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Abstract

In this paper, a biological model for two predators and one prey with im-
pulses and periodic delays is considered. By assuming that one predator con-
sumes prey according to Holling II functional response while the other pre-
dators consume prey according to the Beddington-DeAngelis functional re-
sponse, based on the coincidence degree theory, the existence of positive pe-
riodic solutions of nonautonomous predator-prey system with impulses and
periodic delays is obtained under suitable conditions.
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1. Introduction

In the early 1920s, the work with respect to predator-prey systems [1] [2] [3] was
done by Lotka [4] and Volterra [5], they concluded that the coexistence of two
or more predators competing for fewer prey resources is impossible, which was
later known as the principle of competitive exclusion. For example, in the case of
two predators competing for a single prey species, one considers the following

Lotka-Volterra predator-prey model

x(t) = rx{l—ﬂ —axy — Axz,
. 1.1
y(t)=y[-d+ex], (1.1
2(t)=z[-D+Ex],
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where y(t) and Z(t) are the densities of the two predators and X(t) is the
density of the prey. By assuming that both predators consume prey according to
Holling II functional response, then system (1.1) was modified to the following

predator-prey system

() =n1-x] - 2 A
k| 1+bx 1+Bx

ex
v(t)=vy| —d , 1.2
P NEY o
Z(t):Z|:—D+ Ex }

1+ Bx

Based on dynamical system techniques and the geometrical singular perturba-
tion theory, Liu, Xiao and Yi [6] showed the coexistence of predators and prey of
system (1.2) which happened along a stable periodic orbit in the positive octant
of R®.

By assuming that one predator consumes prey according to the Holling II
functional response and the other predators consume prey according to the
Beddington-DeAngelis functional response, then system (1.1) was modified to

the following predator-prey system

X(t)zrx[l—ﬁ}— xy __ A ,
k] 1+bx 1+Bx+Cz

y(t )=y{ d+1+ezx}, (1.3)

Z(t)=z[—D+L}.
1+Bx+Cz

In [7], system (1.4) was studied with variable coefficient and periodic

delays. The conditions of the existence of positive periodic solutions were

given.
X(t)zr(t)x(t){l—y}
_a()x()y(t) __At)x(t)z t)

1+bx(t) 1+ Bx(t)+ z(

]

(t
1+bX ‘r t
)x(

(1.4)
-7

t t—

o (1)) }
1+ Bx(t- a(t))+CZ( a(t)) |

In the system based on the (1.4), taking into account the artificial interference,

such as regularly input of predators and prey, this motivates us to consider the

following system (1.5) with impulses.
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x(t-o(t)) } (1.5)
) :

):x(tk*)—x(tk’):@kx(tk),
Ay(tk)z y(tlj)_y(tl:)=¢2ky(tk)’ t=t,k=123:,
)=2(t)-2(t) =z (t).

where X(t) stands for the prey’s density, y(t) and Z(t) stand for the pre-
dators’ densities respectively. One of the reasons for introducing a delay into a

predator-prey system is that the rate of reproduction of predators depends on
the rate at which they have consumed the prey in the past, and this idea is well
justified [8] [9] [10]. Usually Hopf bifurcation theory is used to investigate the
existence of periodic solutions for predator-prey system with a single constant
delay [11] [12] [13]. Recently, the geometrical singular perturbation theory [14]
has been employed by Lin and Yuan [15] [16] to study the existence of periodic
solutions for predator-prey systems with a single delay or multiple delays. In this
paper, we shall justify the existence of periodic solutions for predator-prey sys-
tem (1.5) with impulses and periodic delays.

The main contribution of this paper is to obtain the existence of positive pe-
riodic solutions of nonautonomous delayed predator-prey system with pulse
controls by using the method of the continuation theorem of Gaines and Maw-
hin. The rest of the paper is arranged as follows. In Section 2, we introduce some
notation and concepts for the continuation theorem of coincidence degree, give
some necessary definitions and lemmas. In Section 3, we establish new condi-
tions for the existence of periodic solutions for the system (1.5). In Section 4,

some lemmas are proved. Some conclusions are given in Section 5.

2. Notations and Preliminaries

Let Z, Z" and R be the sets of all integers, positive integers and real num-
bers, respectively, and R* =[0,+0).

Assume that

(H1) r(t),a(t),A(t),d(t),e(t),D(t) and E(t) are positive @ -periodic
continuous functions, r(t) and O'(t) are nonnegative @ -periodic conti-
nuous functions, k,b,B and Care positive constants;

(H2) there exists an integer p>1 such that [0,0]N{t }= {tl,tz,m,tp} ,

O=t, <t <ty <<t <---,and lim_ t, =0, 4, =t +o,
B n) = Pic (i=1,2,3), k=1,2,3--. Furthermore, a natural constraint is
b >—1,(i =1,2,3), k=123,
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(H3) x(t;):tiitmox(t):x(tk), y(t;):tlitrkrloy(t):y(tk),
z(t;):tlitrkrloz(t):z(tk).
Let

(i) (t) is continuous for t  t, and w-periodic;

PC, =y :R* >R| . . _ N
(ii) Sﬂtk”lol//(s) =y (t)and sﬂtkmwl//(S) = u/(tk ) exist

[
Moreover, we denote PC. ={y € PC_ :y'ePC,}.
Before stating our main result, for the sake of convenience and simplicity, we

denote

f==[ f(t)dt forany f(t)ePC,.

p
g=>I(l+¢,), =g+ i=123.

Definition 2.1. ([17]). The set F is said to be quasi equi-continuous in
[0, a)] ifforany ¢ >0 there exists >0 gych thatif X€F , kezZ",
t't"e(t .t JN[0,®],and |t'~t"|< &, then

|x(t’) - x(t")| <e&.

Lemma 1. (Compactness criterion, Lemma 2.4 of [17]). The set F < PC is
relatively compact if and only if:

a) F is bounded, that is, there exists some M >0 such that ||x|| <M for
each xe F;

b) F is quasi equi-continuous in [0, a)] .

For convenience, we summarize a few concepts from the book by Gaines and
Mawhin [18].

Let Xand Zbe real Banach spaces. Let L:DomLc X — Z be a linear map-
pingand N:X — Z be a continuous mapping. The mapping L will be called a
Fredholm mapping of index zero if dimKerL =codimimL <+c0 and Im L is
closed in Z If L is a Fredholm mapping of index zero, then there exist conti-
nuous projectors P:X = X and Q:Z —»Z such that ImP=KerL and
ImL =KerQ=1Im(I1-Q). It follows that L| . :(1-P)X —>ImL is in-
vertible and its inverse is denoted by K, .If Q isabounded open subset of X;
the mapping Nis called Z-compacton Q if (QN )(ﬁ) is bounded and

Ko (1-Q)N :Q — X is compact. Because ImQ is isomorphic to KerZ, there
exists an isomorphism J:ImQ — KerL .

In the proof of our existence result, we need the following continuation theo-
rem.

Lemma 2. (Continuation Theorem, Gaines and Mawhin [18]). Let L be a
Fredholm mapping of index zero and let Nbe Z-compact on Q . Suppose

a) for each 4 €(0,1), every solution xof Lx=ANX issuch that X¢dQ;

b) QNx=0 foreach xeKerLNoQ;

c) deg{JQN,QNKerL,0}=0.
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Then the equation Lx = NX has at least one solution lyingin DomLNQ.
In order to transform (1.5) to the equivalent operator equation, we carry out
the change of variable x(t):eul(l), y(t)=e" ©, z(t)=e " then (1.5) has

the form

R (1),

u(t) t Uy (t) Alt us(t)
6 () =r(n) =S |30 AT,
k 1+be"® 14 Be® ycen

. B e(t)eul(t*f(t)) N
u,(t)=—d (t)+W—F2(t), t=t, o

euu(t-o()
u3<t)=[—o<t)+ = } A ()

1+ Beul(t"’(t)) +Ce“3("‘7(‘))

Au; () =, (tl:)_ui (tl:)zln(1+¢|k)‘t:tk’

where i=1,2,3, keZ".
It is easy to see that if system (2.1) has one  -periodic solution
T

(UI (t),u; (t),u; (t))T, then (X* (t).y'(t).z° (t))T = (e“f(‘),euz(l),e“g(‘)) is a pos-
itive  -periodic solution of system (1.5). Therefore, it suffices to prove system
(2.1) has an  -periodic solution.

Let

X :{u = (u,U,,U;)" U, € PC,,i :1,2,3}, Z=XxR®

with the norm

Jull, = Z;ls[gp]|u ), Yu=(u,u,u;)" € X
and
2l =lul +v]. vz=(uy)ez,
where || is the Euclidean norm of R*". Then X and Z are Banach spaces

when they are endowed with above norms.
Set L:DomLc X -Z, Lu :(u,Au(ti),---,Au(tp)) with
DomL:{u = (U, U,,U;) U, € PC, i :1,2,3} , Z=XxR*® and N:X —>Z

as

" F(t),In(1+4y, ), In(1+4,)
N|u, |=| K (1), In(1+gy), - In(1+4,,) |,
Us Fy(t),In(1+ ¢y ), In(1+ 4y, )
¥ (Uy, Uy, Ug)' € X,
Using this notation we may rewrite (2.1) in the equivalent form Lu=Nu,ueX .
Clearly, Kerl=R®, ImL={z=(F,7,)eZ: [/ F(1)dt+ X0 5 =0f is

closed in Z and dimKerL = codimimL =3. Thus, L is a Fredholm mapping of
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index zero. Define two projections P: X - X and Q:Z —»Z as

Pu=u, ueX,

QZ:Q(ulyly...,yp):(UJrin“},k,o,...’oj_

D k=1
It is trivial to show that 2, Qare continuous projections such that
ImP = KerL, KerQ = ImL = Im(1 -Q),

and hence, the generalized inverse K, exists. In order to derive the expression
of K, :ImL— KerPNDomL , we take z =(F,;/1,~--,7p)e ImL, then there ex-
ists Ue DomL c X such that

{u(t)zF(t),titk,

Au(t)=y. t=t keZ"
A direct integration gives

u(t):u(0)+ﬁF(s)ds+Zyk. (2.2)

<t
Note that U € KerP, namely, J'OMU (S)dS =0, together with (2.2) implies
@u(0)+ [[F(s)dsdt+ [y ydt =0,
<t

then

1o . 13
u(t)=[[F(s)ds+ Xn - [T F(s)dsdt=2 743 it

t <t

Therefore, for U € X , one has
® p
X Fl(t)dt+kz:‘1In(l+¢lk),O,~--,0

2 P
QNUZ% “F, (t)dt+ Y In(1+4,,),0,--,0
k=1

I:)Fg(t)dt+zplln(1+¢3k),0,...,0
and K, (I-Q)N:X > X,
) F(t)dt+ Y In(1+ ¢y )

t

K,(1-Q)Nu= jon(t)dt+§‘Iln(1+¢2k)

J,Fe (00t Xin(L+ )
/R OdYin(1g,)
{i_lj :Fz(t)dt+i|n(1+¢zk)

[F, (t)dt+kz:|n(1+¢3k)
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j:’j;Fl(s)dsdt+wi|n(1+¢lk)_ In(1+ gy )1,

p
k=

5N

Mo

In(1+ gy )t

Q|+

j:j'; F, (s)dsdt + a)zp: In(1+ ¢, )~

=
]

1

Mo

In(1+ ¢y )t,

josz F, (s)dsdt + cozp:ln (1+ ¢y ) -
k=1

=

5N

Clearly, QN and K, (I-Q)N are continuous. Using the Arzela-Ascoli
theorem and Lemma 1, it is not difficult to prove that K (I-Q)N (f)) is
compact for any open bounded set Q c X . In addition, QN (S_Z) is bounded.
Therefore, Nis L-compact on O with any open bounded set Qc X .

Now we reach the position to search for an appropriate open bounded subset
Qc X for the application of the continuation theorem (Lemma 2). Corres-

ponding to the operator equation LX=ANX, 4 e (0,1) , we have

um] a()e A 1

. e
u1 (t) = ﬂ’lir(t)(l_ k - 1+ beu1(t) _1+ Beu1(t) + Ceus(t)

uy(t-2(t))
uz(t)=l[—d(t)+L], t2t,,

1+ be“1(tff(t))

E(t)eul(t—a([)) ]

1+ Beul(‘*f’(‘)) +Ce“3(t*<’([))

u3(t)=/1[—D(t)+

AU () =, ()= u; (t ) = AIn(1+ 4, )t =t,,

where i=1,2,3, keZ".
Suppose that u=(uj,u,,u, )T e X is an  -periodic solution of (2.3) for
some A€ (0,1) , integrating (2.3) over [0, a)] , we obtain

uy(t uz (t) uz(t)
J‘leir(t)[l_ek()J_i_a(t)e N A(t)e }dt:—@,

1+be"" 14 Be"Y 1+ Ce%

o e(t)eu ) ~
.[o [_d (t)+ 14 pett(te) =~
° E (t)eul(t_o'(t))
J‘O [_D (t) + 1+ Beu1(t—a(t)) + Ceu3(t—0'(t)) dt= _¢3'

Therefore,

u(t) Uy (t) us(t)
r)[f(t)e Lamer o Ale }dtszﬂﬁl, (24)

0 k 1+be® 1+ Be" +ce®
e (t) eU1(t*T(t))
Io 1+ beul(t—r(t))

. E (t)eul(lfd(t))
.[o 1+ Beul(t—o-(t)) n Ceu;;(tfo'(t))

dt=dw-¢, (2.5)

dt = Do — g, (2.6)
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It follows from (2.3)-(2.6) that

ol 0 of r(t)e"” a(t)e”"  A(t)x(t)e""
.[o |u1 (t)|dt < .[0 h (t)dt+.[0 k + 1+beu1(t) +1+ Beul(t) +Ceu3(t) (2_7)

=2ro+4¢,

. Y Jelt eul(t—r(t))
[ 0o [aqyans [ 20

ol Y " E(t)eul(t—a(t))
.[0 |U3 (t)|dt = Io D (t)dt + .[o 1+ Beul(t—cr(t)) n Ceu3(t—o-(t))

Note that (ul (t),u, (t),u3 (t))T e X , then there exists &,7; E[O, a)] ,
i=12,3 such that
U (&)= minu (t), u(ng)=maxu(t), i=123. (2.10)

te[0,0] te[0,0]

dt=2dw-¢,, (2.8)

dt=2Dw—¢,. (2.9)

The following three lemmas give priori estimates for the three components of
the solution (uy (t),u, (t),u, (t))T € X in system (2.3) and their proofs will be

given in the next section.
Lemma 3. Q{%ﬂul (t)| < mi':lx{IV\lll|,|\N12|} éV\_ll, where

W, =n| —32=% | o4 o,
Ea)—b(da)—géz)

W, =1In _ do-¢ +2Fo+®,.
€a)—b(da)—¢2)

Lemma 4. max |u, (t)| < max{W,, |, Wy, |} £W;, where

te[0,0]
[Ea)— B(Ija)—qg)JeW“ ~Do+¢,

Wy, =In C(Ea)—¢3) —2[_)a)+¢3_|¢3|'
ECO—B 560—¢ eW12_5w+¢ B
W32 =|n[ ( C([_);)_:|¢3) 3 —2Da)+¢3_|¢3|.
Lemma 3. 2?(%]|u2 (t)| = max {|W21|’|W22|} 2W,, where
W,, =In €—a)—ewn (Fa)+¢1)_FweW12 _Ka)(ﬁa)_%)ewgz‘
a = gw(aa)—gbz) | K = |
—26w+¢2_|¢2|’
W,, =In E—w—ewm (Tw+¢1)_rwewu _,Kw(ﬁw_¢3)ew31—
22— ga)(aa)—gﬁz)_ k Ea) |
+2dw—¢, +|g,].

3. Proof of Lemmas

In this section, we give the proof of Lemmas 4-6.
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Assume that
(H4) do-¢,>0, ew-b(do-g¢,)>0, Fo+¢ >0,

[Ea)— B(f)a;—q%)}ewﬂ >Do—-¢,>0,

T ez Ao (Do -4, )"
Foe ]_ ( é) ]>0)

(H5) {ewﬂ((Fw+¢1)— 5 =

= Wy Aw(Do - Wap
(H6) {ewlz((rw+¢l)_ra)e ]_ a)( @ ¢3)e ]>0,

k Ew
where
W, =in|—397% | om0,
Ew—b(d a)—¢2)
W, =In dw—:% +2ro+o,,
Ea)—b(d a)—¢2)
Ea)—B([_)a)—qﬁB) e —Do+¢, _
W31:In[ — ] —2Dw+ ¢, —|d|,
C(Da-¢,)
Ea)—B([_)a)—¢3) e —Do+¢, _
W32:In[ — J —2Dw+ 4, —|d|.
C(Do-¢,)
Proof of Lemma 4. By (2.5) and (2.10), we have
= ~W(é)
e we —
1+beul(§1) < dw_¢2’
that is
gula) do-
oy < %, (3.1)
1+be™' Ew
It follows that
d_a)—¢ A
u <Ih| ———2_|£G,,. (3.2)
1(51) [Ew—b(dw—@)] 1
By (3.2), we have
U (1) <u, (&) + [ [, (t)|dt+]dy] < Gy, + 207 + @, 2W,. (3.3)
On the other hand, we have
o goe"tn)
* 7 1+be)
that is
_a)—¢z < e”1('71) (3.4)
€o  1+behtn
It follows that
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aa)—¢2 A
>In| ———|=G,. 3.5
u1(771)> n[ﬁw—b(da)—@)] 11 (3.5)
By (2.3) and (3.5), we have
U (£) 2 u, ()= [, | (t)|dt =[] = Gy — 2T — @, 2W,,. (3.6)

Therefore, by (3.3) and (3.6), we have

max |u, (t)| < max {[W,,], Wi, }.

te[0,m]

This completes the proof of Lemma 4. B
Proof of Lemma 5. By (2.6) and (2.10), we have

)elh(t a(t)) Ewew(é)
>
42l 1+ Be“l 0, Co ) - 14 B 1 b
that is
eu1(§1) < [_)a) — ¢3 (3 7)
1+ Beul(éi) +CeU3(’73) - Ea) ' '
It follows that
gU & _p
e“3("3)2[Ew B(Dw- ¢)] Da)+¢3l
( Do-¢, )
By (3.6), we have
_ _ I
gl 5 [Eo- B(Da"_%ﬂe * ~Dotg,
C(Dor-¢,)
We have
Ew-B(Dw-¢,)|e" — Do +4, N
Us (773)2 In[ ( )J =G, (3.8)

C(5w—¢3)
By (3.8), we have
Uy (£) 2 U (1) = [0 (1)] dt =[] > Gyy —2Deo+ gy = || W,y (3.9)

On the other hand, we have

eul(‘ a(t) . almn)
¢, < j ) dt < St WL
(t-of(t +Ce”3 (&) 1+ Be“(m) 4 ce 3(83)
that is
eul(”l) Dw ¢3
1+ Be'(n) 4 ce(&) Eo (310
It follows that
E S um) _
eu3(§3)<[Ea)—B(Da)—¢3)Je1 —Do+é,

C(Do-¢,)

By (3.3) and the assumption in Theorem 3, we have
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[Ea)— B(ISw—%)JeW“ -Do+4¢,
C(5a)—¢3) '

e“3(53)

IA

We have
[Ea)— B(ISa)—¢3)JeW12 —5a)+¢3 N
C(Da-4,) N

Uy (&) <

By (2.9) and (3.11), we have
Uy (£) < Uy (&)= [0 (1)) dt =[] < Gy, — 2D+ g ~[gh] 2 Wi,

Therefore, by (3.9) and (3.12), we have
max|u3 (t)] < max {W, |, W, |}

te[0,0]

This completes the proof of Lemma 5.
Proof of Lemma 6. By (2.3) and (2.10), we have
Toe"™  Fee®™) Awe" ™)
k 1+be"® 14 Be"(®) 1 Gl
By multiplying both sides of (3.13) by exp {u1 (& )} , it follows that

(I’a)+¢1) e(4) < Toe"@e ) I awe"(@e(m) Awe't(@)g!s(s)

To+¢ <

k 1+be"® 14 Bet® 4. Cghn)

By (3.1) and (3.7), we have

w(@gum)  aw(dw-g,)e"")
(Fo+)en® < L€, ol w_¢2) +

(3.11)

(3.12)

(3.13)

Ao(Do-g,)e g1s()

k Ew Ew

It follows that
ﬁw(a w—¢, )

e“z('lz) > eu1(51) {(Fa) +¢ ) _

Ew Ew

By (3.3), (3.6), (3.12), we have

ﬁa)(a_a)—¢2)eu2(n2) > gl [(Ta)+¢1)—

k Ew

foe": | Aw(Do-g,)e"
e '

It follows that
u, (772 )

) wy [ [ _Fa)ew12 B 'E\w([_)w _¢3)ew32
2In{m{e [(ra)+¢1) . J = ]}

A
=G,,;.

Therefore, by (3.14), we have

u, (t)> uz(nz)—_[:)

On the other hand, we have

(t)|dt-]4,|= G, —2d 0+ ¢, ~|g,| EW,,.

Toet@ N Fe™?) Awe)

T >
roth= k 14050 14 Betin) 4 Cetl@)

meulm)} Ao (Do g, e

(3.14)

(3.15)

(3.16)
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By multiplying both sides of (3.16) by exp{u1 (m)} » it follows that
Apet(n)gis(s)

1+ Be(™ 4 Ce&)”

T ooali(m) (&) x5, ati(m) (&)
(Fos g )esin) » T e | Gwe™e
k 1+ phalm)

By (3.4) and (3.10), we have

Foetineu(@) gw(aw_¢2)eUz(5z) Ka)(lja)—¢3)e”3(§3)

Tw+ e“l(”l) > + +
( A ) k Ew Ew
It follows that
Ew(aw_¢2) Fa)eul(fl):l Ka)(lja)—¢3)e“3(§3)

U2(%2) < e”l(ﬂl) To+
) {( %)

By (3.3), (3.6), (3.9), we have

= (7 _ N 0
aa)(d a)—¢2)eu2(¢2) < gWho [(T(o+¢1)— F et }_ Aa)(Da)_—¢3)e 31 |
Ew k Ew
It follows that
U, (&)

() Wy, [+ Twe'™ 'E\w( Do ¢, ) e'
Sln{m{e [(I’a)+¢1)— K J— Ew ]} (3.17)

2G,,.
Therefore, by (3.17), we have
U, (1) <U, (&) + |0, (t)|dt+|,| <Gy +2d =g, +[| 2W,,.  (3.18)
Therefore, by (3.15) and (3.18), we have

max [ug ()] < max {Wy|, W}

te[O,w]

This completes the proof of Lemma 6. B

4. Theorems and Proof

Our main result of this paper is as follows:

Theorem 6. If (H1)-(H6) hold, then system (1.5) has at least one @ -periodic

positive solution.

Proof. Based on the Lemmas 4-6, it can be seen that the constants
W, (i =1,2,3), are independent of 4. Moreover, it can be verified that the fol-

lowing system of algebraic equations

F{l—ﬁ}— ay Az K

K| 1+bx 14BXx+Cz o
g
1+bx I7)
_ Ex 4

+—_
1+Bx+Cz w
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has a unique positive solution [X* (1), y (1), z (t)}T )

Denote W =W, +W, +W, +W,, where W, >0 is taken to be sufficiently large

such that
”(In X, Iny",In z)” = sup |In x*|+ sup |In y*|+ sup |In z*| <W,.
X te[0,m] te[0,m] te[0,0]

Define Q:{u :(ul,uz,u3)T ‘U, U,,Up PCi,"u"x <W} . It is clear that Q
verifies the requirement (a) of the Lemma 2. When uedQ[\KerL = 0ONRE,
uis a constant vector in R® with ||u||x =W . Then for ueoQKerL,

Uy a2 Apls
Flp 8|2 B Ae N [
k | 1+be"® 1+Be""+Ce* @
w4
1+be"”
_ Eat(t)
B+ b
1+Be"V +Ce® @

QNu = —d + # 0.

The isomorphism Jof ImQ onto KerZ may be defined by

@) (0 0 (2]
J:ImQ—->X,|| @, |,|0],|0 |||, |

@) \0 0 (%]

then

_|oe ae' Ae" ¢
Fl1-— |- - +4
k | 1+be"® 1+Be"V+Ce®

_ Fai(t)
JQNu = B L
1+be"V o

_ Eat(t)
-D +Ee—+ﬁ
1+Be"V1Ces

On the other hand, by the definition of topology degree, direct calculation

yields

Uy up uz
deg{JQNu,QNKerL,0} =signlg, 0 0 |,
Uy 0 uz
Fe"  Fbeh2 ABe" ™ ae™
where fu1 = 2 + 2 u = U < 0
k [1+ be“l] [1+ Be"() + Ce”3] © o lebet
Ae's |:1+ Beul] ek Ee% [1+ Ce™ ]
fu = 2 gu1=—2>0’ hU1= 2’
[1+Be +Ce* | [1+be | [1+Be" 4 ce” |

Eali+us
_ CEe <0.

[l+ Be" +Ce™ ]2

u3

Therefore, we have
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f
Uy Uy [
deg{JQNu,QNKerL,0} =sign|g, 0 0 |=-1=0.
h, 0

Uy

So far we have proved that Q satisfies all the requirements in Lemma 2.
Therefore, system (2.1) has at least one @ -periodic solution. Hence, by the trans-
formation x(t)= g1, y(t)= g 7 (t)= gis®) system (1.5) has at least one posi-
tive  -periodic solution, this completes the proof.

Remark 7. In [7], the conditions of the existence of positive periodic solutions
were obtained for nonautonomous delayed predator-prey system such as system
(1.4). However, it did not consider the impulsive impacts. This paper discusses
the nonautonomous delayed predator-prey system with impulsive effects and
obtains the sufficient conditions of the existence of positive periodic solutions of
system (1.5) by employing the method of the continuation theorem of Gaines
and Mawhin. Therefore, the work of this paper extends the main results in

literature [7].

5. Conclusions and Future Works

It is usually observed that population densities in the real world tend to fluc-
tuate. Therefore, modeling population interactions and understanding this os-
cillatory phenomenon are a very basic and important ecological problem. Al-
though much progress has been made in the study of modelling and under-
standing three species predator-prey systems, models such as (1.1)-(1.3) have
been largely discussed by assuming that the environment is constant, which is
indeed rarely the case in real life. Naturally, more realistic and interesting mod-
els with three species interactions should take into account the seasonality of the
changing environment, the effects of time delays and artificially regularly put
predators and prey. Therefore, it is interesting and important to study systems
with impulses and periodic delays (1.5). In this paper, based on the powerful and
effective coincidence degree theory, the existence of positive periodic solutions
for predator-prey systems with impulses and periodic delays (1.5) is obtained
under suitable conditions. In particular, in the system (1.5), when there is no
impulses, thatis ¢, =0(i=12, 3) , the results are obtained in [4].

Of course, there are some improvements in this article to explore further. For
instance,

1) Positive almost positive periodic solutions of nonautonomous delayed pre-
dator-prey system with pulse controls are meaningful to discuss.

2) Stability of nonautonomous delayed predator-prey system with pulse con-
trols should be studied in the future.

3) Other dynamical behaviors of nonautonomous delayed predator-prey

system with pulse controls should be further investigated.
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