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Abstract 
In this paper, a biological model for two predators and one prey with im-
pulses and periodic delays is considered. By assuming that one predator con-
sumes prey according to Holling II functional response while the other pre-
dators consume prey according to the Beddington-DeAngelis functional re-
sponse, based on the coincidence degree theory, the existence of positive pe-
riodic solutions of nonautonomous predator-prey system with impulses and 
periodic delays is obtained under suitable conditions. 
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1. Introduction 

In the early 1920s, the work with respect to predator-prey systems [1] [2] [3] was 
done by Lotka [4] and Volterra [5], they concluded that the coexistence of two 
or more predators competing for fewer prey resources is impossible, which was 
later known as the principle of competitive exclusion. For example, in the case of 
two predators competing for a single prey species, one considers the following 
Lotka-Volterra predator-prey model 
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where ( )y t  and ( )z t  are the densities of the two predators and ( )x t  is the 
density of the prey. By assuming that both predators consume prey according to 
Holling II functional response, then system (1.1) was modified to the following 
predator-prey system 
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               (1.2) 

Based on dynamical system techniques and the geometrical singular perturba-
tion theory, Liu, Xiao and Yi [6] showed the coexistence of predators and prey of 
system (1.2) which happened along a stable periodic orbit in the positive octant 
of 3 . 

By assuming that one predator consumes prey according to the Holling II 
functional response and the other predators consume prey according to the 
Beddington-DeAngelis functional response, then system (1.1) was modified to 
the following predator-prey system 
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             (1.3) 

In [7], system (1.4) was studied with variable coefficient and periodic 
delays. The conditions of the existence of positive periodic solutions were 
given. 
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    (1.4) 

In the system based on the (1.4), taking into account the artificial interference, 
such as regularly input of predators and prey, this motivates us to consider the 
following system (1.5) with impulses. 
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where ( )x t  stands for the prey’s density, ( )y t  and ( )z t  stand for the pre-
dators’ densities respectively. One of the reasons for introducing a delay into a 
predator-prey system is that the rate of reproduction of predators depends on 
the rate at which they have consumed the prey in the past, and this idea is well 
justified [8] [9] [10]. Usually Hopf bifurcation theory is used to investigate the 
existence of periodic solutions for predator-prey system with a single constant 
delay [11] [12] [13]. Recently, the geometrical singular perturbation theory [14] 
has been employed by Lin and Yuan [15] [16] to study the existence of periodic 
solutions for predator-prey systems with a single delay or multiple delays. In this 
paper, we shall justify the existence of periodic solutions for predator-prey sys-
tem (1.5) with impulses and periodic delays. 

The main contribution of this paper is to obtain the existence of positive pe-
riodic solutions of nonautonomous delayed predator-prey system with pulse 
controls by using the method of the continuation theorem of Gaines and Maw-
hin. The rest of the paper is arranged as follows. In Section 2, we introduce some 
notation and concepts for the continuation theorem of coincidence degree, give 
some necessary definitions and lemmas. In Section 3, we establish new condi-
tions for the existence of periodic solutions for the system (1.5). In Section 4, 
some lemmas are proved. Some conclusions are given in Section 5. 

2. Notations and Preliminaries 

Let  , +  and   be the sets of all integers, positive integers and real num-
bers, respectively, and [ )0,+ = +∞ . 

Assume that 
(H1) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,r t a t A t d t e t D t  and ( )E t  are positive ω -periodic 

continuous functions, ( )tτ  and ( )tσ  are nonnegative ω -periodic conti-
nuous functions, , ,k b B  and C are positive constants; 

(H2) there exists an integer 1p ≥  such that [ ] { } { }1 20, , , ,k pt t t tω =  ,  

0 1 20 kt t t t= < < < < <  , and limk kt→∞ = ∞ , k p kt t ω+ = + ,  

( ) ( )1,2,3iki k p iφ φ+ = = , 1,2,3,k =  . Furthermore, a natural constraint is 
( )1, 1,2,3ik iφ > − = , 1,2,3,k =  ; 
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Moreover, we denote { }1 :PC PC ' PCω ω ωψ ψ= ∈ ∈ . 
Before stating our main result, for the sake of convenience and simplicity, we 

denote 

( ) ( )
0

1 d for anyf f t t f t PC
ω

ωω
= ∈∫ . 

( )
1
ln 1 , , 1, 2,3.

p

i i k i i i
k

iφ φ φ φ
=

= + Φ = + =∑  

Definition 2.1. ([17]). The set   is said to be quasi equi-continuous in  
[ ]0,ω  if for any 0ε >  there exists 0δ >  such that if x∈ , k +∈ ,  

( ] [ ]1, , 0,k kt t t t ω−′ ′′∈  , and t t δ′ ′′− < , then 

( ) ( ) .x t x t ε′ ′′− <
 

Lemma 1. (Compactness criterion, Lemma 2.4 of [17]). The set PCω⊂  is 
relatively compact if and only if: 

a)   is bounded, that is, there exists some 0M >  such that x M≤  for 
each x∈ ; 

b)   is quasi equi-continuous in [ ]0,ω . 
For convenience, we summarize a few concepts from the book by Gaines and 

Mawhin [18]. 
Let X and Z be real Banach spaces. Let : DomL L X Z⊂ →  be a linear map-

ping and :N X Z→  be a continuous mapping. The mapping L will be called a 
Fredholm mapping of index zero if dimKer codimImL L= < +∞  and Im L is 
closed in Z. If L is a Fredholm mapping of index zero, then there exist conti-
nuous projectors :P X X→  and :Q Z Z→  such that Im KerP L=  and 

( )Im Ker ImL Q I Q= = − . It follows that ( )Dom Ker : ImL PL I P X L− →


 is in-
vertible and its inverse is denoted by PK . If Ω  is a bounded open subset of X, 
the mapping N is called L-compact on Ω  if ( )( )QN Ω  is bounded and  

( ) :PK I Q N X− Ω→  is compact. Because ImQ is isomorphic to KerL, there 
exists an isomorphism : Im KerJ Q L→ . 

In the proof of our existence result, we need the following continuation theo-
rem. 

Lemma 2. (Continuation Theorem, Gaines and Mawhin [18]). Let L be a 
Fredholm mapping of index zero and let N be L-compact on Ω . Suppose 

a) for each ( )0,1λ ∈ , every solution x of Lx Nxλ=  is such that x∉∂Ω ; 
b) 0QNx ≠  for each Kerx L∈ ∂Ω ; 
c) { }deg , Ker ,0 0JQN LΩ ≠ . 
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Then the equation Lx Nx=  has at least one solution lying in DomL Ω . 
In order to transform (1.5) to the equivalent operator equation, we carry out 

the change of variable ( ) ( )1eu tx t = , ( ) ( )2eu ty t = , ( ) ( )3eu tz t = , then (1.5) has 
the form 
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 (2.1) 

where 1,2,3i = , k +∈ . 
It is easy to see that if system (2.1) has one ω -periodic solution  

( ) ( ) ( )( )T* * *
1 2 3, ,u t u t u t , then ( ) ( ) ( )( ) ( ) ( ) ( )( )* * *

1 2 3
TT* * *, , e ,e ,eu t u t u tx t y t z t =  is a pos-

itive ω -periodic solution of system (1.5). Therefore, it suffices to prove system 
(2.1) has an ω -periodic solution. 

Let 

( ){ }T 3
1 2 3, , | , 1, 2,3 , p

iX u u u u u PC i Z Xω= = ∈ = = ×
 

with the norm 

[ ]
( ) ( )

3 T
1 2 3

0,1
sup , , ,iX

ti
u u t u u u u X

ω∈=

= ∀ = ∈∑
 

and 

( ), , ,Z Xz u y z u y Z= + ∀ = ∈  

where ⋅  is the Euclidean norm of 3 p . Then X and Z are Banach spaces 
when they are endowed with above norms. 

Set : DomL L X Z⊂ → , ( ) ( )( )1, , , pLu u u t u t= ∆ ∆
  with  

( ){ }T
1 2 3Dom , , | , 1, 2,3iL u u u u u PC iω= = ∈ = , 3 pZ X= ×  and :N X Z→  
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1 11 1
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2 2 21 2
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3 31 3
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, ln 1 , , ln 1

p

p

p

F tu
N u F t

u F t

φ φ

φ φ

φ φ

 + +   
   = + +        + + 







 

( )T
1 2 3, , .u u u X∀ ∈  

Using this notation we may rewrite (2.1) in the equivalent form ,Lu Nu u X= ∈ . 

Clearly, 3KerL =  , ( ) ( ){ }1 10
Im , , , : d 0p

p kkL z F Z F t t
ω

γ γ γ
=

= = ∈ + =∑∫  is 

closed in Z, and dimKer codimIm 3L L= = . Thus, L is a Fredholm mapping of 
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index zero. Define two projections :P X X→  and :Q Z Z→  as 

, ,Pu u u X= ∈  

( )1
1

1, , , ,0, ,0 .
p

p k
k

Qz Q u uγ γ γ
ω =

 
= = + 

 
∑ 

 
It is trivial to show that P, Q are continuous projections such that 

( )Im Ker , Ker Im ImP L Q L I Q= = = − , 

and hence, the generalized inverse PK  exists. In order to derive the expression 
of : Im Ker DomPK L P L→  , we take ( )1, , , Impz F Lγ γ= ∈ , then there ex-
ists Domu L X∈ ⊂  such that 

( ) ( )
( )

, ,

, , .
k

k k

u t F t t t

u t t t kγ +

= ≠

∆ = = ∈   

A direct integration gives 
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0

0 d .
k

t
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t t
u t u F s s γ
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= + + ∑∫                 (2.2) 

Note that Keru P∈ , namely, ( )
0
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Clearly, QN  and ( )pK I Q N−  are continuous. Using the Arzela-Ascoli 
theorem and Lemma 1, it is not difficult to prove that ( ) ( )pK I Q N− Ω  is 
compact for any open bounded set XΩ ⊂ . In addition, ( )QN Ω  is bounded. 
Therefore, N is L-compact on Ω  with any open bounded set XΩ ⊂ . 

Now we reach the position to search for an appropriate open bounded subset 
XΩ ⊂  for the application of the continuation theorem (Lemma 2). Corres-

ponding to the operator equation ( ), 0,1Lx Nxλ λ= ∈ , we have 
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where 1,2,3i = , k +∈ . 
Suppose that ( )T

1 2 3, ,u u u u X= ∈  is an ω -periodic solution of (2.3) for 
some ( )0,1λ ∈ , integrating (2.3) over [ ]0,ω , we obtain 
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It follows from (2.3)-(2.6) that 
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Note that ( ) ( ) ( )( )T
1 2 3, ,u t u t u t X∈ , then there exists [ ], 0,i iξ η ω∈ , 

1,2,3i =  such that 
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ξ η

∈ ∈
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The following three lemmas give priori estimates for the three components of 
the solution ( ) ( ) ( )( )T

1 2 3, ,u t u t u t X∈  in system (2.3) and their proofs will be 
given in the next section. 

Lemma 3. 
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 − = − −Φ
 − −   

( )
2

12 1
2

ln 2 .
dW r

e b d
ω φ

ω
ω ω φ

 − = + +Φ
 − −   

Lemma 4. 
[ ]

( ) { }3 31 32 30,
max max ,
t

u t W W W
ω∈

≤  , where 

( )
( )

11
3 3

31 3 3
3

e
ln 2 ,

WE B D D
W D

C D

ω ω φ ω φ
ω φ φ

ω φ

 − − − + = − + −
−

 

( )
( )

12
3 3

32 3 3
3

e
ln 2 .

WE B D D
W D

C D

ω ω φ ω φ
ω φ φ

ω φ

 − − − + = − + −
−

 

Lemma 5. 
[ ]

( ) { }2 21 22 20,
max max ,
t

u t W W W
ω∈

≤  , where 

( ) ( ) ( ) 3212
11 3

21 1
2

2 2

eeln e

2 ,

WW
W A De rW r

k Ea d

d

ω ω φω ωω φ
ωω ω φ

ω φ φ

  −  = + − −   
−      

− + −  

( ) ( ) ( ) 3111
12 3

22 1
2

2 2

eeln e

2 .

WW
W A De rW r

k Ea d

d

ω ω φω ωω φ
ωω ω φ

ω φ φ

  −  = + − −   
−      

+ − +  

3. Proof of Lemmas 

In this section, we give the proof of Lemmas 4-6. 
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Assume that 
(H4) 2 0dω φ− > , ( )2 0e b dω ω φ− − > , 1 0rω φ+ > ,  

( ) 11
3 3e 0WE B D Dω ω φ ω φ − − > − >  , 

(H5) ( ) ( ) 3212
11 3

1

eee 0
WW

W A Drr
k E

ω ω φωω φ
ω

 − 
+ − − >  

   
, 

(H6) ( ) ( ) 3111
12 3

1

eee 0
WW

W A Drr
k E

ω ω φωω φ
ω

 − 
+ − − >  

   
, 

where 

( )
2

11 1
2

ln 2 ,
dW r

e b d
ω φ

ω
ω ω φ

 − = − −Φ
 − −   

( )
2

12 1
2

ln 2 ,
dW r

e b d
ω φ

ω
ω ω φ

 − = + +Φ
 − −   

( )
( )

11
3 3

31 3 3
3

e
ln 2 ,

WE B D D
W D

C D

ω ω φ ω φ
ω φ φ

ω φ

 − − − + = − + −
−

 

( )
( )

12
3 3

32 3 3
3

e
ln 2 .

WE B D D
W D

C D

ω ω φ ω φ
ω φ φ

ω φ

 − − − + = − + −
−

 
Proof of Lemma 4. By (2.5) and (2.10), we have 

( )

( )

1 1

1 1 2
e ,

1 e

u

u

e d
b

ξ

ξ

ω ω φ≤ −
+  

that is 
( )

( )

1 1

1 1

2e .
1 e

u

u

d
eb

ξ

ξ

ω φ
ω
−

≤
+

                     (3.1) 

It follows that 

( ) ( )
2

1 1 12
2

ln .
du G

e b d
ω φ

ξ
ω ω φ

 − ≤
 − − 

               (3.2) 

By (3.2), we have 

( ) ( ) ( )1 1 1 1 1 12 1 120
d 2 .u t u u t t G r W

ω
ξ φ ω≤ + + ≤ + +Φ∫ 

        (3.3) 

On the other hand, we have 
( )

( )

1 1

1 12
e ,

1 e

u

u

ed
b

η

η

ωω φ− ≤
+  

that is 
( )

( )

1 1

1 1

2 e .
1 e

u

u

d
e b

η

η

ω φ
ω
−

≤
+

                    (3.4) 

It follows that 
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( ) ( )
2

1 1 11
2

ln .
du G

e b d
ω φ

η
ω ω φ

 − ≥
 − − 

               (3.5) 

By (2.3) and (3.5), we have 

( ) ( ) ( )1 1 1 1 1 11 1 110
d 2 .u t u u t t G r W

ω
η φ ω≥ − − ≥ − −Φ∫ 

        (3.6) 

Therefore, by (3.3) and (3.6), we have 

[ ]
( ) { }1 11 120,

max max , .
t

u t W W
ω∈

≤
 

This completes the proof of Lemma 4.  
Proof of Lemma 5. By (2.6) and (2.10), we have 

( ) ( )( )

( )( ) ( )

( )

( ) ( )

1 1 1

3 31 11 3 3
3 0

e ed ,
1 e e1 e e

u t t u

uuu t t u

E t ED t
B CB C

σ ξ
ω

ηξσ η

ωω φ
−

−
− ≥ ≥

+ ++ +
∫

 
that is 

( )

( ) ( )

1 1

3 31 1

3e .
1 e e

u

uu

D
EB C

ξ

ηξ

ω φ
ω
−

≤
+ +

                (3.7) 

It follows that 

( ) ( ) ( )

( )
1 1

3 3 3 3

3

e
e .

u
u

E B D D

C D

ξ
η

ω ω φ ω φ

ω φ

 − − − + ≥
−

 

By (3.6), we have 

( ) ( )
( )

11

3 3 3 3

3

e
e .

W
u

E B D D

C D
η

ω ω φ ω φ

ω φ

 − − − + ≥
−

 

We have 

( )
( )

( )
11

3 3
3 3 31

3

e
ln .

WE B D D
u G

C D

ω ω φ ω φ
η

ω φ

 − − − + ≥
−

         (3.8) 

By (3.8), we have 

( ) ( ) ( )3 3 3 3 3 31 3 3 310
d 2 .u t u u t t G D W

ω
η φ ω φ φ≥ − − ≥ − + −∫ 

     (3.9) 

On the other hand, we have 

( ) ( )( )

( )( ) ( )

( )

( ) ( )

1 1 1

3 31 11 3 3
3 0

e ed ,
1 e e1 e e

u t t u

uuu t t u

E t ED t
B CB C

σ η
ω

ξησ ξ

ωω φ
−

−
− ≤ ≤

+ ++ +
∫

 
that is 

( )

( ) ( )

1 1

3 31 1

3e .
1 e e

u

uu

D
EB C

η

ξη

ω φ
ω
−

≥
+ +

                (3.10) 

It follows that 

( ) ( ) ( )

( )
1 1

3 3 3 3

3

e
e .

u
u

E B D D

C D

η
ξ

ω ω φ ω φ

ω φ

 − − − + ≤
−

 
By (3.3) and the assumption in Theorem 3, we have 
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( ) ( )
( )

12

3 3 3 3

3

e
e .

W
u

E B D D

C D
ξ

ω ω φ ω φ

ω φ

 − − − + ≤
−

 
We have 

( )
( )

( )
12

3 3
3 3 32

3

e
ln .

WE B D D
u G

C D

ω ω φ ω φ
ξ

ω φ

 − − − + ≤
−

        (3.11) 

By (2.9) and (3.11), we have 

( ) ( ) ( )3 3 3 3 3 32 3 3 320
d 2 .u t u u t t G D W

ω
ξ φ ω φ φ≤ − − ≤ − + −∫ 

    (3.12) 

Therefore, by (3.9) and (3.12), we have 

[ ]
( ) { }3 31 320,

max max , .
t

u t W W
ω∈

≤
 

This completes the proof of Lemma 5. 
Proof of Lemma 6. By (2.3) and (2.10), we have 

( ) ( )

( )

( )

( ) ( )

3 31 1 2 2

1 1 3 31 11
e e e .

1 e 1 e e

uu u

u uu

r a Ar
k b B C

ηη η

ξ ηξ

ω ω ωω φ+ ≤ + +
+ + +

       (3.13) 

By multiplying both sides of (3.13) by ( ){ }1 1exp u ξ , it follows that 

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

3 31 1 1 1 1 1 2 2 1 1
1 1

1 1 3 31 11
e e e e e ee .

1 e 1 e e

uu u u u u
u

u uu

r a Ar
k b B C

ηξ η ξ η ξ
ξ

ξ ηξ

ω ω ωω φ+ ≤ + +
+ + +  

By (3.1) and (3.7), we have 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )2 2 3 31 1 1 1

1 1 2 3
1

e ee ee .
u uu u

u a d A Drr
k e E

η ηξ η
ξ ω ω φ ω ω φωω φ

ω ω

− −
+ ≤ + +

 
It follows that 

( ) ( ) ( ) ( )
( ) ( ) ( )3 31 1

2 2 1 12 3
1

eee e .
uu

u ua d A Drr
e k E

ηη
η ξω ω φ ω ω φωω φ

ω ω

− − 
≥ + − − 

    
By (3.3), (3.6), (3.12), we have 

( ) ( ) ( ) ( ) 3212
2 2 112 3

1

eee e .
WW

u W
a d A Drr

e k E
ηω ω φ ω ω φωω φ

ω ω

− − 
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It follows that 

( )

( ) ( ) ( ) 3212
11

2 2

3
1

2

21

eeln e

.

WW
W

u

A De rr
k Ea d

G

η

ω ω φω ωω φ
ωω ω φ

  −  ≥ + − −   
−      



  (3.14) 

Therefore, by (3.14), we have 

( ) ( ) ( )2 2 2 2 2 21 2 2 210
d 2 .u t u u t t G d W

ω
η φ ω φ φ≥ − − ≥ − + −∫ 

    (3.15) 

On the other hand, we have 
( ) ( )

( )

( )
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3 31 1 2 2

1 1 3 31 11
e e e .

1 1 e e

uu u

u uu
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       (3.16) 
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By multiplying both sides of (3.16) by ( ){ }1 1exp u η , it follows that 

( ) ( )
( ) ( ) ( ) ( )
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e e e e e ee .
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By (3.4) and (3.10), we have 
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It follows that 
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By (3.3), (3.6), (3.9), we have 
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It follows that 
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  (3.17) 

Therefore, by (3.17), we have 

( ) ( ) ( )2 2 2 2 2 22 2 2 220
d 2 .u t u u t t G d W

ω
ξ φ ω φ φ≤ + + ≤ + − +∫ 

    (3.18) 

Therefore, by (3.15) and (3.18), we have 

[ ]
( ) { }3 21 220,

max max , .
t

u t W W
ω∈

≤
 

This completes the proof of Lemma 6.  

4. Theorems and Proof 

Our main result of this paper is as follows: 
Theorem 6. If (H1)-(H6) hold, then system (1.5) has at least one ω -periodic 

positive solution. 
Proof. Based on the Lemmas 4-6, it can be seen that the constants  
( )1,2,3iW i = , are independent of λ . Moreover, it can be verified that the fol-

lowing system of algebraic equations 

1

2

3

1 ,
1 1

,
1

,
1

x ay Azr
k bx Bx Cz
exd

bx
ExD

Bx Cz

φ
ω

φ
ω

φ
ω

  − − − = −   + + + 

− + = −

+

− + = − + +  
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has a unique positive solution ( ) ( ) ( )
T* * *, ,x t y t z t   . 

Denote 1 2 3 4W W W W W= + + + , where 4 0W >  is taken to be sufficiently large 
such that 

( )
[ ] [ ] [ ]

* * * * * *
4

0, 0, 0,
ln , ln , ln sup ln sup ln sup ln .

X t t t
x y z x y z W

ω ω ω∈ ∈ ∈
= + + <

 
Define ( ){ }T 1

1 2 3 1 2 3, , : , , , Xu u u u u u u PC u WωΩ = = ∈ < . It is clear that Ω  
verifies the requirement (a) of the Lemma 2. When 3Keru L∈∂Ω = ∂Ω  , 
u is a constant vector in 3  with Xu W= . Then for Keru L∈∂Ω , 

( ) ( )

( )

( )

( )
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31 2

1 1 3

1

1

1

1 3

1

2
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e e e1
1 e 1 e e
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e
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u t u t u

u t

u t
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u t u
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k b B C

eQNu d
b

ED
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φ
ω

φ
ω

φ
ω

  
− − − +  

+ + +  
 
 = − + + ≠
 +
 
 − + + + +   

The isomorphism J of ImQ onto KerL may be defined by 

1 1

2 2

3 3

0 0
: Im , , 0 , , 0 ,

0 0
J Q X

ϕ ϕ
ϕ ϕ
ϕ ϕ

       
       → →       

              



 

then 
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1 1 3

1

1
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e e e1
1 e 1 e e

e
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e
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eJQNu d
b

ED
B C

φ
ω

φ
ω

φ
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− − − +  

+ + +  
 
 = − + +
 +
 
 − + + + +   

On the other hand, by the definition of topology degree, direct calculation 
yields 

{ }
1 2 3

1

1 3

deg , Ker ,0 sign 0 0 ,

0

u u u

u

u u

f f f

JQNu L g

h h

Ω =

 

where 
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1 31 1 2

1
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e e e

1 e 1 e e

u uu u u

u u u t u

r ab ABf
k b B C
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2

2 1

e 0
1 e

u

u u

af
b

= − <
+

,  

3 1

3
31

2

e 1 e

1 e e

u u

u uu

A B
f

B C

 + =
 + + 

, 
1

1
1

2

e 0
1 e

u

u u

eg
b
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 + 

, 
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31

1
1 3

2

e 1 e

1 e e

uu

u
u t u

E C
h

B C

 + =
 + + 

,  

1 3

3
31

2

e 0
1 e e

u u

u uu

CEh
B C

+

= − <
 + + 

. 

Therefore, we have 
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{ }
1 2 3

1

1 3

deg , Ker ,0 sign 0 0 1 0.

0

u u u

u

u u

f f f

JQNu L g

h h

Ω = = − ≠

 
So far we have proved that Ω  satisfies all the requirements in Lemma 2. 

Therefore, system (2.1) has at least one ω -periodic solution. Hence, by the trans-
formation ( ) ( ) ( ) ( ) ( ) ( )1 2 3e , e , eu t u t u tx t y t z t= = = , system (1.5) has at least one posi-
tive ω -periodic solution, this completes the proof. 

Remark 7. In [7], the conditions of the existence of positive periodic solutions 
were obtained for nonautonomous delayed predator-prey system such as system 
(1.4). However, it did not consider the impulsive impacts. This paper discusses 
the nonautonomous delayed predator-prey system with impulsive effects and 
obtains the sufficient conditions of the existence of positive periodic solutions of 
system (1.5) by employing the method of the continuation theorem of Gaines 
and Mawhin. Therefore, the work of this paper extends the main results in 
literature [7]. 

5. Conclusions and Future Works 

It is usually observed that population densities in the real world tend to fluc-
tuate. Therefore, modeling population interactions and understanding this os-
cillatory phenomenon are a very basic and important ecological problem. Al-
though much progress has been made in the study of modelling and under-
standing three species predator-prey systems, models such as (1.1)-(1.3) have 
been largely discussed by assuming that the environment is constant, which is 
indeed rarely the case in real life. Naturally, more realistic and interesting mod-
els with three species interactions should take into account the seasonality of the 
changing environment, the effects of time delays and artificially regularly put 
predators and prey. Therefore, it is interesting and important to study systems 
with impulses and periodic delays (1.5). In this paper, based on the powerful and 
effective coincidence degree theory, the existence of positive periodic solutions 
for predator-prey systems with impulses and periodic delays (1.5) is obtained 
under suitable conditions. In particular, in the system (1.5), when there is no 
impulses, that is ( )0 1,2,3ik iφ ≡ = , the results are obtained in [4]. 

Of course, there are some improvements in this article to explore further. For 
instance, 

1) Positive almost positive periodic solutions of nonautonomous delayed pre-
dator-prey system with pulse controls are meaningful to discuss. 

2) Stability of nonautonomous delayed predator-prey system with pulse con-
trols should be studied in the future. 

3) Other dynamical behaviors of nonautonomous delayed predator-prey 
system with pulse controls should be further investigated. 
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