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Abstract 
In this work, we addressed the inhomogeneity problem in gamma spectro-
metry caused by hot particles, which are dispersed into environment from 
large nuclear reactor accidents such as at Chernobyl and Fukushima. Using 
Monte Carlo simulation, we have determined the response of a gamma spec-
trometer to individual and grouped hot particles randomly distributed in a 
soil matrix of 1-L and 0.6-L sample containers. By exploring the fact that the 
peak-to-total ratio of efficiencies in gamma spectrometry is an empirical pa-
rameter, we derived and verified a power-law relationship between the peak 
efficiency and peak-to-total ratio. This enabled creation of a novel calibration 
model which was demonstrated to reduce the bias range and bias standard 
deviation, caused by measuring hot particles, by several times, as compared 
with the homogeneous calibration. The new model is independent of the 
number, location, and distribution of hot particles in the samples. In this 
work, we demonstrated successful performance of the model for a single-peak 
137Cs radionuclide. An extension to multi-peak radionuclide was also derived. 
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1. Introduction 

In gamma spectrometry of environmental, food, and industrial matrices, volu-
minous samples are usually analyzed in quantities ranging from a fraction of to 
several L or kg. This is done in order to increase the sensitivity as well as to bet-
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ter assess the extent of any contamination present. Germanium gamma detec-
tor (Ge) calibration for voluminous samples is accomplished with either the 
physical traceable standards or computational methods. Both types of calibra-
tions assume homogeneous distribution of radioactivity in large samples, using 
bulk peak efficiency pb of the Ge detector. In many types of samples, however, 
distribution of radioactivity may be heterogeneous. This can lead to substantial 
bias in activity determination. 

One type of inhomogeneity may be referred to as geometrical, where different 
sections of the sample may have varied radionuclide activities. This has been in-
vestigated for spiked reference materials [1], where analysis of variance was used 
to determine homogeneity. Assumptions about geometrical inhomogeneity were 
studied in terms of cylinder and disc [2], fraction of volume not containing radi-
ation [3], or two sections of Marinelli beaker [4] [5]. 

Another type of inhomogeneity can arise from sample granularity. It was 
shown, using Monte-Carlo (MC) simulation, that the Ge detector peak efficiency 
dropped with increased granularity [6]. However, this effect has not been seen 
experimentally for grains of soil or polystyrene much smaller than the container 
size, in which spiking solution occupied an interstitial space [7]. 

Yet another important type of inhomogeneity of interest to this investigation 
is due to suspension of “hot particles” in the sample matrix. The problem of hot 
particles was originated from nuclear detonation fallout [8] and was extensively 
observed and studied following the 1986 Chernobyl [9] [10] and 2011 Fukushi-
ma nuclear accidents [11] [12]. Hot particles from nuclear accidents are the 
results of several formation mechanisms: disintegration of nuclear fuel in the ex-
plosion and fires; condensation of liquid droplets; and deposition of volatile fis-
sion products such as Cs on fly ash and atmospheric aerosols [13]. The composi-
tion of hot particles depends on the formation mechanism. The Chernobyl par-
ticles can be mono-elemental, bi-elemental, or fuel fragments [13], whereas Fu-
kushima particles contain predominately 137Cs, referred to as Cs microparticles 
[12]. Hot particles can have diameters from a fraction of a micrometer to over 
100 μm [14] and their size distribution is often assumed as lognormal [15] or ar-
bitrary [16]. 

Hot particles travel significant distances with the plume [17] [18]. Gas-phase 
and aerosol 131I from Fukushima were observed as far as New York State [19]. 
Hot particles deposit on the ground and cause contamination of soil, water, 
crops, food, etc. Additional mechanisms for hot particle dispersion from nuclear 
accidents involve weathering of radioactive lava (melted fuel elements) [20] and 
sorption of ionic 137Cs on soil particles [21]. 

An entirely different source of hot particles, also referred to as discrete ra-
dioactive particles, is corrosion of neutron irradiated steel in normal nuclear 
reactor operation [22] as well as fuel reprocessing [23]. The presence of hot par-
ticles in potential dirty bomb explosions has been described [24]. 

The presence of hot particles in voluminous samples creates unusual chal-
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lenges in gamma spectrometry regardless of their origin. There are several ap-
proaches to ameliorate these challenges, such as instrumental, radiochemical, 
and modeling. On the instrumental side, one can perform digital radiography to 
identify locations of hot particles [25]. Rotating waste drum scanning techniques 
can locate and determine heterogeneous distribution of radioactivity, utilizing 
emission/transmission measurements combined with modeling [26] [27] [28] 
[29] [30]. 

Among radiochemical methods, mechanical mixing only repositions hot par-
ticles in the sample without homogenization. Chemical homogenization of large 
samples is difficult. In addition, the particles formed as fuel elements, by con-
densation, or explosion are typically refractory and only high-temperature fu-
sion [31] or HF digestion [32] can dissolve them. However, the ionic fraction, 
such as containing aerosol-deposited Cs and I, can be homogenized for some 
matrices as has been demonstrated for food using tetramethylammonium hy-
droxide and enzymes [33] [34]. 

A voluminous sample can contain both uniformly distributed radioactivity as 
well as inhomogeneous hot particles. It was estimated that at least 65% of total 
activity in the 30-km zone around Chernobyl was due to hot particles [14]. Sta-
tistical modeling methods have been developed based on either splitting of a 
large sample and measurement of several sub-samples on a gamma spectrometer 
[15] [35], or repetitive mixing and measuring of the same sample [36] [37] [38]. 
By analyzing the variance and modeling, some information about the fraction of 
activity in hot particles, their number, and size distribution could be inferred. 

It follows from this introduction that a single gamma spectrometric mea-
surement of a voluminous sample containing hot particles can be biased, i.e., the 
measured activity in the sample can significantly differ from true activity. By 
using techniques of sample splitting or mixing followed by repetitive measure-
ments, that bias can be reduced, however, the resulting dispersion can be large. 

In environmental health risk assessment, it is most important to obtain as ac-
curate and precise determination of activity as possible. Therefore, the aim of 
this investigation was to reduce bias and improve precision, when measuring 
voluminous samples containing hot particles. We are seeking a novel gamma Ge 
detector calibration model in a functional form of ( )p f q= , where detector 
peak efficiency p is a function of empirical parameter q. In this model, we are 
aiming at finding p which better represents sample inhomogeneity than the bulk 
efficiency pb, thereby reducing the bias and dispersion of measurement. 

The methodology in this paper is by MC simulation, following [39] [40], and 
is described in detail in Section 2. This study focuses on a single radionuclide 
137Cs, which is the most prominent gamma emitter remaining several years after 
the nuclear accident [36]. We use both the gamma radiation detected as a peak 
at 661.66 keV as well as Compton-scattered radiation. Scattered radiation has 
been used extensively in measuring void fraction using gamma radiation [41] 
[42] [43], medical image reconstruction [44], and geometrical inhomogeneity 
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[5]. 
In gamma spectrometry, the most significant measures of Ge detector perfor-

mance are peak efficiency p as well as the total efficiency t, the latter being a sum of 
peak and Compton radiations [45]. The ratio of peak efficiency to total efficiency 
p/t is larger for larger Ge crystals and for those with Compton-suppression sys-
tems. This ratio is used in analytical approaches to coincidence-summing correc-
tions [46]. Some authors prefer using its inverse, t/p [47]. The p/t ratio is a di-
rectly measurable quantity, at least for a single radionuclide source, and it is a 
strong function of gamma energy. It has been demonstrated that p/t also de-
pends on the radioactive source position with respect to the Ge detector [48], the 
feature we explore in the present work. 

We design two calibration models: a 1-particle model and an n-particle mod-
el. For the 1-particle model, the relation of ( )p f p t=  is derived using gam-
ma attenuation [49], and its dependence on calibration is described in Section 3. 
The n-particle model is described in Section 4. The effect of p vs. p/t is more 
complicated for this model and has to be interpolated between those for single 
particles and bulk sample efficiency. We describe the interpolation process us-
ing Signal Detection Theory (SDT) [50] in Section 4. The performance of the 
n-particle model, when activities of the particles are not equal, and the extension 
of the model to multi-peak radionuclide are described in Section 5, followed by 
discussion in Section 6 and conclusions in Section 7. In this work, we are not 
considering radiation counting statistics and focus exclusively on the dispersion 
caused by inhomogeneity. 

2. Monte Carlo Simulations 

All calculations were performed for the 661.66-keV gamma ray from 137Cs, using 
sand as sample matrix with measured density of 1.55 g∙cm−3. Two counting geo-
metries were considered as depicted in Figure 1: 0.6-L and 1-L cylindrical con-
tainers. Two coaxial p-type Ge detectors were used, with efficiencies of 134% and 
48% relative to a 7.6-cm (3-inch) by 7.6-cm sodium iodide detector, which are also 
depicted in Figure 1. The dimensions in Figure 1 are to scale, whereas the actual 
values are given in Table 1. These configurations are existing in our laboratory. 
They can be compared in terms of detectability, which is defined as a ratio of the 
sample volume to the Ge crystal volume for the same activity in both samples. The 
configuration 0.6 L/134% Ge has such detectability 4.8 times better than the 1 
L/48% Ge configuration. However, when the samples are assumed as having the 
same specific activity, the detectability is the product of sample volume and the 
Ge crystal volume. Then, such detectability is respectively 1.7 times better. 

The calculations were performed using the MC code Gespecor, version 4.2 
[39]. This program is especially designed for calculations in gamma spectrome-
try. It tracks every gamma ray randomly emitted at randomly selected location 
in the sample matrix. Gamma attenuation in terms of absorption and scattering 
is included in the sample matrix of a given geometrical shape, as well as attenua-
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tion in the Ge detector endcap and Ge crystal dead layer. Finally, gamma ab-
sorption in the Ge crystal leads to events recorded in the gamma peak, quanti-
fied as peak efficiency of the detector. Gamma scattering with partial escape 
from the Ge crystal leads to events outside of gamma peak in the gamma spec-
trum, contributing to the total efficiency of the detector. Also, gamma scattering 
from the lead shielding (not shown in Figure 1) is included. The Gespecor pro-
gram accepts as input all materials elemental composition, dimensions, and den-
sities. We performed simulations with 106 gamma-emission events in each stu-
died case. Therefore, the calculations are realistic representations of the labora-
tory measurement systems. The density corrections are built into the calcula-
tions, whereas the coincidence-summing corrections [46] [48] can be included 
but are negligible for 137Cs. 

In the initial step, we calculated peak and total efficiencies assuming homoge-
neous samples, referred to as bulk efficiencies, or Bulk efficiency model. They  

 

 
Figure 1. Two counting geometries which are subjects of Monte Carlo simulations: 0.6-L 
and 1-L cylindrical containers, and 134% and 48% Ge detectors. The relative dimensions 
are to scale. The actual dimensions are given in Table 1. 

 
Table 1. Dimensions of containers and Ge crystals. Peak and total efficiencies for bulk sample as well as max, min, and average 
positions of hot particle. 

Sample container Ge crystal 
Source  

 
position 

Detection efficiency Ratio max/min 
Deviation of average 

from bulk (%) 

Radius (cm) 
Height (cm) 
Volume (L) 

Radius (cm) 
Height (cm) 

Relative efficiency (%) 
Peak Total p/t 

Peak  
Total  

p/t 

Peak  
Total  

p/t 

5.45 3.10 max 5.614E−02 1.931E−01 2.907E−01 73.6 −0.44 

10.72 5.95 min 7.623E−04 5.501E−03 1.386E−01 35.1 −0.45 

1.0 48 bulk 6.607E−03 3.372E−02 1.959E−01 2.1 0.01 

  average 6.578E−03 3.357E−02 1.960E−01   

5.56 4.33 max 9.870E−02 2.731E−01 3.613E−01 18.5 −1.02 

6.19 8.80 min 5.334E−03 2.404E−02 2.219E−01 11.4 −1.13 

0.6 134 bulk 2.185E−02 8.221E−02 2.658E−01 1.6 0.11 

  average 2.163E−02 8.129E−02 2.661E−01   
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are given in Table 1. We also calculated efficiencies for hypothetical hot particles 
positioned at the closest and farthest locations, designated as max and min in 
Figure 1, respectively. It is seen that the bulk efficiency values are between those 
for the min and max positions. The ratio of peak efficiencies for the max and 
min positions is 73.6 for 1 L and 18.5 for 0.6 L. This can create significant bias in 
determination of hot-particle activity. 

Let us abbreviate counting rate in the peak as R. The “true” activity deter-
mined using particle peak efficiency p is equal to A R p= . The activity deter-
mined using bulk peak efficiency pb is equal to b bA R p= . The Bias is defined 
as 

( ) ( ) ( )Bias % 100 1 100 1 .b bA A p p= − = −              (1) 

It is seen that the Bias does not depend on the activity, only on the efficiencies. 
Therefore, this investigation focuses on the efficiencies only. The discussion 
about hot particles having different activities is deferred to Section 5. 

To study the effects associated with hot particles, we calculated the peak and 
total efficiencies of 2048 individual particles randomly distributed in either 0.6-L 
or 1-L containers, one particle at a time. The random positions of particles were 
calculated first using the algorithm for cylindrical coordinates [40]. In this algo-
rithm, the height of particle position is proportional to a random number, while 
the radius of particle position is proportional to the square root of a random 
number. The azimuth angle is not important in this case because of a cylindrical 
symmetry. Then, the 2048 random particle positions were supplied to the Ges-
pecor program, which calculated peak and total efficiencies at these positions. 
To verify the randomness of particle positions, we hypothesize that the average 
efficiency for all particles should approximate that of the bulk efficiency calcu-
lated above. The average peak and total efficiencies for all 2048 particles are also 
listed in Table 1. The deviations of average efficiencies from the bulk efficiencies 
are about −0.5% for 1-L container and about −1% for 0.6-L container, whereas 
the deviations for the p/t ratios are substantially smaller. The randomness of 
particle positions is judged satisfactory for the purpose of this study. 

The biases were calculated using Eq. 1 for the 2048 particles and are plotted as 
histogram in Figure 2 for 1-L container. They range from about −100% to 700%, 
or by a factor of 8. This is less than 73.6 listed in Table 1, however, it is statisti-
cally unlikely to have a particle located at either a min or a max position. The 
frequency distribution of the biases is depicted in Figure 3 (distribution a, green 
points). This distribution resembles an exponential, reflecting exponential at-
tenuation of gamma radiation in the sample. 

3. One-Particle Model 

The 1-particle model assumes presence of a single hot particle in the sample. 
This model provides a foundation for the n-particle model to be described in the 
next section. Let us consider a particle in the sample matrix located at a distance 
r from the Ge detector. In a simplified picture, we neglect all possible angles and  
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Figure 2. Histogram of Bias from single particle efficiency when using bulk efficiency for 
1-L container. 

 

 
Figure 3. Frequency plots for various Bias distributions for 1-L container. (a) Bias bulk 
from single particle, bin size 25%; (b) Bias for 1-particle model, bin size 5%; (c) Bias for 
n-particle model applied to 1 particle, bin size 10%. 

 
finite sizes of both sample and the detector. For a gamma photon to be detected 
in the peak with efficiency pr, it must be attenuated in the sample and detected 
with an intrinsic peak efficiency of the detector pd. We thus have 

( )0exp .r dp p rµ= −                       (2) 

Similar considerations apply to the total efficiency tr and intrinsic detector td. 
However, the total efficiency is enhanced by the scattered radiation in the sam-
ple originating from gamma photons emitted at the particle location r. There-
fore, 

( ) ( )0exp exp .r d st t r rµ µ= −                    (3) 

Also, 

0 minor terms,a sµ µ µ= + +                    (4) 

where 0µ  is a total gamma attenuation coefficient, aµ  is a gamma absorption 
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coefficient, and sµ  is an incoherent (Compton) scattering coefficient [49]. 
By manipulation of Equations (2) and (3), we obtain 

0

.
s

dr r

d d r

tp p
p p t

µ µ
 

=  
 

                      (5) 

It follows that p should be a power function of p/t, 

( ) ,hp g p t=                          (6) 

where g and h are coefficients. In this way p/t carries some information about 
hot-particle peak efficiency and thus its position. 

The p values are plotted as a function of p/t for the 1-L container in Figure 4. 
The densely located 2048 points lump into a gray area. The reason for such wide 
distribution is that it involves random particle locations and all directions of 
gamma emissions from a particle, as well as taking the ratio of two random va-
riables p/t. Then an unconstrained power-law fit was made to the points ac-
cording to Equation (6) resulting in pu, depicted by the green curve in Figure 4 
representing the most probable p. 

The sequence of analyzing the data is as follows. For each simulated particle at 
its location, one calculates p/t obtained from the MC simulation. Experimental-
ly, for a single radionuclide, it would correspond to taking a ratio of the counts 
in the peak to the total counts in the gamma spectrum. Then, one reads the most 
probable value pu from the green curve in Figure 4. Subsequently, one calculates 
the Bias from Equation (1), by substituting pu for pb. 

The histogram of Bias values for 1-particle model is depicted in Figure 5. It is 
seen that bias now spans the range between about −60% and 60%, and it is sig-
nificantly reduced from that for the bulk efficiency in Figure 2. The frequency 
distribution for 1-particle model is depicted as curve b in Figure 3 (blue points).  

 

 
Figure 4. Plots of p as a function of p/t for the MC data and various fits described in the 
text. 
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Figure 5. Histogram of Bias from single particle efficiency when using 1-particle model 
efficiency for 1-L container. 

 
It is a narrow symmetric distribution reflecting significant reduction in the dis-
persion of the results. 

4. n-Particle Model 

The n-particle model assumes that there are 1 or more hot particles in the sam-
ple, all having the same activity. It can be realized by simple grouping of the 
2048 MC points. For instance, one can group 2 particles (1024 cases), 4 particles 
(512 cases), etc., until finally arriving at 1 case of 2048 particles. The average va-
riables for n independent particles are given by 

1 ,1 n
iin pp

n =
= ∑                         (7) 

1 ,1 n
iin tt

n =
= ∑                         (8) 

,n n np t p t=                       (9) 

The reason for such definitions of averages is that Equation (9) is the one that 
would be realized experimentally. The averages are “true” values as calculated by 
the MC program, and the Bias when using Bulk efficiency model is generalized 
from Equation (1): 

( ) ( )Bias % 100 1 .bnp p= −                   (10) 

The values of 2048p , 2048t , and 2048p t  are listed in Table 1 under 
source position in the average row (both geometries). As discussed in Section 2, 
the averages for 2048 particles approximate bulk efficiency calculations pb, tb, 
and ( )bp t  very well. This average for 1 L container is depicted as an open cir-
cle in Figure 4, which does not lay on the green pu curve. The reason is that 

np t  (Equation (9)) is not equal to 11 n
i ii tn p

=∑ . 
We performed another power-law fit to the data in Figure 4, this time we 
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constrained the fit by passing through the 2048p t  point, resulting in an 
orange pc curve. It follows that, regardless of the number of hot particles present, 
the most probable measured p/t will fall between these two curves. Therefore, we 
need to interpolate between them in such a way that if p/t is close to 2048p t , it 
will be weighted towards pc; if it is far from 2048p t , then it will be weighted 
towards pu. We tried linear and quadratic interpolations without success because 
the interpolation has to be steep in the vicinity of 2048p t . 

A satisfactory interpolation can be obtained however, by application of the 
SDT [50]. SDT is concerned with distinguishing between the signal and noise. 
We assume Gaussian distributions for both signal and noise, with the mean and 
sigma given as { }signal signal,µ σ  and { }noise noise,µ σ , respectively. We designate a 
Gaussian (normal) distribution function (an integral of the Gaussian probability 
density function from minus infinity to the Deviate) with mean and sigma, and 
its inverse as 

{ }( )Probability Deviate, mean,sigma ,= Φ              (11) 

{ }( )1Deviate Probability, mean,sigma .−= Φ             (12) 

For the set of 2048 points, we find the minimum and maximum values of p/t, 
( )minp t  and ( )maxp t , respectively. For any average of n particles, the SDT 
probability of signal rejection, Pr can be written as 

( )
( )

( )
( )

min
2048

min2048

max
2048

max 2048

, , (13a)

, . (13b)

n
n

r
n

n

p t p t
p t p t

p t p t
P

p t p t
p t p t

p t p t

 −
≤

−= 
− > −  

Then, by combining Equations (11)-(13), we obtain the SDT probability of 
misses Pm and hits Ph as 

{ }( ) { }1 , , , , ,m r noise noise signal signalP P µ σ µ σ− = Φ Φ           (14a) 

.1h mP P= −                         (14b) 

We determined that a mean and sigma of {0, 1} for the noise, and {0.6, 0.5} for 
the signal, provided sufficient convergence. 

Finally, the interpolated value of pinterp between the unconstrained fit pu and 
the constrained fit pc from Figure 4 (green and orange curves, respectively) is 
given by 

.interp h u m cp P p P p= +                      (15) 

The Bias for the n-particle model is given by 

( ) ( )Bias % 100 1 .interpnp p= −                  (16) 

The performance of various models is listed in Table 2 for 1-L container. The 
quantity of interest is the Bias(%) from “true” efficiencies known from the MC 
calculation, its minimum (Min) and maximum (Max) values, as well as standard 
deviation (Std Dev). Table 2 shows that for 1 particle, the Bulk efficiency model  
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resulted in a significant minimum and maximum bias and bias standard devia-
tion. This was already seen in Figure 1 and Figure 2. As the number of particles 
increases, the bias and all its measures decrease since the inhomogeneity drops. 
Application of 1-particle model to 1 particle present significantly reduces the bi-
as and its standard deviation. Application of n-particle model reduces all meas-
ures of bias as compared with the Bulk model, for all particles studied. The 
n-particle model applied to 1 particle performs slightly worse than the 1-particle 
model. This is seen in the bias measures in Table 2, as well as in the frequency 
distribution with right tail (curve c in Figure 3). 

The results of the Bias for the 0.6-L container are listed in Table 3. They exhi-
bit the same trends as for the 1-L container, however, of smaller magnitude  

 
Table 2. Performance of the Bulk, n-particle, and 1-particle models expressed as bias 
from known efficiency for several number of particles and 1-L container. 

Model 

Bias (%) 

Number of 
particles 

1 2 4 8 16 32 64 

Bulk 

Min −88.1 −86.2 −79.1 −76.2 −54.9 −48.2 −29.6 

Max 701.2 430.1 257.9 151.0 84.4 41.2 33.6 

Std Dev 114.7 79.3 58.1 41.4 29.7 20.8 14.9 

n-particle 

Min −61.7 −63.3 −56.9 −56.9 −35.4 −22.7 −18.9 

Max 137.5 117.1 74.0 62.5 43.3 21.2 24.4 

Std Dev 35.7 27.8 22.5 20.4 15.9 11.5 9.6 

1-particle 

Min −61.7       

Max 57.9       

Std Dev 26.5       

 
Table 3. Performance of the Bulk, n-particle, and 1-particle models expressed as bias 
from known efficiency for several number of particles and 0.6-L container. 

Model 

Bias (%) 

Number of 
particles 

1 2 4 8 16 32 64 

Bulk 

Min −74.7 −73.3 −66.9 −49.8 −41.6 −22.0 −13.7 

Max 326.9 223.4 157.7 97.3 55.4 27.3 14.1 

Std Dev 70.4 50.6 36.2 26.3 17.3 10.3 7.2 

n-particle 

Min −49.1 −45.7 −42.1 −32.9 −20.7 −12.4 −6.5 

Max 74.1 60.5 50.8 39.5 17.5 11.3 8.0 

Std Dev 25.4 19.2 14.7 11.1 7.8 6.0 3.7 

1-particle 

Min −49.2       

Max 52.6       

Std Dev 23.2       
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reflecting relatively less inhomogeneity in this smaller container. 
In order to compare model performances for the two containers, we define 

Bias Range (%) as the difference between the Max and Min bias. Then, the im-
provement factors for the Bias Range and Bias Std Dev (%) are calculated as the 
ratios of the corresponding values from the Bulk model to the ones for the 
1-particle and n-particle models. The improvement factors are depicted in Fig-
ure 6 for 1 and more particles present in the sample. It is seen that there are sig-
nificant improvements in Bias Range and Bias Std Dev when using the calibra-
tion models developed here. The highest improvements by a factor ranging from 
about 3 to 6.5 are when using 1-particle model. The same case of 1 particle 
present, when applying the n-particle model to it, resulted in improvement fac-
tors from about 3 to 4. As the number of particles increases, the improvement 
factors drop to between 1.5 and 2 for 64 particles. For small number of particles 
(1 to 4), the improvement factors are higher for 1-L container than for the 0.6-L 
container; this trend is reversed for larger number of particles in most cases. 

5. Non-Equal Particles and Multi-Peak Radionuclide 

The n-particle model assumes that all particles have the same activities. It was 
observed that hot particles from nuclear accidents exhibit distribution of sizes 
[14], often assumed lognormal [15]. Then, constant specific activity implies 
lognormal distribution of activities as well. This situation results in even more 
inhomogeneity than for equal particles, because a few of very hot particles do-
minate activity of the sample. 

Non-equal particles can be easily simulated within the present data set by po-
sitioning several equal particles in the same location. Since the derived n-particle  

 

 
Figure 6. Improvement factors for Bias Range and Bias Std Dev when using 1-particle 
and n-particle models compared with the Bulk model, for 1-L and 0.6-L containers. 
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model interpolates the efficiencies between 1 particle and the bulk sample, it 
should be independent of a specific assumption about the number or location of 
the particles. Therefore, it should apply to non-equal particles as well. 

To test this hypothesis, we created two cases of non-equal particles, for 1-L 
container. In the first case we have 2 particles, one is assumed twice as radioac-
tive as the other. Therefore, the average peak efficiency from Equation (7) is 

( )1 22 1 3 2p p p= + . We have used 2 equal particles from the MC set of 2048 
and created a group of 2 non-equal particles. We have 1024 such groups to per-
form statistics on. For the second case, we repeated 1st particle 4 times, 2nd par-
ticle 2 times, and took the 3rd and 4th particles as is. The average peak efficiency is 

( )1 2 3 44 1 8 4 2p p p p p= + + + . We thus have 512 such groups. Similarly, we 
calculated nt  and np t , 2,4n = . Then, we apply the n-particle model by 
calculating interpp  from Equation (15) and study the Bias from Equation (16). 

The results are given in Table 4 in terms of Bias Range and Bias Std Dev. Al-
so, the results for equal 1, 2, and 4 particles are reproduced from Table 2. It is 
seen that the values for 2 non-equal particles are laying between those for 1 and 
2 equal particles. The reason is that one particle dominates by assumption. For 
the case of 4 non-equal particles, the values are between those for 2 and 4 equal 
particles because of assumed distribution of activity among particles and domi-
nation by the hotter ones. Nevertheless, the n-particle model performed well and 
the calculated values of Bias Range and Bias Std Dev are significantly improved 
from those of the Bulk model. 

In this work we have considered a single gamma peak of 661.11 keV from 
137Cs. The n-particle model based on p/t can be extended to multi-peak radio-
nuclide as follows. Let A represent the radionuclide activity of a hot particle. The 
counting rate in gamma peak j is given by 

, , ,p j eff jR Ap=                         (17) 

where ,eff jp  is an effective peak efficiency, which includes gamma intensity, den-
sity correction in the sample matrix and any coincidence-summing correction. For 
k peaks of the radionuclide in the gamma spectrum, the total counting rate in all 
peaks is equal to 

, ,1 1 .p p j eff j effj
k

j
kR R A p Ap

= =
= = =∑ ∑                (18) 

 
Table 4. Performance of the n-particle model for non-equal particles in 1-L container. 

 Number of particles 

Equal particles 1 2 4 

Bias Range (%) 199.2 180.3 130.9 

Bias Std Dev (%) 35.7 27.8 22.5 

Non-equal particles  2 4 

Bias Range (%)  188.0 168.0 

Bias Std Dev (%)  29.6 26.0 
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Similarly, for the total counting rate, 

, ,1 1 .t t j eff j effj
k

j
kR R A t At

= =
= = =∑ ∑                 (19) 

Therefore, the observed peak-to-total ratio for a multi-peak radionuclide is 
given by 

( ) .p t eff effeffp t R R p t= =                   (20) 

 

The left-hand side of Equation (20) can be measured, while the right-hand 
side calculated by the MC simulation. The n-particle model can be used as earli-
er in Sections 4, 5, with p and t replaced by peff and teff. 

6. Discussion 

A overview of the origins and behavior of hot particles was provided in Section 
1. Such particles are normally encountered in environmental samples following 
nuclear accidents. Digital radiography is typically used for samples spread on a 
surface, while digital tomography is not always practical for measuring many 
environmental samples. Surveillance samples for gamma spectrometry are typi-
cally large to increase sensitivity and to provide better sampling of radioactive 
contamination. However, voluminous samples may be inhomogeneous due to the 
presence of hot particles. Applying the Bulk efficiency model leads to significant 
bias of measured activity. One approach to this problem is repetitive mixing and 
measuring of a sample (from 25 to 100 times [36] [38]). While this method can 
provide relatively accurate average of the measured activity, is not very practical 
for many samples, and the dispersion evaluated by means of a standard devia-
tion can be large and increasing as the number of hot particle decreases. 

In this investigation we provided a method to reduce this dispersion. Our goal 
was to study the behavior of hot particles randomly distributed in the soil ma-
trix, for two counting geometries: 1-L and 0.6-L cylindrical containers. Using 
MC simulation, we calculated the peak and total efficiencies of 2048 individual 
hot particles at random locations in each container. We focused on a single ra-
dionuclide of 137Cs and its 661.66-keV gamma ray. The presence of counts in the 
gamma peak in the spectrum represents gamma transmission, whereas anywhere 
in the gamma spectrum, both transmission and scattering. On this basis, we de-
rived a power-law relationship between peak efficiency and peak-to-total ratio. 
This relationship was confirmed by the MC simulation. Since peak-to-total ratio 
is a measurable parameter, the power-law relationship can provide a more accu-
rate value of the efficiency than the bulk efficiency. We called this approach 
1-particle model. It was shown that the 1-particle model reduced the Bias Range 
6.5 times and Bias Std Dev 4 times compared to the Bulk efficiency model for 
1-L container, and 4 and 3 times for 0.6-L container, respectively. 

Subsequently, identical individual particles were combined into n-particle 
groups, which resulted in the n-particle model. The averages for peak and total 
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efficiencies were calculated as well as their peak-to-total ratio. From the pow-
er-law relationship, the most probable value of peak efficiency could be obtained 
from the empirically available peak-to-total ratio. The complication arose from 
the fact that the most probable peak efficiency lays between the single-particle 
power-law and the power-law constrained by the bulk efficiency point. Fortu-
nately, an innovative interpolation was developed, based on a formulation from 
the Signal Detection Theory, between the two power-law curves. The n-particle 
model works well for any number of particles. When applied to a single-particle 
case, the reduction in Bias Range and Bias Std Dev was between 3 and 4. These 
are improvement factors when using this model compared with the Bulk model. 
As the number of hot particles increases, the inhomogeneity decreases, and im-
provement factors decrease to between 1.5 and 2 for 64 hot particles. We also 
simulated groups of non-equal hot particles and found that the n-particle model 
is independent of the number, location, and size distribution of hot particles. 

If this approach is applied to repetitive mixing and measurement method for 
inhomogeneous sample, the accuracy of the average is expected to have low bias 
as before, however, the standard deviation will decrease several times. If only one 
measurement is made on an unknown sample, this method guarantees reduction 
of the bias several times for inhomogeneous samples without the need of know-
ing the details of inhomogeneity. 

7. Conclusion 

We developed a novel calibration of a gamma-ray spectrometer using the rela-
tionship ( )hp g p t= , where g and h are coefficients and p/t is a ratio of 
peak-to-total efficiencies. This method can be used to reduce the variance of 
measured activity in bulk environmental or food samples containing hot par-
ticles as compared with the homogenous calibration. So far, we were able to ap-
ply it to a single-peak single-radionuclide, such as 137Cs, which is known as the 
most important gamma emitter for aged fallout from nuclear-power accidents. 
We also derived equations to accommodate multiple-peak radionuclide. At this 
time, the method has not been shown suitable for characterizing samples con-
taining mixtures of radionuclides. 
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