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Abstract 
Unsteady MHD natural convective heat and mass transfer flow through a 
semi-infinite vertical porous plate in a rotating system have been investigated 
with the combined Soret and Dufour effects in the presence of Hall current 
and constant heat flux. It is considered that the porous plate is subjected to 
constant heat flux. The obtained non-dimensional, non-similar coupled 
non-linear and partial differential equations have been solved by explicit fi-
nite difference technique. Numerical solutions for velocities, temperature and 
concentration distributions are obtained for various parameters by the above 
mentioned technique. The local and average shear stresses, Nusselt number as 
well as Sherwood number are also investigated. The stability conditions and 
convergence criteria of the explicit finite difference scheme are established for 
finding the restriction of the values of various parameters to get more accu-
racy. The obtained results are illustrated with the help of graphs to observe 
the effects of various legitimate parameters. 
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1. Introduction 

The analysis of hydromagnetic natural convection flow involving heat and mass 
transfer in porous medium has attracted the attention of many scholars because 
of its possible applications in diverse fields of science and technology such as soil 
sciences, astrophysics, geophysics, nuclear power reactors, etc. In geophysics, it 
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finds its applications in the design of MHD generators and accelerators, under-
ground water energy storage system, etc. It is worth mentioning that MHD is 
now undergoing a stage of great enlargement and differentiation of subject mat-
ter. These new problems draw the attention of the researchers due to their varied 
significance in liquid metals, electrolytes and ionized gases, etc. The MHD in the 
present form is due to pioneer contributions of several notable authors like 
Crammer and Pai [1], Ferraro and Plumpton [2] and Shercliff [3]. Considerable 
attention has been given to the unsteady free-convection flow of viscous incom-
pressible and electrically conducting fluid in the presence of applied magnetic 
field in connection with the theory of fluid motion in the liquid core of the earth, 
meteorological and oceanographic applications. The study of magnetohydrody-
namic viscous flows with Hall currents has important engineering applications 
like Hall accelerators, power generators, constructions of turbines and centrifug-
al machines. In last few decades, the study of hydrodynamic and hydromagnetic 
boundary-layer flows with or without Hall current effects in a rotating fluid has 
received the attention of many research workers. Raptis et al. [4] have studied 
the effects of transverse magnetic field on hydromagnetic free convection consi-
dering Hall effects into account. Ram [5] investigated the effects of Hall current 
and wall temperature oscillation on convective flow in a rotating fluid through 
porous medium. The heat and mass transfer occur simultaneously between the 
fluxes, the driving potentials are of more intricate nature. An energy flux can 
be generated not only by temperature gradients but also by composition gra-
dients. The energy flux caused by a composition is called Dufour or diffu-
sion-thermo effect. Temperature gradients can also create mass fluxes and this 
is the Soret or thermal-diffusion effect. Generally, the thermal-diffusion and the 
diffusion-thermo effects are of smaller-order magnitude than the effects pre-
scribed by Fourier’s or Fick’s laws and are often neglected in heat and mass 
transfer processes. However, there are exceptions. The thermal-diffusion effect, 
for instance, has been utilized for isotope separation and in mixture between 
gases with very light molecular weight (Hydrogen-Helium) and of medium mo-
lecular weight (Nitrogen-air), the diffusion-thermo effect was found to be of a 
magnitude such that it cannot be neglected. The boundary layer flows in the 
presence of Soret and Dufour effects associated with the thermal diffusion and 
diffusion-thermo for the mixed convection have been analyzed by Kafoussias 
and Williams [6]. The heat and mass transfer effects on a flow along a vertical 
plate in the presence of a magnetic field were investigated by Elbashbeshy [7]. 
The problem concerning MHD free convection and mass transfer flow with heat 
source and thermal diffusion was studied by Singh [8]. Takhar et al. [9] observed 
the MHD flow over a moving plate in a rotating fluid with magnetic field, Hall 
currents and free-stream velocity. The influence of porous media considering 
Soret and Dufour effects has been studied by Postelnicu [10]. Sharma et al. [11] 
have investigated the Hall effect on MHD mixed convective flow of a viscous 
incompressible fluid past a vertical porous plate immersed in a porous medium 
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with heat source/sink. Wabomba et al. [12] investigated the effect of magnetic 
field and Hall current on MHD flow past a vertical rotating flat pate. The un-
steady heat and mass transfer by mixed convection flow from a vertical porous 
plate with induced magnetic field, constant heat and mass fluxes has been inves-
tigated by Alam et al. [13]. The Hall effect on unsteady MHD flow past along a 
porous plate with thermal diffusion, diffusion thermo and chemical reaction has 
been investigated by Sudhakar et al. [14]. The effects of Hall currents, Soret and 
Dufour on MHD flow by mixed convection over vertical surface in porous me-
dia has been studied by Shateyi et al. [15]. 

In view of the significance of the Soret and Dufour effect as well as Hall cur-
rent, it has been proposed in the present paper to investigate the unsteady MHD 
free convective flow past a vertical porous plate in porous medium with Hall 
current, thermal-diffusion, diffusion-thermo and heat flux. Here the main objec-
tives are to study the effect of Dufour number, Soret number and Hall parameter 
on the flow and transport characteristics. The present study is an extension to 
the work done by Shateyi et al. [15] and to investigate the effects of both Hall 
current and constant heat flux with thermal diffusion and diffusion-thermo on 
an electrically conducting fluid bounded by a semi-infinite vertical porous plate 
in a rotating system. The proposed model has been transformed into non-similar 
coupled partial differential equation by usual transformations. The governing equ-
ations are solved numerically by using the explicit finite difference method with 
the help of a computer programming language Compaq Visual Fortran 6.6.a. Fi-
nally, the results of this study are discussed for different values of parameters 
and are shown graphically. 

2. Mathematical Analysis 

An unsteady flow model of combined heat and mass transfer by free convection 
of an electrically conducting incompressible viscous fluid past a semi-infinite 
vertical porous plate with the effects of Hall current and constant heat flux is 
considered which is illustrated in Figure 1. 

Let the fluid rotate with uniform angular velocity Ω  about the z-axis normal 
to the plate. It is assumed that there is a constant suction velocity. The flow is 
also assumed to be in the x-axis that is taken along the plate in the upward direc-
tion and z-axis is normal to it. At time 0t > , the temperature at the plate and 
the species concentration are constantly raised from wT  to T∞  and wC  to 
C∞  respectively, which are thereafter maintained constant, where wT , wC  are 
the temperature and species concentration at the wall and T∞ , C∞  are the 
temperature and species concentration far away from the plate respectively. A 
uniform magnetic field 0H  is imposed along the z-axis and the plate is taken to 
be electrically non-conducting. It is assumed that the induced magnetic field is 
negligible so that ( )00,0, H=H . This assumption is justified when the mag-
netic Reynolds number is very small. The equation of conservation of electric 
charge 0⋅ =J∇  gives constantzj = , where ( ), ,x y zj j j=J . This constant is  
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Figure 1. Physical configuration and coordinate system. 

 
assumed to be zero at the non-conducting plate, therefore 0zj =  everywhere 
in the flow. The generalized Ohm’s law including the effect of Hall current 
(Cowling [16]) is; 

( )
0

1e e
e

e
ep

H en
ω τ

σ µ
 

+ × = + × + ⋅ 
 

J H E qJ H ∇            (1) 

where eω  is the cyclotron frequency and eτ  is electron collision time, σ  is the 
electric conductivity, eµ  is the magnetic permeability, e is the electric charge, en  
is the number density of electron and ep  be the electron pressure. It has been 
assumed that the ion slip and thermoelectric effect is negligible. Further it is 
considered that the electric field 0=E  and electron pressure have been neg-
lected. Under this assumption Equation (1) gives; 

( )0
21

e
x

H
j v mu

m
σµ

= +
+

                      (2) 

( )0
21

e
y

H
j mv u

m
σµ

= −
+

                      (3) 

Thus, accordance with the above assumptions relevant to the problem and 
under the electromagnetic Boussinesq approximation made by Ram [5], Sudha-
kar et al. [14] and Shateyi et al. [15] and in a rotating frame the basic boundary 
layer equations are given by; 

The continuity equation 

0u w
x z
∂ ∂

+ =
∂ ∂

                          (4) 

The momentum equations 
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The energy equation 
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The species equation 
2 2

2 2
m T

m
m

C C C D
D C Tu w

t x z Tz z
κ∂ ∂ ∂ ∂ ∂

+ + = +
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              (8) 

with the corresponding initial and boundary conditions are; 
 0, ,     everyw0,  0,  0,   heret u v T Tw C C∞ ∞= = = →= →        (9) 

0,  0,  0,   0, ,      at  0 t T C xT Cwu v ∞ ∞> = = → →= =  

0 , 0,     at 0, ,   0w
T Qu U zCwv C
z κ

∂
== = − =

∂
==           (10) 

 0, ,     a0,  0,   s u v T Tw C zC∞ ∞== = → → →∞  
where u, v and w are the x, y and z components of velocity vector respectively, 

e em ω τ=  is the Hall parameter, υ  is the coefficient of kinematic viscosity, ρ  
is the density of the fluid, eµ  be the magnetic permeability, σ  is the electrical 
conductivity, 0H  be the uniform magnetic field, 0U  be the uniform velocity, g 
is the acceleration due to gravity, β  is the coefficient of thermal expansion, *β  
is the coefficient of concentration expansion, k ′  is the permeability of the 
porous medium, κ  is thermal conductivity, PC  is the specific heat at constant 
pressure, sC  be the concentration susceptibility, Q be the constant heat flux 
per unit area, mD  be the coefficient of mass diffusivity, Tκ  be the thermal 
diffusion ratio and mT  be the mean fluid temperature. 

To obtain the governing equations and the boundary conditions in dimen-
sionless form, the following non-dimensional quantities are introduced as; 
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υ υ
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− −
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−  
Substituting the above relations in Equations (4)-(8) and after simplification, 

the following non-linear coupled partial differential equations in terms of di-
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mensionless variables are obtained as; 

0U W
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                        (11) 
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The corresponding initial and boundary conditions in Equations (9) and (10) 
become; 
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3. Shear Stresses, Nusselt Number and Sherwood Number 

From the velocity field, the effects of various parameters on local and average 
shear stresses have been studied. The following equations represent the local and 
average shear stresses at the plate. The local primary shear stress is in the  

x-direction, 
0

Lx
z

u
z

τ µ
=

∂ =  ∂ 
 and average primary shear stress is in the x-direction, 

0

d
Ax

z

u x
z

τ µ
=

∂ =  ∂ ∫  which are proportional to 
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respectively. The local secondary shear stress is in the y-direction, 
0
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v
z

τ µ
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and average primary shear stress is in the y-direction, 
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 ∂ ∫  respectively. From the  

temperature field, the effects of various parameters on heat transfer coefficient 
have been calculated. The following equation represents the local and average 
heat transfer rate, which is well known as Nusselt number. Local Nusselt number,  
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∂ − ∂ ∫  respectively. From the  

concentration field, the effects of various parameters on mass transfer coefficient 
have been calculated. The following equation represents the local and average mass 
transfer rate, which is well known as Sherwood number. Local Sherwood number,  
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∂ − ∂ ∫  respectively. 

4. Numerical Technique 

To solve the above non-dimensional system of equations by explicit finite dif-
ference technique, the present problem requires a set of finite difference equa-
tions. To obtain the difference equations the region within the boundary layer is 
divided into a grid or mesh lines parallel to X and Z-axes where X-axis is taken 
along the plate and Z-axis is normal to the plate. It is considered that the plate of 
height ( )max 100X =  and regard ( )max 25Z =  as corresponding to Z →∞ . 
There are 180m =  and 180n =  grid spacing in X and Z directions respective-
ly as shown in Figure 2. It is assumed that X∆ , Z∆  are constant mesh sizes 
along X and Z directions respectively and taken as follows  

( )0.555 0 100X X∆ = ≤ ≤  and ( )0.138 0 25Z X∆ = ≤ ≤  with a smaller time 
space 0.005τ∆ = . 

The explicit finite difference approximation gives; 
1 1
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Figure 2. Explicit finite difference space grid. 
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with the finite difference boundary conditions ; 

0, 0, 0, 0,0,  0,  0,  0n n n n
j j j jU V θ ϕ= = = =  

,1 ,0
,0 ,0 ,01,  0,  1,  1

n n
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, , , ,0,  0, where   0,  0  n n n n
i L i L i L i LU V Lθ ϕ= = = = →∞  

Here the subscript i and j designates the grid points with X and Z coordinate 
and n represents a value of time, nτ τ= ∆  where 1,2,3,n =  . At the end of 
time step τ∆ , the primary velocity, the secondary velocity, the temperature 
distributions and the concentration distributions at all interior nodal points, 
may be calculated by successive applications of the above finite difference equa-
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tions. Also the numerical values of the local shear stresses, Nusselt number and 
Sherwood number are evaluated by Five-point approximate formula and then 
the average shear stresses, Nusselt number and Sherwood number are calculated 
by the use of the Simpson’s one-third integration formula. 

5. Stability and Convergence Analysis 

Here Since an explicit procedure is being used, the analysis will remain incom-
plete unless we discuss the stability and convergence of the finite difference 
scheme. For the constant mesh sizes, the stability criteria of the scheme may be 
established as follows; 

( )2 2

Δ Δ 2Δ 1 Δ 1
Δ Δ 21Δ

MU W
X Z kmZ
τ τ τ τ − + + + ≤ + 

           (23) 

( )2

Δ Δ 1 2Δ Δ 1
Δ Δ 2Δr r

U W
X Z P PZ
τ τ τ α τ
− + + ≤               (24) 

( )2

Δ Δ 1 2Δ 1
Δ Δ Δc

U W
X Z S Z
τ τ τ
− + ≤                  (25) 

Form the above Equations (23)-(25), the convergence limits for the model of 
flow are 89.9, 0.001, 0.01, 5.99, 0.54rM m k Pα≤ ≥ ≥ ≤ ≥  and 0.526cS ≥ . 

6. Results and Discussion 

To investigate the practical situation of the problem, the approximate solutions 
are obtained for various parameters. In order to analyze the physical situation of 
the model, the steady state numerical values of the dimensionless primary veloc-
ity (U), secondary velocity (V), temperature (θ) and concentration (φ) within 
the boundary layer for different values of Hall parameter (m), Magnetic para-
meter (M), Heat source parameter (α), Grashof number (Gr), porous permeabil-
ity parameter (k), Ekman number (Ek), Eckert number (Ec), Prandtl number (Pr), 
Schmidt number (Sc), Dufour number (Df) and Soret number (Sr) with the fixed 
value of modified Grashof number (Gm) have been obtained. To compute the 
numerical results, a computer programming language Compaq Visual Fortran 
6.6.a has been used and Tecplot 9.0 is used for displaying figures graphically. 

For the steady state solutions of the problem, the computations have been car-
ried out up to 80τ = . It is observed that the values of this computation, howev-
er, show little changes after 60τ = . Thus the solution at 60τ =  are essentially 
steady-state solutions. Because of the great importance of cooling problem in 
nuclear engineering in connection with the cooling of reactors, the value of the 
Grashof number for heat transfer is taken positive ( 0rG > ). Since the most im-
portant fluids are atmospheric air, salt water and water so the results are limited 
to 0.71rP =  (Prandtl number for air at 20˚C), 1.0rP =  (Prandtl number for 
salt water at 20˚C) and 7.0rP =  (Prandtl number for water at 20˚C). Here the 
investigation are assumed for both lighter and heavier fluid particles, hence with 
respect to convergence criteria of the problem the values of Schmidt number (Sc) 
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are taken 0.60, 0.78 and 0.97 (in particular, 0.60 for water vapor that represents a 
diffusing chemical species of most common interest in air, 0.78 corresponds to 
ammonia and 0.97 for carbon dioxide which represents the specific condition of 
the flow). In addition, The values of Hall parameter (m), Magnetic parameter 
(M), Heat source parameter (α) and porous permeability parameter (k) are taken 
according to the convergence criteria. However, the values of other parameters 
Ek, Ec, Df and Sr are chosen arbitrarily and also the modified Grashof number 

1.0mG =  for mass transfer are considered arbitrarily. 
Along with the obtained steady state solutions, the flow behaviors in case of 

cooling problem are discussed graphically. The nature of primary velocity, sec-
ondary velocity, temperature distributions and concentration distributions ver-
sus Z are illustrated in Figures 3-30. 

The primary velocity profiles have been shown in Figures 3-8. The effect of 
heat source parameter (α) on the primary velocity (U) field is presented in Fig-
ure 3. It is observed that U decreases with the increase of α. The primary velocity 
has an increasing effect for the rise of Hall parameter (m), which is presented in 
Figure 4. It is analyzed that the primary velocity decreases with the rise of mag-
netic parameter (M) which is plotted in Figure 5. It is observed in Figure 6 that 
the primary velocity rapidly increases with the increase of Eckert number (Ec). It 
is observed from Figure 7 that the primary velocity (U) field decreases near the 
plate in case of rising Dufour number (Df), but far away from the plate the in-
crease of Df leads to an increase in primary velocity field that is indicating a cross 
flow of primary velocity for Df. Figure 8 depicts the Soret effect on primary ve-
locity (U) field and it shows that the velocity rises with the increase of Soret 
number (Sr). 

Figures 9-14 represent the secondary velocity profiles for cooling plate 
( 0rG > ). The effect of heat source parameter (α) on the secondary velocity (V) 
field is presented in Figure 9. It is observed that V increases with the increase of 
α. The secondary velocity profile decreases significantly for the rise of Hall  

 

 
Figure 3. Primary velocity profiles for different values of α. 
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Figure 4. Primary velocity profiles for different values of m. 
 

 
Figure 5. Primary velocity profiles for different values of M. 

 

 

Figure 6. Primary velocity profiles for different values of Ec. 
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Figure 7. Primary velocity profiles for different values of Df. 
 

 
Figure 8. Primary velocity profiles for different values of Sr.  

 

 
Figure 9. Secondary velocity profiles for different values of α. 
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Figure 10. Secondary velocity profiles for different values of m. 
 

 

Figure 11. Secondary velocity profiles for different values of M. 
 

 
Figure 12. Secondary velocity profiles for different values of Ec. 
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Figure 13. Secondary velocity profiles for different values of Df. 
 

 
Figure 14. Secondary velocity profiles for different values of Sr. 

 
parameter (m), which is presented in Figure 10. It is analyzed that the secondary 
velocity increases with the increase of magnetic parameter (M), which is plotted 
in Figure 11. It is observed in Figure 12 that the secondary velocity decreases 
with the increase of Eckert number (Ec). Figure 13 depicts the secondary veloci-
ty (V) field increases near the plate in case of rising Dufour number (Df), but far 
away from the plate the increase of Df leads to a decrease in secondary velocity 
field that is indicating a cross flow of secondary velocity for Df. Figure 14 illu-
strates the Soret effect on secondary velocity (V) field and it shows that the ve-
locity decreases with the increase of Soret number (Sr). Specially, it is observed 
that the velocity distribution increases or decreases gradually near the plate and 
then decreases or increases slowly far away from the plate. Hence, it is concluded 
that the maximum velocity occurs in the vicinity of the plate. 

The temperature distributions are shown in Figures 15-20. It is observed in 
Figure 15 that the temperature profile decreases with the increase of heat source  
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Figure 15. Temperature profiles for different values of α. 

 

 
Figure 16. Temperature profiles for different values of m. 

 

 

Figure 17. Temperature profiles for different values of Ec. 
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Figure 18. Temperature profiles for different values of Pr. 
 

 

Figure 19. Temperature profiles for different values of Df. 
 

 
Figure 20. Temperature profiles for different values of Sr. 
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parameter (α). Figure 16 shows that Hall parameter (m) has a minor effect on 
temperature (θ) distribution. From Figure 17, it is shown that the increasing 
values of the Eckert number (Ec) increases the temperature distribution signifi-
cantly. Figure 18 shows that the temperature decreases drastically for the in-
crease of Prandtl number (Pr). This is due to the fact that there would be a de-
crease of thermal boundary layer thickness for the increase of Pr. It is observed 
in Figure 19 that the temperature (θ) profile decreases near the plate for rising 
Dufour number (Df), but it increases far away from the plate for Df that is indi-
cating a cross flow of temperature distribution for Df. Figure 20 is illustrated 
that the temperature distribution has a minor increasing effect for Soret number 
(Sr). 

The species concentration distributions are presented in Figures 21-24. It is 
observed in Figure 21 that the concentration decreases with the increase of heat  

 

 
Figure 21. Concentration profiles for different values of α. 

 

 
Figure 22. Concentration profiles for different values of Sc 
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Figure 23. Concentration profiles for different values of Df. 

 

 
Figure 24. Concentration profiles for different values of Sr. 

 
source parameter (α). The increase of Schmidt number (Sc) shows an increasing 
effect on concentration profile near the plate and then it gradually decreases far 
away from the plate that means there exists a cross flow for Sc which is observed 
in Figure 22. Physically, the increase of Sc means the decrease of molecular dif-
fusivity. Hence the concentration of species is higher for small values of Sc and 
lower for large values of Sc. It is observed in Figure 23 that the concentration (φ) 
profile decreases near the plate for rising Dufour number (Df), but it increases 
far away from the plate for the increase of Df that is indicating a cross flow of 
concentration distribution for Df. Figure 24 depicts that the concentration (φ) 
rises with the increase of Soret number (Sr). 

The steady state local and average primary shear stresses 
Lxτ  and 

Axτ  are 
shown in Figures 25-30. It is observed in Figures 25-26 that, 

Lxτ  and 
Axτ   
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Figure 25. Local primary shear stress for different values of α and m. 

 

 
Figure 26. Average primary shear stress for different values of α and m. 

 

 
Figure 27. Local primary shear stress for different values of M and Ec. 
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Figure 28. Average primary shear stress for different values of M and Ec. 

 

 
Figure 29. Local primary shear stress for different values of Df and Sr. 

 

 
Figure 30. Average primary shear stress for different values of Df and Sr. 
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decrease with the increase of Heat source parameter (α) while they both have an 
increasing effect for the increase of Hall parameter (m). The local and average 
primary shear stresses decrease with the increase of magnetic parameter (M) 
while they both increase with the increase of Eckert number (Ec), which are 
plotted in Figure 27 & Figure 28. Local and average primary shear stresses are 
decreasing for increasing Dufour number (Df) while for the increase of Soret 
number (Sr), they are increasing those are observed in Figure 29 & Figure 30. 

In Figures 31-36, the steady state local and average secondary shear stress 

Lyτ  and 
Ayτ  are presented for different values of parameters. It is observed in 

both Figure 31 & Figure 32 that, 
Lyτ  and 

Ayτ  increase with the increase of 
Heat source parameter (α) while they have a decreasing effect for the rise of Hall 
parameter (m). It is analyzed that the local and average secondary shear stresses 
increases with the increase of magnetic parameter (M) while they both decrease 
with the increase of Eckert number (Ec), which is plotted in Figure 33 & Figure 34.  

 

 
Figure 31. Local secondary shear stress for different values of α and m. 

 

 

Figure 32. Average secondary shear stress for different values of α and m. 
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Figure 33. Local secondary shear stress for different values of M and Ec. 
 

 

Figure 34. Average secondary shear stress for different values of M and Ec. 
 

In case of rising Dufour number (Df), local and average secondary shear stresses 
have a minor increasing effect while for the increasing values of Soret number 
(Sr), they are decreasing those are observed in Figure 35 & Figure 36. 

The profiles of steady state local and average Nusselt number 
LuN  and 

AuN  
for different values of parameters are shown in Figures 37-40. In Figure 37 & 
Figure 38, 

LuN  and 
AuN  increase with the increase of Heat source parameter 

(α) while they have a negligible effect for Hall parameter (m). In case of rising 
Dufour number (Df), local and average Nusselt number have an increasing effect 
while they have a decreasing effect for Soret number (Sr), which are observed in 
Figure 39 & Figure 40. 

The curves of local and average Sherwood number 
LhS  and 

AhS  are illu-
strated in Figures 41-44. In Figure 41 & Figure 42, local and average Sherwood 
number 

LhS  and 
AhS  increase with the increase of both Heat source parameter 

(α) and Schmidt number (Sc). In case of Dufour number (Df), local and average  

https://doi.org/10.4236/jamp.2021.97109


A. Quader, Md. M. Alam 
 

 

DOI: 10.4236/jamp.2021.97109 1633 Journal of Applied Mathematics and Physics 
 

 
Figure 35. Local secondary shear stress for different values of Df and Sr. 

 

 

Figure 36. Average secondary shear stress for different values of Df and Sr. 
 

 
Figure 37. Local Nusselt number for different values of α and m. 
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Figure 38. Average Nusselt number for different values of α and m. 
 

 
Figure 39. Local Nusselt number for different values of Df and Sr. 

 

 

Figure 40. Average Nusselt number for different values of Df and Sr. 
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Figure 41. Local Sherwood number for different values of α and Sc. 
 

 

Figure 42. Average Sherwood number for different values of α and Sc. 
 

 

Figure 43. Local Sherwood number for different values of Df and Sr. 
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Figure 44. Average Sherwood number for different values of Df and Sr. 
 

Sherwood number have a minor increasing effect while they have a decreasing 
effect for increasing Soret number (Sr), which are observed in Figure 43 & Fig-
ure 44. 

7. Conclusions 

The explicit finite difference solution for combined heat and mass transfer by 
free convection flow of an electrically conducting incompressible viscous fluid 
past an electrically non-conducting semi-infinite vertical porous plate in the 
presence of heat generation, joule heating, viscous dissipation, thermal diffusion 
and diffusion thermo with constant heat flux is investigated here. The physical 
properties are graphically discussed for different values of corresponding para-
meters. Some important findings of this investigation are below; 
• The primary velocity increases with the increase of m, Ec and Sr while it 

shows reverse effect with the increase of α and M. There exists a cross flow 
for different values of Df. 

• With the increase of α and M, the secondary velocity increases while it de-
creases with the increase of m, Ec and Sr. Also, there exists a cross flow for 
different values of Df. 

• The fluid temperature is increasingly affected by Ec and decreasingly affected 
by α and Pr. A cross flow happens for different values of Df. There is also a 
minor effect on temperature profile for m and Sr. Particularly, the fluid tem-
perature is more for air than water and it is less for lighter than heavier par-
ticles. 

• The concentration profile is increasingly affected by Sr and decreasingly af-
fected by α and Pr. A cross flow happens for different values of Sc and Df. Par-
ticularly, the species concentration is higher for water than air as well as it is 
more for lighter than heavier particles. 

• The local and average primary shear stresses increase with the increase of m, 
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Ec and Sr while reverse trend arises with the increase of α, M and Df. 
• The local and average secondary shear stress increases with the increase of α, 

M and Df while it decreases with the increase of m, Ec and Sr. 
• The local and average rate of heat transfer is increasingly affected by α and Df 

and decreasingly affected by Sr. There is also a negligible effect on Nusselt 
number for m. 

• The local and average rate of mass transfer is increasingly affected by α and Sc 
and decreasingly affected by Sr. There is also a negligible effect on Sherwood 
number for Df. 
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