary 3. Let ( ) 1: M M
s B B B−= , the conditional number of matrix B, 

where M⋅  is the norm F⋅  or 
S⋅ , be added to the assumptions of Corollary 

2. Then the following estimate is valid for , rθ ∆  

( ) ( )( )
( )( )

1

*
0

1

.

m m

m m

R R M M

R M MR

r s B s B D B

r D B

θ

δ

−
∆ ≤ −

× Λ −Λ +
 

If 
M S⋅ = ⋅  and 1, mλ λ  are, respectively, the smallest and the largest eigen-
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values of the matrix TB B , then in the last inequality we can assume that 
( ) ( )1

1 2
ms B λ λ= . 

Note 5. The construction of the conditional number ( ) ( )1
1 2

ms B λ λ=  ob-
tained using the spectral norm 

S⋅  is transparent due to equality  
( ) 1

S S
s B B B−= . 

Alternative approaches [22] [23] [24], including deep insight (via computer 
algebra [6]) into the physical content of the subject of nonlinear PC modeling, 
can be used to take into account interferences other than those covered by Co-
rollary 3. 

5. Conclusions 

The aim of the article was, in development of the results [5], to point out the 
connection that exists between the problem of determining the value of the Hes-
sian matrix function at the stationary point of the target functional (5) and the 
vector r of weight factors in (5), reflecting the priority between iw -modeled 
predictions of the target tribological PM indicators. In this context, Assertion 1 
and its Corollary 1 show that, unlike the 3-valent regression-tensor model, in the 
2-valent one, the Hessian ( ),G v r  is invariant to the stationary point position. 
In this case, both variants allow us to identify the r-dependence of the Hessian 
spectrum ( ),G v r  on the basis of the nonlinear multivariate regression PM mod-
el for the PC mode of hardening of composite metal coatings identified within the 
framework of the LSM problem (II). 

Assertion 3 essentially asked: what can we say about the eigenvalues of the 
matrix 0 1, , i ii nG rG

=
+ ∆∑



, if each variation of ir∆  is a small parameter? Thus, 
we were only interested in the purely formal aspect of the mathematical model-
ing problem under study, when we do not consider the question of what the real 
value of the increment ir∆  must be for the term “small parameter” to be really 
relevant. In this case, the result of Assertion 3 is based on the fact that the eigen-
values (12) smoothly r depend on the Hessian ( ),G v r  elements during the 
current parametric r-correction of the target functional (5). However, it should 
be noted that some information is lost when we deal only with the characteristic 
polynomial, because there are many different matrices with a given characteristic 
polynomial. It is therefore not surprising that the stronger results on modeling 
the Hessian spectrum ( ),G v r , in particular Assertion 3 and Corollary 2, take 
into account the structure of ( ),G v r . The latter ones admit technical simplifi-
cations by means of specialized computer algebra proceeding from the geome-
trical assumption that any Hessian matrix is orthogonally similar to a real di-
agonal matrix. 

Numerical methods for finding eigenvalues and eigenvectors represent one of 
the most important parts of matrix theory. The analysis of the vector  

( )*
0rΛ −Λ  and matrix B from Corollary 2 has not touched on any aspect of this 

topic above, but Corollary 3 gives an upper estimate for the perturbation r∆  
via relative perturbations ( )*

0rΛ −Λ , B and the conditional number ( )s B . 
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The ( )s B  is involved in the estimation in all cases, whether the perturbations 
occur in ( )*

0rΛ −Λ , only in B, or in ( )*
0rΛ −Λ  and B at the same time. 

Finally, we denote another approach (essentially cybernetic) in adaptive cor-
rection ( )Tr r w vω + , related to the use of sufficient robust stability condi-
tions for the 2-valent model of the matrix ( )G r , which also leads to conditions 
(12). In this context, it is required that with interval tolerances on the vector r 
coordinates one can construct a Lyapunov function ( ) T

p pV x x Px= , where 
( ),m mP M R∈  is the symmetric positively-defined matrix for which the Lyapu-

nov equation ( ) ( )G r P PG r Q+ = −  has a solution given a symmetric positive-
ly-defined m m× -matrix Q. The transition to adaptive robust quadratic stability 
[19] and methods of its solution are also proposed in [20] [23]. This theory, due 
to the abundance of its computational problems and the opportunities that it 
opens for applications of nonlinear multivariate regression-tensor analysis, may 
acquire great (extended) importance in the problems of precision multifactor 
nonlinear optimization of PC processes of the hardening of complex composite 
metal coatings and alloys [25]. 
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