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Abstract 
The theory here developed, makes use of the decomposition of matter (mass) 
in different spatial frequencies k’s using spatial Fourier transforms, and the 
posterior use of modified inverse Fourier transforms to construct an accurate 
description of the classical Newtonian gravitational field. Introducing the 
concept of quantization of the spatial frequency k, which means allowing only 
discrete values, such as km, 2km, 3km, leads to the appearance of extra gravita-
tional force regions that occur at distances equally spaced apart in 2π/km. 
These areas of extra gravitational force decrease inscribed in an inverse of the 
distance envelope (1/r). The value of 2π/km can be adjusted to be of the order 
of kiloparsec (kpc), being this way a plausible explanation for the effect of the 
dark matter since this causes practically flat rotation curves for most of the 
galaxies. As these regions of extra gravitational force also have adjacent areas 
of negative values (repulsive gravitational force), it is possible to show that 
any mass placed in the gravitational field far from the galaxy center will ac-
quire, on average, a null acceleration, thereby remains the “light push,” or in 
other words, the “mean luminosity density” between galaxies as an explana-
tion for the accelerating expansion of the universe, today being considered 
mainly due to dark energy. Along with the article, it is showed that the effect 
of light push is sufficient to explain the expansion of the universe. The 
present work also explains the nonlinear behavior of gravitational fields near 
massive objects such as blackholes, not contradicting the theory of general 
relativity, instead giving a complementary description of how black holes 
work, even describing the gravitational field internally to it, which is not 
available in the GR theory. 
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1. Introduction 

The theory of general relativity GR [1] has been proved to be accurate in most 
cases, any attempt to complement it must be taken carefully. 

Despite its immense success, GR theory lacks in explaining the behavior of the 
gravity inside black holes [2]. Besides, the calculation of the acceleration of grav-
ity outside a black hole or any other massive celestial object having a strong gra-
vitational pull is the subject of numerically solving complex nonlinear equations 
[3]. Moreover, finally, there is a bridge that has yet to be built between GR and 
quantum mechanics [4]. 

The present theory has the merit and the novelty of helping to explain or solve 
the three points above, besides offering a simple computational way to calculate 
gravity inside and outside black holes, or in any other massive object, using 
Fourier transforms, such as explained later. 

As a start point for the theory of black holes, the author considers the existence 
of two kinds of energy sources for the gravitational field: The rest mass, which 
converts into energy by E = Mc2 and the energy due the motion of particles. 

For calculations are used the Fourier transform, widely used in quantum me-
chanics for representing the wave function in the position or momentum space, 
among many other uses [5]. 

Regarding dark matter and dark energy, both have been the subject of discus-
sion for a long time [6], with some works done in an attempt to relate the two 
effects [7]. 

Based on the work discussed above, it is possible to consider, by hypothesis, 
the possibility of the quantization of the spatial frequency k, that is, only occur-
ring at fixed intervals, such as km, 2km, 3km, where km stands for “minimum spa-
tial frequency”. 

The proposed quantization, when applied in the inverse Fourier transform, 
reveals areas of extra gravitational force spaced at 2π/km, which fall as inscribed 
in an inverse distance envelope (1/r). Therefore, choosing the correct value of 
2π/km in the range of kiloparsecs (kpc) is sufficient to explain the practically flat 
rotation curves of most galaxies [8]. Also, the appearance of adjacent regions of 
negative gravitational force due to the proposed quantization is also verified. 
Areas of negative gravitational force cancel, on average, the effect of areas of 
positive gravitational force, which means that an object traveling between galax-
ies experiences, on average, a null gravitational effect. 

The null average effect of gravity between galaxies allows us to demonstrate 
that the mean luminosity density of the universe is a sufficient factor to explain 
the repulsive force responsible for the accelerating expansion of the universe. 

By now, it is not clear what causes the universe to expand, puzzling the scientists 
even more since the discovery that the expansion is in fact accelerating [9] [10]. 

The repulsive force of light as responsible for the accelerating expansion of the 
universe is mostly unconsidered due to its small magnitude compared to gravi-
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tational effects, being necessary the elaboration of alternative concepts such as 
negative vacuum pressure or dark energy, among others [11]. 

However, considering the average annulment of the force of gravity between 
galaxies, it is clear that luminosity could be a predominant factor and the only 
one necessary to explain the expansion of the universe. The physical model de-
veloped in the last part of the present paper has yielded results that agree very 
well with values that are within the current acceptable limits for the Hubble con-
stant ≈ 67 - 73 km∙s−1∙Mpc−1, obtained respectively by [12] and [13]. 

The present model excludes the existence of non-baryonic matter, or the exis-
tence of dark matter or dark energy, further concludes that the expansion of the 
universe follows a coasting universe model, expanding forever, never contracting. 

2. Decomposition of Matter in k-Space 

The k-space or reciprocal space is the spatial frequency domain of a spatial 
Fourier transform, as shown in Equation (1). It is possible to take a distribution 
of mass in position space, and through the use of a spatial Fourier transform to 
decompose it in different spatial frequencies. 

( ) ( ) e dixkD k D x x
∞

∞ −

−
= ⋅∫                      (1) 

As our object of study are mostly radially symmetric spherical bodies, such as 
stars, black holes, and so on, it is showed, using spherical coordinates, that the 
Fourier transform for such a case can be simplified as in Equation (2) [14]. 

( ) ( ) ( )2
0

sin
4 d

R kr
D k D r r r

kr
= ⋅ π ⋅∫                  (2) 

where r is the radial coordinate, and k is the spatial frequency in k-space, which 
unit is m−1. For a spherical object of mass M, radius R, and volume V, the radial 
density D(r) is as shown in Equation (3). 

( ) 3

3
4

M MD r
V R

= =
π

                       (3) 

Substituting Equation (3) in Equation (2) and resolving for D(k), we get 

( ) ( ) ( )
3 3

sin cos3 Rk Rk RkMD k
R k

−
=                  (4) 

where R is the radius of the spherical object, k is the spatial frequency and M is 
the mass of the object. The function D(k) has unit kg and can be understood as 
being the decomposition of the mass M in different spatial frequencies k’s. Equ-
ation (4) is plotted in Figure 1. 

From Figure 1, we see that the decomposition of an object of mass M, with uni-
form density and radius R in k-space, has a maximum value of M and a “band-
width” inversely proportional to the radius R. However, we can observe the exis-
tence of negative values, which does not necessarily mean negative mass, which has 
no physical significance. Instead negatives values in k-space are understood as spa-
tial frequencies shifted 180˚ in phase, being necessary for the correct reconstruction 
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Figure 1. Decomposition in k-space of an object with mass M, radius R, and uniform density. 

 
of the object after the application of the inverse Fourier transform, as will be ex-
plained below. 

Reconstruction of the Gravitational Potential 

To facilitate the understanding of topics to be discussed later, we will normalize 
the function D(k), that is, divide it by M and introduce the function F(k) which 
is simply D(k)/M. 

The inverse Fourier transform associated with the Fourier transform of Equa-
tion (2) is defined as 

( )
( )

( ) ( )2
3 0

sin1 4 d
2

kr
D r M F k k k

kr
∞

= ⋅ ⋅ π ⋅
π

∫              (5) 

Upon inspection, it is verified that the right transformation for the classical 
Newtonian gravitational potential is given by Equation (6). 

( ) ( ) ( )
0

sin2 d
kr

U r GM F k k
kr

∞
= ⋅ ⋅
π ∫                 (6) 

Which gives the correct value for the classical Newtonian gravitational poten-
tial, of the form GM/r, where G is the gravitational constant. 

Plotting the Equation (6) along with its negative derivative with respect to r 
( ( ) ( )d da r U r r= − ), which is the force per unit mass i.e., gravitational accele-
ration, we obtain as shown in Figure 2 the correct value for the gravitational 
potential and force per unit mass (gravitational acceleration) in the classical 
Newtonian form. As a further verification of the presented method, in Figure 3  
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Figure 2. Gravitational potential (Solid line) and force per unit mass (Dashed line) obtained from Equation (6) for a solid sphere. 
 

 
Figure 3. Gravitational potential (Solid line) and force per unit mass (Dashed line) for a hollow sphere. 
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is plotted the value of the gravitational potential for a hollow sphere using the 
pair of direct and inverse Fourier transforms given respectively by the Equations 
(2) and (6) and using Equation (3) considering the volume V as the volume of 
the outer shell. Where the integration limits for the Equation (2) are taken be-
tween 0.9R and R. The respective value of its negative derivative (acceleration) is 
also showed in the dashed line. 

Such previous examples prove the validity of the adopted method. Also, other 
validated cases are not shown here. 

The same concept could be expanded to objects that do not necessarily have 
radial symmetry, for that it is enough to use the correct pairs of Fourier trans-
forms for such cases. These results indicate that any radial distribution of matter 
can be decomposed in k-space, using Equation (2), and by using Equation (6) to 
reconstruct the corresponding classical Newtonian gravitational potential, which 
by the negative value of its differentiation in space results in force per unit mass 
(acceleration). 

3. Motion Energy with Increasing in Mass Density 

In the relativity theory [15], the total energy E of an object is 

( ) ( )222 2E pc Mc= +                       (7) 

With Mc2 being the rest mass energy (from now on the mass M is also consi-
dered the rest mass) and its “motion energy” given by the product of its mo-
mentum and the speed of light c. Based on that, the theory presented here as-
sumes that the use of Equation (6) only considers the rest mass M or in a similar 
way, the “rest energy” Mc2 to correctly calculate the classical Newtonian gravita-
tional potential. 

However, the motion energy of an object is not only due its translational mo-
tion, being also contained in the form of quantum motion of its constituent par-
ticles. 

Such phenomenon is described in the well-known “Uncertainty Principle” 
[16], shown in Equation (8) and which essentially states that the greater the cer-
tainty in determining the momentum of the particle, the less certainty in its po-
sition and vice versa. 

2
p

x
∆ ≥

∆


                           (8) 

where ħ is the reduced Planck constant. 
This principle can be used to estimate the average values for the motion ener-

gy of a quantum particle, which is inversely proportional to the dimension occu-
pied by the particle ∆x. 

It is assumed here that the increase in mass density will act in reducing the ra-
dius of the particles (more particles packed together) and consequently increas-
ing the motion energy of its constituent particles. This can be clearly seen in 
Figure 1, where the “bandwidth” is proportional to 1∕R, meaning that as the ra-
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dius of the spherical object decreases the amount of energy in the “momentum 
space” k spreads out, having consequently more energy in the form of quantum 
motion. 

Gravitational Potential due the Motion Energy  
of Quantum Particles 

The spatial frequency k is directly related to the momentum of a particle through 
the De Broglie relation hk, where h is the Planck constant. As the Fourier trans-
form indicated in Equation (2) is a 3D transform, the same is valid for the in-
verse transform. So, integrating the function all over the 3D space of the spatial 
frequency k, we obtain the expression in Equation (9), which indicates the gra-
vitational potential due to the motion energy. 

( ) ( ) ( )3
3 2

40

sin
dM

krGU r M F k k k
krc

∞
∝ ⋅∫               (9) 

where physical constants and extra terms were adjusted in order to give the same 
dimension as in Equation (6), since the unit for k is m−1. 

As the Equation (7) indicates that the rest mass energy and the momentum 
energy are perpendicular to each other we can suppose that the angle total ener-
gy E is shifted in arctan (Momentum energy/Total Energy) in relation to the rest 
mass. This all can be summarized in the Equation (10). 

( ) ( ) ( )
23

2 3 2
40

2
2 2

4

2
2 2

4

2
2

sin arctan 2
d

arctan 2

T
GU r F k GM M k
c

Gkr M k
c

k
Gkr M k
c

∞
⋅ ⋅

⋅

⋅

 π
= +  

 

  
−     

 
−  ⋅ 

 

∫

          (10) 

where UT is the complete solution for the gravitational potential. The terms in 
the square root are respectively proportional to the rest mass energy and motion 
energy and the term inside the arctan function represents the ratio between 
them. The values 2 multiplying the motion energy were chosen in order to adjust 
the equation to the GR theory as seen later. The Equation (10) is reduced to the 
classical gravitational potential as in Equation (6) in the limit SR R , where RS 
is the Schwarzschild radius. 

4. Non-Rotating Black Holes 

Making use of the Equation (10), we are able to plot for the condition for the 
formation of a black hole SR R= , being 22SR GM c= . 

For comparison we use the relativistic gravitational potential as obtained by 
[17] and indicated in Equation (11). 

( )
2

2

2ln 1
2T
c GMU r

rc
 = − − 
 

                  (11) 
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By analyzing Figure 4, which is the plotting of Equation (18), we realize that 
the gravitational force only goes to infinity at the border of a black hole. 

Which gives a pretty good agreement and besides that offers an understanding 
of how the gravitational field behaves internally to the massive body, showing 
that the gravitational potential only tends to infinity in the border of the black 
hole. 

Such procedure can be used for calculation of the gravitational field near mas-
sive bodies approaching the Schwarzschild limit. 

An important question that can be raised throughout this topic is how the 
mass contained in an object can deflect the space-time fabric to exert a force at 
the distance on some other object? As an answer, we can infer that any object 
that has mass has constituent particles that are always in motion, and that 
movement would be transmitted to the space-time fabric in a way to combine 
with the other vibrations originated by other particles building up a resulting to-
tal deflection of the space-time fabric in all internal and external regions of such 
object. 

The only difference between the deflection caused by rest mass and the mo-
tion energy of these particles would be the way they "move", causing different 
effects on the space-time fabric that would later be transmitted to all regions of 
the space. 

Up to here, we have worked with gravitational effects more evident over small  
 

 
Figure 4. Gravitational potential field for a black hole. Numerical solution using Equation (10) (Circle), and the relati-
vistic gravitational potential using Equation (11) (Solid line) for comparison. 
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distances on cosmological scales   1 kpc, contained in smaller dimensions 
than those of our solar system. Since the extra gravitational effect of black holes 
seems more obvious in their surroundings, it became asymptotically more simi-
lar to the classic Newtonian model for greater distances, since the extra effect 
due to the motion energy of the quantum particles decays more abruptly as dis-
tance increases. 

However, for larger cosmological scales in the order of kpc, we verify the exis-
tence of the phenomenon known as dark matter, and on even larger scales (in-
tergalactic medium) we verify the existence of the phenomenon of dark energy. 

In the next topic, we will demonstrate that both dark matter and dark energy 
can be caused by the existence of the quantization of the spatial frequency k, 
which can be understood as a limitation of the matter moving at all values of 
spatial frequency k, or a limitation of the space-time field of being excited in all 
spatial frequencies, with such excitations only occurring in steps. 

We must clarify here that the quantization of the spatial frequency does not 
affect the results obtained in the present topic, since it only has effects on a scale 
much larger than that of our solar system. 

5. Quantization of the Spatial Frequency k 

We here postulate the existence of a minimum value for the spatial frequency k, 
being the other values multiples of this minimum value. Therefore, the spatial 
frequency can only acquire discrete values, such as km, 2km, 3km, and so on. 

This leads to a discrete representation of the integral in Equation (6), with an 
increment of km, as indicated in Equation (12). 

( ) ( ) ( )

( ) ( )

1

sin2

d
d

m
m mn

m

n k r
U r GM F n k k

n k r

a r U r
r

∞

=

⋅ ⋅
= ⋅ ⋅
π ⋅ ⋅

= −

∑
           (12) 

The value of km should be considered as very small, in such a way that the 
value of 2π/km is on the galaxies size scale (kpc). Therefore, the celestial objects 
considered in this work are galaxies in general, where the effects of the quantiza-
tion of the spatial frequency are evident. 

5.1. Dark Matter 

To demonstrate how the quantization of the spatial frequency k allows us to de-
duce the effect of dark matter, we will take the example of the Milky Way. 

The distribution of mass in the bulge of the Milky Way Db(r) can be modeled 
according to Equation (13) [18]. 

( )
( )

2

5
2 2 2

3

4
b

M bD r
r b

⋅ ⋅
=

⋅ π ⋅ +
                   (13) 

With 99.5 10M M= ×


 and 1.9 kpcb = . This equation can be approximated 
using a bell curve, as indicated in Equation (14). 
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( )

2

3
32

e
x
b

b
MD r

b

 − 
 ⋅

=
π ⋅

                      (14) 

In Figure 5, we can see that the two curves are similar, and the use of one or 
the other is indifferent to our goal of showing the effect of the quantization of 
the spatial frequency k in the behavior of the gravitational force. However, we 
will choose to use the bell curve because it is easier to solve analytically. 

After the application of Equation (14) in Equation (2), with R →∞ , we ob-
tain the mass distribution in k-space, also a bell curve, in terms of the spatial 
frequency k, as shown in Equation (15). 

( )
( )

( ) ( ) ( )

2

2

4

4

e

e

k b

b

k b
b

b

D k M

D k
F k

M

− ⋅

− ⋅

= ⋅

= =

                    (15) 

Applying this value in Equation 12, with 11 kpcmk −=  and comparing the ef-
fect with the classic Newtonian force, we get Figure 6. From Figure 6, we can 
see that the effect of the quantization of the spatial frequency creates regions 
of extra gravitational force that decrease inscribed in a 1/r envelope. This phe-
nomenon is like that found in signal analysis, more specifically in the sampling 
theory, where the discretization of the signal in one domain, produces extra spec-
trums in the other domain [19]. 

 

 
Figure 5. Equation (13) (Solid line) and Equation (14) (dashed line) for comparison. 
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Figure 6. Force per unit mass (acceleration) in the classical Newtonian (solid line) and new proposed model (dashed 
line) with 11.5 kpcmk −= . The point line shows that the resulting force is inscribed in a 1/r envelope (points). 

 
Being therefore sufficient the occurrence of these regions to explain the fact 

that most spiral galaxies have flat rotational velocity curves, since such galaxies 
have a high concentration of mass in a volume in their center (bulge) as modeled 
in the present case. Besides, there are adjacent regions of negative gravitational 
force, which effect is to expel objects orbiting the galaxy towards regions of posi-
tive gravitational force, being therefore most likely responsible for the creation 
of voids in the galaxies, where there is a lower concentration of matter. 

The present model is perfectly symmetrical, requiring more realistic models 
for the precise determination of where the matter will accumulate. More pre-
cisely, it is necessary and suggested by the author to run complex computational 
simulations to analyze the evolution of spiral galaxies, considering the quantiza-
tion of the spatial frequencies. 

Now applying the relationship ( )rv r a r= ⋅ , where rv  is the rotational ve-
locity, a(r) is the acceleration, and r is the radial distance, we obtain Figure 7 
where the negative values (gravitational repulsion) are not considered. 

From Figure 7, fringes of extra gravitational force are created around the cen-
tral bulge, providing areas where the velocity of rotation is practically constant. 
These fringes are also probably responsible for the creation of galactic arms, where 
areas of lower matter density are those with repulsive gravitational force (negative 
velocity). Regardless, it is suggested again as confirmation of the present theory the 
execution of computer simulations of the evolution of galaxies, considering the  
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Figure 7. Rotational velocity using the relation ( )rv r a r= ⋅  in the classical Newtonian way (solid line) and the new 

proposed model (dashed line) with 11 kpcmk −= . 
 

quantization of the spatial frequency k. The quantization of the spatial frequency 
used in Figure 6 and Figure 7 is 11 kpcmk −= , which is not necessarily the exact 
value, but apparently close to the real value. Computer simulations must be per-
formed in order to determine a more accurate value. 

5.2. Dark Energy 

Knowing that the acceleration acc, in terms of the displacement variable s, can be 
expressed as indicated in Equation (16). 

d d d d d d
d d d dcc cc
v v s va v a s v v
t s t s

= = = ⋅ ↔ ⋅ = ⋅              (16) 

Integrating both sides and solving for the velocity v, we obtain 

( )d d 2 dcc cca s v v v a s s⋅ = ⋅ ↔ = ⋅∫ ∫ ∫               (17) 

Therefore, we have an expression that relates the variations of acceleration in 
space s, with velocity v acquired by a mass. Consequently, we notice that if the 
integral of the acceleration in space is limited ( ( ) dcca s s⋅∫ ), the velocity v will 
have a constant value, causing a zero acceleration of a mass placed in that field. 
Now considering a(r) as this acceleration, we have the necessary conditions to 
verify if the acceleration of gravity with the effect of the quantization of the spa-
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tial frequency causes a net acceleration or not. The force per unit mass a(r) (ac-
celeration) due to the quantization varies positively and negatively inscribed in 
an envelope of 1/r (Figure 6). Thus, it can be proved by integral convergence 
rules, that the velocity acquired by a mass placed in this gravitational field does 
not exhibit any net acceleration. 

According to what was discussed above, we must assume that, on average, the 
net gravitational force between galaxies is canceled. It hence requires a force of 
repulsion much smaller than what is currently used to explain the accelerating 
expansion of the universe. 

The next topic goes on to explain that the average luminous density of the 
universe is a sufficient factor to explain the commonly accepted rates of accele-
ration of the universe. 

6. Luminosity as the Factor for Universe Expansion 

In this topic, the influence of luminosity on the expansion of the universe is 
evaluated considering the net gravitational effect of the attraction between ga-
laxies as null, as previously discussed. 

Luminosity is defined as the total electromagnetic power emitted by a source, 
and for astronomy, such sources can be stars, galaxies, supernovae, or any other 
astronomical object [20]. The unity of luminosity is W, and this power is due to 
photons that individually carry a discrete amount of energy given by hf. Typi-
cally, an astronomical object such as a star emits its luminosity in a broad range 
of frequencies (bolometric luminosity). Each photon is associated with a mo-
mentum given by hf/c, where c is the speed of light in the vacuum. It means that 
a stream of photons emitted by a source can exert a force over an object, being 
this force proportional to the cross-section area S of the object which lies per-
pendicular to the direction of the stream of photons. For an object apart from 
the light source, the power per square meter (W/m2), commonly named “ap-
parent brightness,” is proportional to the inverse of the square of the distance 
(1/r2). This relation is quite useful for our study, since we can borrow some con-
cepts used in classical gravity, which also follow an inverse square law. 

Considering that the universe is homogeneous and isotropic when viewed at 
large scales, we can make use of the shell theorem, which allows significant sim-
plifications for objects subjected to gravitational forces inside or outside a shell 
or sphere. 

We realize, in Figure 8, with the application of the shell theorem, that the en-
tire universe outside the sphere does not exert any gravitational force over the 
astronomical object A; and all the gravitational effect of the objects inside the 
sphere over the object A can be replaced by an equivalent object in the center of 
the sphere with a mass equivalent to the sum of all masses within the sphere. 

Since apparent brightness (W/m2) also follows the inverse square law, just like 
the force of gravity, we can, by analogy, use the same simplification as for the 
luminosity. 
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Figure 8. Shell theorem for gravity applied for a homogeneous and isotropic universe (a), 
and the equivalent gravitational effect in (b). This simplification is also valid for the “lu-
minosity push”. 

 
Using again Figure 8, we can also state that the equivalent “luminosity push” 

felt by an object A in Figure 8(a) is derived not taking into account all the lu-
minosities sources outside the sphere, but replacing all the luminosity sources 
inside the sphere by an equivalent one at the center with a luminosity equivalent 
to the sum of all luminosities inside the sphere (Figure 8(b)). 

This simplification, again, is only possible because, just like gravity, the ap-
parent brightness also follows the inverse square law (1/r2). However, this sim-
plification has some constraints; among them, we can list: 

1) The presence of intergalactic dust causes an attenuation of the order 
0.01 mag∙h∙Gpc−1 [21], being negligible for a radius R < 1 Gpc. 

2) The mean free path M.F.P for a photon traveling through the local universe 
is given by Equation (18), Where Rg is the mean galaxy radius, and n is mean 
density of galaxies per volume. n can be estimated as 0.014 h3∙Mpc−3 [22], and Rg 
as 0.015 Mpc. Replacing these values into Equation (18) we obtain M.P.F = 101.05 
h−1 Gpc. 

2

1. .
g

M F P
n R

=
⋅π ⋅

                      (18) 

So, assuming the two constraints above, we can fairly say the universe is 
transparent for our analysis, being this way, the simplification given by Figure 8 
is valid. 

6.1. Derivation of the Hubble Parameter 

Since the universe is expanding, the mean luminosity density given by ( )L tρ  
varies in time. It leads to a total luminosity L inside a sphere of a comoving ra-
dius R(t) given by: 

( ) ( )34
3L

R t
L tρ

⋅π ⋅
= ⋅                     (19) 

Generating a luminosity pressure P 

2

1
4

LP
cR

=
π

                         (20) 
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According to [23], the Tolman relation, which expresses the redshift depen-
dence of the surface’s bolometric luminosities of the galaxies B, is 

( ) ( ) 4
01B z z B−= +                       (21) 

where z is the redshift, and B0 is the surface’s bolometric luminosity at z = 0. The 
Tolman relation implies that galaxies at redshift z will appear fainter by a factor 
of (1 + z)4. This relation is valid for an observer placed at z = 0. If the observer is 
moved to a position at the point A, at a redshift z, in relation to the center of a 
sphere, as indicated in Figure 8, we must reverse this relation, indicating that in 
the past, the surface brightness of the galaxies was brighter. Knowing that, and 
that the scale factor a and the redshift are related by ( ) 11a z −= + , the luminosity 
pressure, as indicated in Equation (20), should be modified by 

4 2

1 1
4

LP
ca R

=
π

                       (21) 

A galaxy with a face-on surface S, as indicated in Figure 9, opacity k and mass 
M, is subject to an acceleration given by 

4 2

1 1
4cc

L S kA
c Ma R

⋅
= ⋅ ⋅ ⋅

π
                    (22) 

Replacing L of Equation (19) in Equation (22), produces 

( ) ( )
4

1 1
3

L
cc

t R t S kA
c Ma

ρ ⋅ ⋅
= ⋅ ⋅ ⋅                  (23) 

Applying the scale factor ( ) ( )0a t R R t⋅ = , we get the following relationship 
for acceleration 

( ) ( )
2

12

d
dcc

a t
A a R t

t
= = ⋅                     (24) 

 

 
Figure 9. Galaxy with Area S, opacity K and mass M in the surface of a sphere of radius 
R. 
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The Equation (25) is derived in [24]. 

( ) ( )1
3

L
L

t
t

a
ρ

ρ =                        (25) 

Where t1 is the present time and ( )1L tρ  is the luminosity density of the present 
time. Replacing Equations (24) and (25) in Equation (23) yield: 

( ) ( ) ( ) ( ) ( )

( )

3
1 1 1 1

1 4 3 4

1
4

1 1 1 1
33

1 1
3

L L

L

t a R t t R tS k S ka R t
c M c Ma a a

t S ka
c Ma

ρ ρ

ρ

⋅ ⋅ ⋅⋅ ⋅
⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅


⋅ = ⋅ ⋅ ⋅ 





  (26) 

The Equation (26) is correct for galaxies, which are partially opaque [25]. In 
general, its opacity depends on the wavelength and topology of the galaxies. 
Most of the opacity of galaxies is related to absorption and scattering of photons, 
and it is directly related to its dust content, occurring mostly for higher frequen-
cies in the UV-Blue range of wavelengths. Extensive studies showing such rela-
tions are found in [26] [27]. 

Studies conducted by [21] placed the opacity K of spiral galaxies in the range 
0.48 ± 0.15. Integrating Equation (26) in a and dividing by a2, produces 

( )2
1

5 2

2 2
9

L t S ka B
a a c M a

ρ⋅ ⋅ ⋅ ⋅  = − +  ⋅ ⋅ ⋅ 



                 (27) 

Which is an expression for the Hubble constant since H a a=  , where B is a 
term to be determined. The term B can be determined using initial conditions, 
assuming that the gravitational force between galaxies is on average, nullified. 
This means that for galaxies, placed, as shown in Figure 10, the luminosity 
pressure is dominant, where the scale factor is ≈2Rg, with Rg being the average 
galactic radius. We can call the process, where the galaxies start to move away as 
“luminosity dominance,” and the time of its occurrence as tD, during this time 
we have 

( ) ( )
( )1

D
D

R t
a t

R t
=                         (28) 

where ( )DR t  is the mean distance between galaxies at the “luminosity domin-
ance” time td, and ( )1R t  is the mean distance between galaxies at the present  

 

 
Figure 10. Galaxies apart in 2.Rg at time tD, when the pressure of light begins to dominate 
over the gravitational force. 
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time t1. 
The mean distance between galaxies at time tD, as seen in Figure 10, is ap-

proximately twice as the galactic radius, being the average galaxy radius com-
monly assumed to be 10 kpc [28] [23]. Then, ( ) 2 20 kpcD gR t R= ⋅ = , and the 
present time average distance between galaxies can be derived using [29]. 

( )
1
3

1
3

4
R t

n
 =  π 

                       (29) 

where n is the present time density number of galaxies. Another important con-
sideration to be made is assuming that at the time of the “luminosity domin-
ance” tD the recessional velocity is zero since it is the time when the luminosity 
repulsive force starts to overcome the gravitational force. So, consequently 

( ) 0Da t =                           (30) 

Applying Equations (28) and (30) in Equation (27), we obtain 

( )
( )

( )
( ) ( )

2
1

5 2

2 20
9

D L

D D D

a t t S k B
a t a t c M a t

ρ  ⋅ ⋅ ⋅ ⋅
= = − +   ⋅ ⋅ ⋅ 



            (31) 

Solving for B yields 

( )
( )

1
3 9

L

D

t S k
B

a t c M

ρ ⋅ ⋅
=

⋅ ⋅ ⋅
                     (32) 

Replacing this in Equation (27) we obtain 

( ) ( )
( )

2
1 1

5 3 2

2 2
9 9

L L

D

t S k t S ka
a a c M a t a c M

ρ ρ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  = − +  ⋅ ⋅ ⋅  ⋅ ⋅ ⋅ ⋅



           (33) 

Rearranging for the Hubble constant 

( ) ( )
( )

( )
( ) ( )

1 1
5 3 2

2 2

9 9
L L

D

t S k t S k
H t

a t c M a t a t c M

ρ ρ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= − +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
         (34) 

6.2. Derivation of the Scale Factor A 

OBS: The factor scale factor a here presented is not the acceleration. 
Considering the Equation derived for the Hubble constant (Equation (34)), we 

can verify that the second term inside the square root is equal to the first term 
when t = tD. For t > tD the first term increasingly dominates as the time increases. 
So, for Dt t  we can approximate the Equation (34) as 

( ) ( )
( ) ( )

1
3 2

2

9
L

D

t S kaH t
a a t a t c M

ρ⋅ ⋅ ⋅
= =

⋅ ⋅ ⋅ ⋅



               (35) 

Rearranging we obtain 

( )
( )

12
3

2

9
L

D

t S k
a

a t c M

ρ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅
                      (36) 

Equation (36) can be solved for the scale factor a. We can “guess” a solution 
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form for the scale factor a as being 

( ) Ua t D t= ⋅                          (37) 

where t is time, D and U are constants to be determined, replacing Equation (37) 
in Equation (36) and rearranging we get 

( )
( )

12 2 2 2
3

2

9
LU

D

t S k
D U t

a t c M

ρ− ⋅ ⋅ ⋅
⋅ ⋅ =

⋅ ⋅ ⋅
                 (38) 

Since the right term is a constant, we need to set U to force the left term to be 
also a constant, this is done doing 

2 2 0 1U U− = → =                       (39) 

Replacing U = 1 in Equation (38) and solving for D yields 

( )
( )

1
3

2

9
L

D

t S k
D

a t c M

ρ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅
                     (40) 

Therefore, the approximated scale factor for Dt t  is 

( ) ( )
( )

1
3

2

9
L

D

t S k
a t t

a t c M

ρ⋅ ⋅ ⋅
≈ ⋅

⋅ ⋅ ⋅
                   (41) 

The Equation (41) is a good approximation for values of Dt t  but is not 
the whole answer for a(t), since if we derive twice the value present in Equation 
(41) it will become zero, what is not valid, since the acceleration value for 
( )a t  is given in Equation (37). Therefore, we can refine the value of a(t) 

doing the same procedure as before for the acceleration term in Equation (37). 
Calling the acceleration term as aacc(t), and guessing the answer to be in the form 

( ) U
acca t D t= ⋅ , we get 

( ) ( )15 5 2 11
3

LU t S kD U U t
c M

ρ⋅ − ⋅
⋅ ⋅ − ⋅ = ⋅ ⋅               (42) 

Using the same procedure as in Equation (39) leads to U = 5/2, and solving for 
D produces 

( ) ( )
1

25
1 5

25
18

L
acc

t S k
a t t

c M
ρ⋅ ⋅ ⋅ 

= − ⋅ 
⋅ ⋅ 

                (43) 

Adding this term to Equation (41), yields 

( ) ( ) ( )
( )

1
25

1 15
3

25 2
18 9

L L

D

t S k t S k
a t t t

c M a t c M

ρ ρ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
≈ − ⋅ + ⋅ 

⋅ ⋅ ⋅ ⋅ ⋅ 
        (44) 

Considering our initial time as tD = 0, we have the value of a(tD) in such a case. 
Adding this to Equation (44) we obtain the complete solution for the scale factor 
as a function of time t expressed in Equation (45). 

( ) ( ) ( )
( )

( )
1

25
1 15

3

25 2
18 9

L L
D

D

t S k t S k
a t t t a t

c M a t c M

ρ ρ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
= − ⋅ + ⋅ + 

⋅ ⋅ ⋅ ⋅ ⋅ 
     (45) 
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6.3. Results of Acceleration for the Milky Way 

According to [22], the luminosity density at the present time ( )1L tρ  is esti-
mated in ( ) 8 32.6 0.3 10 h L Mpc−≈ ± × ⋅ ⋅



 and the number density of galaxies is 
estimated to be ( ) 2 3 31.46 0.12 10 h Mpcn − −≈ ± × ⋅ . Using the Equation (29) with 

21.46 10n −= × , we obtain ( )1 2.538 MpcR t = . Therefore, considering  
( ) 20 kpcDR t = , we get 

( ) ( )
( )

3

1

20 kpc 7.88 10
2.538 Mpc

D
D

R t
a t

R t
−= = = ×              (46) 

[30] have reported that the mass of the Milky Way galaxy is 1.5 trillion solar 
masses, being about 90% of this mass dark matter. So, the visible, baryonic mass 
is about 0.15 trillion solar masses. The present work uses only the visible matter 
for the calculation, since as reported in the present work, the extra dark matter is 
only consequence of the effect of the quantization of the spatial frequency, not 
being accounted as inertial mass. 

[30] also reported a Milky Way radius of about 39 kpc, over twice as much as 
previously reported, being most of this extra part due to the globular cluster out 
in the galactic halo. Therefore, for the calculation, only the disc radius is consi-
dered, being about 15 kpc [31], resulting in a face-on area of about 148 kpc2. For 
the opacity, k is considered the values obtained by [21] being about 0.48 for spir-
al galaxies. So, in resume, we have the following parameters, for the Milky Way 
galaxy, in SI base units: 

( ) 33 3
1 3.387 10 W mL tρ − −= × ⋅  

41 26.734 10 mS = ×  
0.48k =  

413 10 kgM = ×  
8 13 10 m sc −= × ⋅  

( ) 37.88 10Da t −= ×  

Applying those values for Equation (34), for the present time t1, with a(t1) = 1, 
we obtain 

( )
18

1 1
1

2.35 10 72.54 km s MpcH t
s

−
− −⋅= ⋅

×
=             (47) 

which agrees very well within the interval of acceptable values for the Hubble 
constant ≈ 67 - 73 km∙s−1∙Mpc−1, obtained respectively by [12] [13]. 

Using Equation 34, we can also plot the normalized value of the Hubble pa-
rameter (H(a)/H(t1)) against the scale factor a, with the result indicated in Fig-
ure 11. 

Using the Equations (34) and (45) we can also plot the normalized value of the 
Hubble parameter (H(t)/H(t1)) and scale factor a against time in years (Yr), with 
the result indicated in Figure 12. 
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Figure 11. Normalized value of the Hubble parameter H(a)/H(t1) plotted against the scale factor a. 

 

 
Figure 12. Normalized value of the Hubble parameter (H(t)/H(t1)) in solid line and scale factor (point line) plotted 
against time in years. 
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Looking at Figure 12, we realize that the universe is coasting type, and thus 
will expand steadily and never contracts. Analyzing the Equation (35), we realize 
that the only term that varies from one galaxy to another is the expression 
S.K/M. As the Hubble constant is approximately the same for a wide range of 
galaxy types, not depending on their inclination too, we are led to conclude that 
the term S.K/M is approximately constant for all galaxies and remains approx-
imately constant no matter the inclination. Analyzing in a simple way, we con-
clude that this could be the case since for inclined galaxies, the cross-section area S 
is reduced, and since the photons have to cross more matter, intuitively, the opac-
ity K will grow at the same proportion, keeping the term S.K approximately con-
stant. 

7. Discussion 

The developed theory proved to be entirely satisfactory in developing a model of 
the gravitational force for massive objects, such as non-rotating black holes, in 
line with Einstein’s theory of relativity (GR). As merit, the present theory is able 
to determine the behavior of the acceleration of gravity within a black hole. Be-
sides, the theory offers a straightforward and simple method to numerically cal-
culate the effect of gravity near massive objects. It also provides a “bridge” be-
tween gravity and quantum physics, since the deflection of the space-time fabric 
can be understood as originated in the quantum scale. 

The developed theory also proved to be quite satisfactory in the development 
of a model for the dark matter, besides demonstrating the average absence of 
gravitational force between galaxies. From the absence of average force between 
galaxies, it was possible to demonstrate that the average luminosity density of 
the universe is enough to explain the currently accepted rates of expansion of the 
universe. As a suggestion for future studies, the author recommends simulations 
of evolution of the galaxies, taking into consideration the effect of quantization 
of the spatial frequency k. 
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