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Abstract 
The aim of the research is to study the propagation of a hydraulic fracture 
with tortuosity due to contact areas between touching asperities on opposite 
crack walls. The tortuous fracture is replaced by a model symmetric partially 
open fracture with a hyperbolic crack law and a modified Reynolds flow law. 
The normal stress at the crack walls is assumed to be proportional to the 
half-width of the model fracture. The Lie point symmetry of the nonlinear 
diffusion equation for the fracture half-width is derived and the general form 
of the group invariant solution is obtained. It was found that the fluid flux at 
the fracture entry cannot be prescribed arbitrarily, because it is determined by 
the group invariant solution and that the exponent n in the modified Rey-
nolds flow power law must lie in the range 2 5n< < . The boundary value 
problem is solved numerically using a backward shooting method from the 
fracture tip, offset by 0 1δ<   to avoid singularities, to the fracture entry. 
The numerical results showed that the tortuosity and the pressure due to the 
contact regions both have the effect of increasing the fracture length. The 
spatial gradient of the half-width was found to be singular at the fracture tip 
for 3 5n< < , to be finite for the Reynolds flow law 3n =  and to be zero for 
2 3n< < . The thin fluid film approximation breaks down at the fracture tip 
for 3 5n< <  while it remains valid for increasingly tortuous fractures with 
2 3n< < . The effect of the touching asperities is to decrease the width aver-
aged fluid velocity. An approximate analytical solution for the half-width, 
which was found to agree well with the numerical solution, is derived by 
making the approximation that the width averaged fluid velocity increases li-
nearly with distance along the fracture. 
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1. Introduction 

In hydraulic fracturing, fluid is pumped at high pressure into a crack in a rock 
mass in order to open the crack. Hydraulic fracturing has many applications. In 
mining, high pressure water is used to break rocks instead of explosives which 
leave small rock fragments in the air that could damage the lungs of miners [1]. 
In geothermal reservoirs, in their natural state, the cracks allow only a small flow 
of water. In order to increase the flow, high pressure water is pumped into the 
crack network at one borehole and extracted from another borehole [2]. Hy-
draulic fracturing is also used to enhance the extraction of oil and gas in large 
underground shale deposits [3]. 

Spence and Sharp [4] were the first to show that the equations of hydraulic 
fracture admit a similarity solution. These authors considered the enlargement 
of a lens shaped crack and a two-dimensional crack by a viscous fluid modelled 
by lubrication theory. The fluid pressure and the crack shape were connected by 
a singular integral equation from linear elasticity. The theory was applied to 
magma-driven propagation of cracks in geophysics [5] [6] [7]. 

The Cautchy principal value integral in the singular integral equation relating 
pressure to the crack shape is difficult to analyze. An important simplification 
was the Perkins-Kern-Nordgren (PKN) approximation in which the normal 
stress at the fluid-rock interface is proportional to the half-width of the fracture 
[8] [9]. The PKN approximation puts the differential equations of hydraulic 
fracture in a form which can be analyzed using the theory of Lie point symmen-
tries and conservation laws. 

The scientific literature on hydraulic fracturing is now very large. We will only 
comment briefly on the application of Lie point symmetries to hydraulic frac-
turing, because that approach will be used in this paper. Lie point symmetry 
analysis was first applied to hydraulic fracturing by Fitt, Mason and Moss who 
considered the propagation of a fracture in impermeable rock [1]. Fareo and 
Mason analyzed the propagation of a hydraulic fracture in permeable rock with 
fluid leak-off into the rock mass and investigated the effect of leak-off on the rate 
of propagation of a fracture [10]. Fareo and Mason also considered a fracture 
driven by a power law fluid in an impermeable rock mass [11]. Anthonyrajah, 
Mason and Fareo [12] compared laminar and turbulent fluid driven fractures 
using the wall shear stress model of Emerman, Turcotte and Spence [6] for the 
fluid and the PKN approximation instead of the Cautchy principal value integral 
model to relate the fluid pressure to the crack shape. 

The effects of tortuosity on hydraulic fracturing due to asperities or surface 
roughness at the fluid rock interface and contact regions caused by touching as-
perities will be investigated in this paper. The hydraulic fracture with tortuosity 
will be replaced by a symmetric two-dimensional hydraulic fracture without as-
perities but with a modified Reynolds flow law, which accounts for the effect that 
the presence of asperities at the fluid rock interface has on the fluid flow, and 

https://doi.org/10.4236/jamp.2021.95078


M. R. R. Kgatle-Maseko, D. P. Mason 
 

 

DOI: 10.4236/jamp.2021.95078 1123 Journal of Applied Mathematics and Physics 
 

with a modified crack law, which models the effect of the contact regions on the 
stress at the fluid-rock interface [2]. 

In this paper, we model the contact regions by the hyperbolic crack law which 
was introduced by Goodman [13]. This is motivated by the discussion by Fitt et 
al. [2] that the hyperbolic crack law is generally considered to be a more realistic 
model to describe the presence of contact regions (deformations formed by 
touching asperities) in a fracture than the linear crack law. Although the concept 
of tortuosity was investigated in [14] [15], the contact regions in these papers 
were modelled by the linear crack law which was proposed by Pine and Cundall 
[16] and further discussed by Fitt et al. [2]. 

In this paper, we aim to solve the problem of the evolution of a hydraulic 
fracture with tortuosity described by the hyperbolic crack law. The fluid flow in 
the fracture is described by a modified Reynolds flow law and the fluid pressure 
and crack shape are related by the PKN approximation. The aim of this work is 
to derive numerical and approximate analytical solutions for the evolution of the 
half-width and length of the model symmetric fracture which replaces the frac-
ture with tortuosity. The problem is formulated mathematically and in dimen-
sionless form in Section 2.6. 

In Section 2, we present the derivation of the model describing fluid flow in a 
tortuous hydraulic fracture with contact regions modelled by the hyperbolic 
crack law. Section 3 outlines the derivation of the group invariant solution of the 
problem. In Section 4 we consider possible operating conditions at the fracture 
entry and investigate the existence of analytical solutions. Section 5 describes a 
numerical solution for the problem. In Section 6, the investigation of the width 
averaged fluid velocity leads to the derivation of an approximate analytical solu-
tion for the problem. In this Section, a comparison of the numerical and the ap-
proximate analytical solutions is made. Finally in Section 7 we summarize im-
portant findings and conclude the paper.  

2. Model formulation 

We will first review the fluid flow results that were derived in [14]. We will then 
close the fluid flow model by using both the hyperbolic crack law, which de-
scribes the presence of contact regions in the fracture, and the Perkins-Kern [8] 
and Nordgren [9] approximation, which relates the normal stress at the fracture 
walls with the half-width of the fracture. Lastly, we will express the governing 
equations in dimensionless form. 

A tortuous hydraulic fracture with asperities at the fluid-rock interface is 
modelled. The tortuous fracture is replaced by a symmetric two-dimensional 
hydraulic fracture without asperities, as shown in Figure 1, but with a modified 
Reynolds flow law and a modified crack law. The x-axis is along the length of the 
model symmetric fracture, the z-axis is along the width and the y-axis is along 
the breadth. All quantities are independent of y. The half-width of the fracture is  
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Figure 1. Hydraulic fracture without asperities on the crack walls or contact regions. 

 
( ),h t x . Since the fracture is long and thin, the lubrication approximation is 

imposed on the viscous flow in the fracture which gives that the fluid pressure in 
independent of the variable z. It follows that the fluid velocity components and 
the fluid pressure respectively have the form 

( ) ( ) ( ), , , 0, , , , , .x x y z zv v t x z v v v t x z p p t x= = = =        (2.1) 

The fluid is incompressible with constant density ρ  and dynamic viscosity 
µ . The body force due to gravity is neglected. 

2.1. Review of the Flow Model 

From lubrication theory for a two-dimensional hydraulic fracture the volume 
flux of fluid across the fracture per unit breadth, ( ),Q t x , satisfies the Reynolds 
flow law [14]: 

( ) ( )
( ) ( ), 3

,

2, , , d
3

h t x
xh t x

pQ t x v t x z z h
xµ−

∂
= = −

∂∫             (2.2) 

and the width averaged fluid velocity is 

( ) ( )
( )

2,
, .

2 , 3x

Q t x h pv t x
h t x xµ

∂
= = −

∂
                 (2.3) 

The half-width of the fracture ( ),h t x  satisfies 

( )1 , 0,
2

h Q t x
t x

∂ ∂
+ =

∂ ∂
                    (2.4) 

which when expanded with the aid of (2.2) gives the nonlinear diffusion equa-
tion relating half-width of the fracture ( ),h t x  and the fluid pressure ( ),h t x : 

31 .
3

h ph
t x xµ

∂ ∂ ∂ =  ∂ ∂ ∂ 
                     (2.5) 

For hydraulic fractures with high tortuosity the Reynolds flow law has been 
shown to give theoretical results which diverge from experimental results [17] 
[18] [19] [20]. It follows that the Reynolds flow law is not satisfactory in de-
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scribing very tortuous fractures. Several authors have considered various flow 
models with the aim of accounting for high tortuosity in the fracture. We will 
consider a law that governs one of these models, the modified Reynolds flow law, 
in which 3h  in ( ),Q t x  given in (2.2) is replaced by n

na h  where n is a di-
mensionless constant and na  has dimensions 3 nL − . Both n and na  are ob-
tained through experiments [2]. Equations (2.2), (2.3) and (2.5) become: 

( ) 2, ,
3

n
n

pQ t x a h
xµ
∂

= −
∂

                   (2.6) 

( ) 1, ,
3

nn
x

a pv t x h
xµ

− ∂
= −

∂
                    (2.7) 

and 

.
3

nnah ph
t x xµ

∂ ∂ ∂ =  ∂ ∂ ∂ 
                     (2.8) 

2.2. Hyperbolic Crack Law 

In [14] the linear crack law was used to describe the contribution made by the 
contact areas to support the compressive normal stress, ( ),zz t xσ− , at the frac-
ture walls. In this paper we will use the hyperbolic crack law which was first in-
troduced by Goodman [13] and further considered by Bandis et al. [21], Murphy 
et al. [22] and Fitt et al. [2]. 

A tortuous fracture can either be open without contact regions or partially 
open with contact regions. In an open fracture, the fluid pressure ( ),p t x  is 
sufficient to support the compressive normal stress at the fracture walls, 

( ),zz t xσ− , and therefore 

( ) ( ), , .zzp t x t xσ= −                      (2.9) 

For a partially open fracture, the fluid pressure is insufficient to support the 
compressive normal stress at the fracture walls and therefore 

( ) ( ), , .zzp t x t xσ< −                     (2.10) 

From (2.9) and (2.10), it is clear that the effective stress, ( ) ( ), ,zzp t x t xσ+ , 
vanishes for an open fracture and is negative for a partially open fracture. While 
both an open and a partially open fracture were discussed in [14] and [15], in 
this paper we will discuss only a partially open fracture. We consider the hyper-
bolic crack law [13], 

( ) ( ) ( )
( )

max

min

,
, , , 0,

,zz

h h t x
t x p t x k k

h t x h
σ

 −
+ = <  − 

          (2.11) 

where k is a negative constant, minh  is the minimum half-width of the fracture 
and maxh  is the maximum half-width of the fracture. We make the approxima-
tion that min 0h =  which simplifies (2.11) to 

( ) ( ) ( )
max, , 1 , 0.
,zz

h
t x p t x k k

h t x
σ

 
+ = − <  

 
           (2.12) 
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Although in practice minh  can never be zero even when the fracture is under 
the largest possible compressive stresses, min 0h =  is a reasonable approxima-
tion since min maxh h  [2] [23]. It is clear that Equation (2.12) satisfies the nega-
tive effective stress condition, ( ) ( ), , 0zzp t x t xσ+ < . Equation (2.12) can be 
rearranged to give 

( ) ( ) ( )1, , , ,zzp t x p t x t xσ+ = −                 (2.13) 

where 

( ) ( )
max

1 , 1 0, 0,
,

h
p t x k k

h t x
 

= − − > <  
 

             (2.14) 

which clearly shows that the compressive normal stress at the fluid-rock inter-
face, ( ),zz t xσ− , is supported by both the fluid pressure ( ),p t x  and the pres-
sure due to contact regions ( )1 ,p t x . 

2.3. The PKN Approximation 

Lastly, it is necessary to specify a relation between the compressive normal stress 
at the fluid-rock interface, ( ),zz t xσ− , and the half-width of the fracture, ( ),h t x . 
We will use the Perkins-Kern-Nordgren (PKN) approximation, which is widely 
used in the oil and gas industry to relate the normal stress at the crack walls to 
the half-width of the fracture, [8] [9]: 

( ) ( ), , ,zz zzt x h t xσ σ ∞− = − + Λ                  (2.15) 

where ( ) 0zzσ ∞− >  is the compressive stress at infinity (far-field compressive 
stress) within the rock and 

( )2
,

1
E

Bν
Λ =

−
                      (2.16) 

where E is the Young’s modulus and ν  is the Poisson ratio of the rock encasing 
the fracture and B is the breadth of the fracture. The PKN approximation has the 
disadvantage that the stress intensity factor vanishes at the fracture tip, 

( )x L t= , because the half-width is zero at the tip but it can be applied to a sin-
gle-sided fracture with non-zero initial length. This is unlike the relation, 

( ) ( )

( ) ( ) d, , ,
2 1zz zz

G h st x t s
s s x

σ σ
ν

∞∞

−∞

∂
= +

−π ∂ −∫           (2.17) 

which describes a two sided fracture expanding from a point source, where the 
bar on the integral sign denotes the Cauchy principal value and G and ν  are 
the shear modulus and Poisson ratio of the rock mass respectively. Equation 
(2.17) was first introduced by Spence and Sharp [4] and used by Fitt et al. [2] 
when considering a geothermal reservoir. While it is possible to derive a similar-
ity solution for the integro-differential equation for the half-width of the fracture 
using the relation (2.17), the resulting boundary value problem is difficult to 
solve [4] [5] [6] [7]. By expanding (2.17), Adachi and Peirce have shown that the 
PKN approximation is a good approximation away from an ε-neighbourhood of 

https://doi.org/10.4236/jamp.2021.95078


M. R. R. Kgatle-Maseko, D. P. Mason 
 

 

DOI: 10.4236/jamp.2021.95078 1127 Journal of Applied Mathematics and Physics 
 

the fracture tip where 1ε   [24]. 

2.4. Model Closure 

From equations (2.13) and (2.15), the fluid pressure in the fracture is 

( ) ( ) ( ) ( )
max, , 1
,zz

h
p t x h t x k

h t x
σ ∞  

= − + Λ + −  
 

           (2.18) 

and therefore 

( )
( )
max

2, 1 .
,

khp ht x
x xh t x

 ∂ ∂
= Λ −  ∂ ∂Λ 

               (2.19) 

Since 0k <  the magnitude of the pressure gradient in the fluid along the 
fracture is increased by the contact regions. Equations (2.6) and (2.7) for the vo-
lume flux of fluid in the fracture and the width averaged fluid velocity respec-
tively become 

( ) 2max2
, ,

3
n nna kh hQ t x h h

xµ
−Λ ∂ = − − Λ ∂ 

             (2.20) 

( ) 1 3max, ,
3

n nn
x

a kh hv t x h h
xµ

− −Λ ∂ = − − Λ ∂ 
            (2.21) 

and (2.8) becomes the nonlinear diffusion equation for the half-width of the 
fracture, ( ),h t x : 

2max .
3

n nna khh hh h
t x xµ

−Λ  ∂ ∂ ∂ = −  ∂ ∂ Λ ∂  
              (2.22) 

When 0k = , the effective stress vanishes and the condition (2.9) for an open 
fracture is satisfied. Equations (2.20) to (2.22) reduce to the governing equations 
for an open fracture which was discussed in [14] and [15]. In this paper we con-
sider only partially open fractures ( 0k < ) for which the compressive normal 
stress at the fracture walls is supported by both the fluid pressure ( ),p t x  and 
the pressure ( )1 ,p t x  due to contact regions given by (2.14). 

Equation (2.22) is a nonlinear diffusion equation of the form 

( )1 ,h ha D h
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
                   (2.23) 

where the diffusion coefficient ( )D h  satisfies 

( ) 2
2 ,n nD h h a h −= +                     (2.24) 

and 1a  and 2a  are positive constants. Many problems in heat propagation, 
diffusion of fluids in porous media and ground water flow are of the form (2.23) 
but with diffusion coefficients different from (2.24) [25]. To the best of our 
knowledge there is no application to hydraulic fracturing with a diffusion coeffi-
cient of the form (2.24). 

2.5. Boundary and Initial Conditions 

Consider first the boundary conditions at the fracture tip, ( )x L t= , where 
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( )L t  is the length of the fracture. The half-width of the fracture vanishes at the 
tip, 

( ) ( )( ): , 0, 0.x L t h t L t t= = ≥                (2.25) 

The second boundary condition at the fracture tip is that the volume flux of 
fluid vanishes: 

( ) ( )( ): , 0, 0,x L t Q t L t t= = ≥                (2.26) 

and therefore using (2.20), 

( ) ( )( ) ( )( ) ( )( )2max: , , , 0.n nkh hx L t h t L t h t L t t L t
x

− ∂ = − = Λ ∂ 
    (2.27) 

The boundary conditions (2.25) and (2.27) are moving boundary conditions 
[26]. 

Consider next the condition at the fracture entry, 0x = . We consider a par-
tially open fracture. Let 

( )
max

0,0
0, 0 : , 0 1.

h
x t

h
β β= = = < <              (2.28) 

The parameter β  is prescribed and describes the extent to which the initial 
fracture is partially open. The boundary condition at the fracture entry is 

( ) ( ) ( ) ( )2max2
,0 ,0 ,0 ,

3
n nna kh hh t h t t S t

xµ
−Λ ∂ − − = Λ ∂ 

        (2.29) 

where ( ) ( ),0S t Q t=  is the flux of fluid per unit breadth into the fracture at the 
entry 0x = . It is prescribed as far as the invariant solution will allow. 

2.6. Dimensionless Governing Equations 

In order to make all equations and boundary and initial conditions dimension-
less we transform to dimensionless variables. Consider first the fluid pressure. 
Equation (2.18) can be written as 

( ) ( ) ( )
max, , 1
,

h
P t x h t x k

h t x
 

= Λ + −  
 

               (2.30) 

where 

( ) ( ) ( ), , .zzP t x p t x σ ∞= +                    (2.31) 

We will work with ( ),P t x  instead of ( ),p t x . The pressure ( ),P t x  is the 
difference between the pressure of the fluid in the fracture, ( ),p t x , and the 
background pressure, ( )

zzσ ∞− , in the rock. Since ( )
zzσ ∞  is a constant, equations 

(2.3) to (2.8) on which the theory is based, remain unchanged when expressed in 
terms of ( ),P t x  instead of ( ),p t x . 

We choose characteristic quantities which are independent of n and na  so 
that the results for a range of values of n can be compared. We choose maxh  as 
the characteristic half-width. From (2.30) the characteristic value of ( ),P t x  is 

maxhΛ . The characteristic value of the x-coordinate is the initial length of the 
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fracture ( )0oL L=  which is also the characteristic length of the fracture. Equa-
tion (2.5) was derived using lubrication theory and gives for the characteristic 
velocity along the fracture: 

( )3
max

max

1 .zz

o

h
U

L h
σ

µ

∞ Λ
= −  Λ 

                   (2.32) 

We transform to the following dimensionless variables: 

* * * *

max

* * *

max max

* *

max max

, , , ,

, , ,

, ,

o o o

x
x

o

x Ut h Lx t h L
L L h L
v Q Sv Q S
U Uh Uh

V PV P
h L h

= = = =

= = =

= =
Λ

           (2.33) 

where 

( ) ( ) ( )
0

2 , d
L t

V t h t x x= ∫                    (2.34) 

is the total volume of the fracture per unit breadth and 

( )* 0 1.L =                         (2.35) 

We define 

( ) 13
max

max max

1 , 0.
3

n
n zz

n
a h kK

h h
σ

φ
−∞−  

= − = − >  Λ Λ 
          (2.36) 

We suppress the stars on the dimensionless variables and parameters to keep 
the notation simple. Expressed in dimensionless form the half-width of the frac-
ture, ( ),h t x , satisfies the nonlinear diffusion equation 

( )2 ,n n
n

h hK h h
t x x

φ −∂ ∂ ∂ = + ∂ ∂ ∂ 
                (2.37) 

subject to the boundary conditions 

( ) ( )( ): , 0,x L t h t L t= =                   (2.38) 

( ) ( )( ) ( )( )( ) ( )( )2: , , , 0,n n hx L t h t L t h t L t t L t
x

φ − ∂
= + =

∂
     (2.39) 

( ) ( )( ) ( ) ( )20 : 2 ,0 ,0 ,0 .n n
n

hx K h t h t t S t
x

φ − ∂
= − + =

∂
       (2.40) 

and the initial/boundary condition 

( )0, 0 : 0,0 , 0 1.x t h β β= = = < <              (2.41) 

In dimensionless variables, the volume flux of fluid in the fracture, the width 
averaged fluid velocity, the fluid pressure and the volume of the fracture are 

( ) ( ) ( )( ) ( )2, 2 , , , ,n n
n

hQ t x K h t x h t x t x
x

φ − ∂
= − +

∂
         (2.42) 

( ) ( ) ( )( ) ( )1 3, , , , ,n n
x n

hv t x K h t x h t x t x
x

φ− − ∂
= − +

∂
         (2.43) 
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( ) ( ) ( )
1, , 1 ,
,

P t x h t x
h t x

φ
 

= − −  
 

               (2.44) 

( ) ( ) ( )
0

2 , d .
L t

V t h t x x= ∫                    (2.45) 

None of the characteristic quantities depend on n or na . The solution de-
pends on the two parameters nK  and φ  and on ( )S t , the fluid source at the 
fracture entry. The parameter nK  contains all the dependence on n and na . 
The physical significance of φ  is 

pressure due to contact regions
compressive normal stress at the fracture walls minus the background compressive stress

φ =
(2.46) 

This completes the formulation of the mathematical model of a tortuous frac-
ture with the hyperbolic crack law. 

3. Group Invariant Solution 

We consider the propagation of a pre-existing hydraulic fracture with a 
non-zero initial length. Therefore methods used to derive a similarity solution 
for gravity currents [27] and for hydraulic fractures [4], both with a zero initial 
length, are not applicable in this work. Lie group analysis of partial differential 
equations, which can be used to analyze fractures with non-zero initial length, 
will be used to solve the problem [14] [10]. We derive the Lie point symmetries 
of the nonlinear diffusion Equation (2.37) which are then used to reduce the 
problem to a boundary value problem for an ordinary differential equation 
which describes the effects of surface roughness and contact regions on the evo-
lution of a two-dimensional hydraulic fracture. 

Lie Point Symmetries 

The form of the Lie point symmetry generator of the nonlinear diffusion equa-
tion (2.37) is 

( ) ( ) ( )1 2, , , , , , ,X t x h t x h t x h
t x h

ξ ξ η∂ ∂ ∂
= + +

∂ ∂ ∂
          (3.1) 

which satisfies the determining equation 
[ ] ( )( ) ( )2 1 3 2 2

(2.37)
2 0,n n n n

t n x n xxX h K nh n h h K h h hφ φ− − − − + − − + =    (3.2) 

where the subscripts t and x denote partial differentiation with respect to t and x 
and 

[ ]2
1 2 11 12 22

t x tt tx xx

X X
h h h h h

ζ ζ ζ ζ ζ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂
       (3.3) 

is the second prolongation of the generator X with [28] 

( ) ( ) , 1, 2,k
i i k iD h D iζ η ξ= − =                  (3.4) 

( ) ( ) , , 1, 2.k
ij j i ik jD h D i jζ ζ ξ= − =                (3.5) 
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There is summation over the repeated index k from 1 to 2 and 

1 ,t t tt xt
t x

D D h h h
t h h h
∂ ∂ ∂ ∂

= = + + + +
∂ ∂ ∂ ∂

             (3.6) 

2 .x x tx xx
t x

D D h h h
x h h h
∂ ∂ ∂ ∂

= = + + + +
∂ ∂ ∂ ∂

            (3.7) 

We find that the Lie point symmetry generator X for the non-linear diffusion 
Equation (2.37) with 0n >  and 0φ >  is 

( ) 2
1 2 3 1 1 2 2 3 3, ,

2
cX c c t c x c X c X c X

t x
∂ ∂ = + + + = + + ∂ ∂ 

       (3.8) 

where 

1 2 3, , ,
2
xX X t X

t t x x
∂ ∂ ∂ ∂

= = + =
∂ ∂ ∂ ∂  

and 1 2 3, ,c c c  are constants. We found that the coefficient ( ), , 0t x hη = . This is 
the first significant consequence of the from (2.24) for the diffusion coefficient. 

The group invariant solution, h = Ψ , of the partial differential Equation 
(2.37) satisfies the condition 

( )( ), 0,
h

X h t x
=Ψ

−Ψ =                     (3.9) 

which expands to the first order partial differential equation 

( )1 2 3 2
1 0.
2

c c t c c x
t x

∂Ψ ∂Ψ + + + = ∂ ∂ 
              (3.10) 

Consider the general case for which 2 0c ≠ . By solving the differential equa-
tions of the characteristic curves of (3.10) the general solution is readily derived 
and since ( ),h t x= Ψ  we obtain 

( ) ( ), ,h t x F ξ=                       (3.11) 

where ( )F ξ  is an arbitrary function of the similarity variable ξ  given by 

3

2
1
2

1

2

2
.

c x
c

c t
c

ξ
+

=
 

+ 
 

                      (3.12) 

Unlike the group invariant solution for the linear fracture law, ( ),h t x  de-
pends only on the similarity variable ξ  and does not depend on an arbitrary 
parameter. Substituting the solution (3.11) and (3.12) into (2.37) reduces the 
second order partial differential equation to a second order ordinary differential 
equation for ( )F ξ : 

( ) ( )( )2d d d2 0.
d d d

n n
n

F FK F Fξ φ ξ ξ
ξ ξ ξ

− 
+ + = 

 
          (3.13) 

Since the constant 3c  does not appear in the ordinary differential Equation 
(3.13) we choose 3 0c =  so that 0ξ =  when 0x = . Thus 
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1
2

1

2

.x

c t
c

ξ =
 

+ 
 

                      (3.14) 

Consider next the boundary conditions. At the fracture tip the half-width of 
the fracture vanishes and (2.38) is satisfied. Expressed in terms of the group in-
variant solution (3.11), (2.38) becomes 

( )( ) 0F w t =                        (3.15) 

where 

( ) ( )
1
2

1

2

.
L t

w t
c t
c

=
 

+ 
 

                     (3.16) 

Differentiating (3.15) with respect to “t” gives 

d d 0.
d d
F w
w t

=                        (3.17) 

We consider the general case for which ( )F w  is not a constant function. It 
follows that d d 0F w ≠  and therefore 

d 0,
d
w
t
=                          (3.18) 

which implies that 

( ) ,ow t w=                         (3.19) 

where ow  is a constant. It follows that 

( )
1
2

1

2

,o

L t
w

c t
c

=
 

+ 
 

                      (3.20) 

which can be written as 

( )
1 1
2 2

1 2

2 1

1 ,o
c cL t w t
c c

   
= +   

   
                 (3.21) 

where we have assumed that 1 0c ≠ . Since the characteristic length of the frac-
ture is the initial length of the fracture, ( )0 1L =  and therefore 

1
2

1

2

1.o
cw
c

 
= 

 
                       (3.22) 

Thus 

( )
1
2

2

1

1
cL t t
c

 
= + 
 

                     (3.23) 

and the boundary condition at the fracture tip (3.15) becomes 
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1
2

2

1

0.
cF
c

 
   =    
 

                      (3.24) 

Expressed in terms of ( )F ξ  the boundary condition (2.39) becomes 

( ) ( )( ) 1
22

1

2 d 0,
d

n n

c
c

FF F
ξ

ξ φ ξ
ξ

−

 
= 
 

+ =               (3.25) 

and the condition (2.41) becomes 

( )0 .F β=                         (3.26) 

Writing the source boundary condition (2.40) in terms of the group invariant 
solution (3.11) gives 

( ) ( ) ( )( ) ( )
1 1
2 2

22 2

1 1

d2 0 0 0 1 .
d

n n
n

c cFS t K F F t
c c

φ
ξ

−

−   
= − + +   

   
    (3.27) 

Thus 

( )
1
2

2

1

1
cS t A t
c

−
 

= + 
 

                    (3.28) 

where 

( ) ( )( ) ( )
1
2

22

1

d2 0 0 0 .
d

n n
n

c FA K F F
c

φ
ξ

− 
= − + 

 
          (3.29) 

We see that the time dependence of fluid flux into the fracture at the entry, 
( )S t , cannot be prescribed arbitrarily but must be of the form (3.28) determined 

by the invariant solution. The constants A and 2 1c c  are prescribed if no re-
strictions are placed on them by the invariant numerical solution. It follows 
from (3.26) and (3.29) that 

( )
1
2

1
2

2

d 10 .
d 2 n n

n

cF A
K cξ β φβ −

 
= −  

+ 
              (3.30) 

Since β  and φ  are prescribed, (3.30) is a boundary condition on d dF ξ  
at 0ξ = . Expressed in terms of ( )F ξ , the dimensionless fluid variables (2.42) 
to (2.45) become 

( ) ( ) ( ) ( )( )
1
2

22

1

2 d, ,
d

n nnK c FQ t x F F
L t c

ξ φ ξ
ξ

− 
= − + 

 
         (3.31) 

( ) ( ) ( ) ( )( )
1
2

1 32

1

d, ,
d

n nn
x

K c Fv t x F F
L t c

ξ φ ξ
ξ

− − 
= − + 

 
        (3.32) 

( ) ( ) ( )
1, 1 ,P t x F

F
ξ φ

ξ
 

= − −  
 

                (3.33) 
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( ) ( ) ( )
1
22

1

1
2

1
0

2

2 d .
c
c

cV t L t F
c

ξ ξ
 
 
 

 
=  

 
∫               (3.34) 

We simplify the formulation by transforming from variables ξ  and ( )F ξ  
to variables u and ( )f u  where 

( ) ( ) ( )
1 1
2

1 1

2 2

, .
nc cxu f u F

c L t c
ξ ξ

   
= = =   
   

           (3.35) 

We also define 

1

2

.
cB
c

=                          (3.36) 

The boundary value problem transforms to the ordinary differential equation 

( ) ( )
2

2d d d2 0,
d d d

n nn
n

f fK f u B f u u
u u u

φ −
  

+ + =      
         (3.37) 

subject to the boundary conditions 

( )
1

0 , 0 1,nf Bβ β= < <                   (3.38) 

( )
1

2

d 0 ,
d 2 1

n

n
n

f B A
u K φβ

β

= −
+

                  (3.39) 

( )1 0,f =                         (3.40) 

( ) ( )
2

2

1

d 0,
d

n nn

u

ff u B f u
u

φ −

=

 
+ =  

 
              (3.41) 

where the fluid flux source at the fracture entry is 

( )
1
2

1 .tS t A
B

−
 = + 
 

                    (3.42) 

The remaining physical variables become 

( )
1
2

1 ,tL t
B

 = + 
 

                     (3.43) 

( ) ( )
1

, ,nh t u B f u
−

=                     (3.44) 

( ) ( ) ( ) ( )
2

2
1

2 1 d, ,
d

n nn n
n

n

K fQ t u f u B f u
L t u

B
φ −

+

 
= − + 

 
        (3.45) 

( ) ( ) ( ) ( )
2

1 31 d, ,
d

n nn n
x

K fv t u f u B f u
B L t u

φ− − 
= − + 

 
        (3.46) 

( ) ( ) ( )

1 1 11, ,n n nP t u B f u B B
f u

φ
− − 

= − −  
 

           (3.47) 
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( ) ( ) ( )
1

1

0
2 d .nV t B L t f u u

−
= ∫                  (3.48) 

The Lie point symmetry which generates the invariant solution is 

( ) 1 .
2

X B t x
t x
∂ ∂

= + +
∂ ∂

                   (3.49) 

The physical significance of the source (3.42) is that the fluid pressure remains 
constant at the fracture entry for all time 0t ≥ . From (3.47) and the boundary 
condition (3.38), 

( ) 1,0 1 , 0.P t tβ φ
β

 
= − − ≥ 

 
                (3.50) 

From (3.44) and (3.38), it is clear that the half-width of the fracture also re-
mains constant at the fracture entry for all time 0t ≥ : 

( ),0 , 0.h t tβ= ≥                      (3.51) 

4. Asymptotic Solution 

We now derive the asymptotic solution of the ordinary differential Equation 
(3.37) in an ε-neighbourhood of the fracture tip where 1ε  . This asymptotic 
solution will be used in the numerical solution to offset the boundary condition 
at the fracture tip from 1u =  to 1u δ= − , in order to avoid singularities at the 
fracture tip ( 1u = ) [14] [15]. 

We consider an asymptotic solution of the form 

( ) ( )1 , as 1,pf u C u u− →                  (4.1) 

where p and C are constants to be determined with 0p >  to satisfy the boun-
dary condition ( )1 0f =  and 0C >  since ( ) 0f u >  for 0 1u≤ < . While the 
resulting asymptotic solution is expected to satisfy the boundary condition at the 
fracture tip, (3.40), it is not expected to satisfy the boundary conditions at the 
fracture entry. 

Substituting (4.1) into the ordinary differential Equation (3.37) and dividing 
the result by Cp gives: 

( ) ( )( )

( ) ( )( )

( ) ( )

1 2

2
1 22

1

2 1 1 1

2 1 1 1

1 1 0, 1.

n pn
n

n pn n
n

p p

K C n p u

K C B n p u

u u u

φ

+ −

− −−

−

+ − −  

+ − − −  

+ − − − →

            (4.2) 

The dominant terms as 1u →  are the terms with the smallest values for the 
exponent of ( )1 u− . To obtain an asymptotic solution these terms must balance 
and the remaining terms must vanish as 1u → . The dominant terms in (4.2) 
are the second and the fourth terms with exponents ( )1 2n p− −  and 1p − , 
respectively. Equating these exponents gives 

1 , 2.
2

p n
n

= ≠
−

                      (4.3) 
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The special case of 2n =  will be examined later. For 0p >  we require 
2n > . Equating coefficients of the second and fourth terms gives 

1
2

2

2 ,
2

n

n
n

nC
K Bφ

− 
− =  

  

                     (4.4) 

and Equation (4.2) reduces to 

( ) ( )
5 1

2 2
6

1 1 0, 1,
2

n n
n n n

K C
u u u

n

−
− −− + − →

−


            (4.5) 

for 2n > . The second term will vanish as 1u →  since 2n >  but the first 
term will vanish only if 2 5n< < . It follows that the asymptotic solution for the 
ordinary differential Equation (3.37) is 

( ) ( )

1
2

1
2

2

22 5 : 1 , 1.
2

n

n

n
n

nn f u u u
K Bφ

−

−

 
− < < − → 

  

         (4.6) 

The asymptotic behaviour close to the fracture tip described by (4.6) is valid 
for all solutions of the hyperbolic hydraulic fracture described in this work. Since 

( ) ( )

( ) ( )

2
2

2
1 3 1

2 2
2

d
d

1 1 as 1,
2

n nn

n n
n n

ff u B f u
u

C Bu u u
n C

φ

φ

−

+

− −

 
+  

 
 
 − − + − → −
  



         (4.7) 

it follows that the boundary condition (3.41) at the fracture tip, 1u = , is identi-
cally satisfied. 

Consider now the special case of 2n = . When 2n = , (4.2) becomes 

[ ]( ) [ ]( )
( ) ( )

3 2 22
2 2

1

2 3 1 1 2 1 1

1 1 0, 1.

p p

p p

K C p u K B p u

u u u

φ− −

−

− − + − −

+ − − − →

         (4.8) 

The second term can no longer be balanced with the fourth term and it cannot 
be balanced with the first term for 0p > . We balance the first term with the 
fourth term to give 1 2p = . Equation (4.8) becomes 

( ) ( ) ( ) ( )
1 3 1 1

2 2 2 2 22 21 1 1 1 0, 1.K C u K B u u u uφ− − −− − − + − − − →    (4.9) 

Since we are considering 0B ≠ , condition (4.9) requires 

2

10, .C
K

φ = =                      (4.10) 

Thus we have the result 

( ) ( )
1
2

2

12 : 0, 1 as 1.n f u u u
K

φ= = − →         (4.11) 

which is the asymptotic solution for the linear crack law with 2n =  [14]. 
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Since the asymptotic solution for the hyperbolic crack law exists only for 
2 5n< <  we conjecture that the solution of the boundary value problem, (3.37) 
to (3.41), exists only for 2 5n< < . This conjecture will be investigated further 
when the numerical solution is derived in Section 5. 

Consider now the behaviour of d df u  as 1u → . From (4.6) for 2 5n< < , 

( ) ( )

1
2

3
2

2

d 1 2 1 as 1,
d 2

2

n
n

n

n
n

f nu u u
u n

K Bφ

−
−
−

 
− − − → −

  


       (4.12) 

and therefore 

2
3

3

0, 2 3,
d 1 , 3, as 1.
d

2
, 3 5,

n
f n u
u

K B
n

φ


< <

= − = →


−∞ < <

           (4.13) 

The asymptotic results, (4.6) and (4.13), will be used in the numerical solution 
in Section 5 to offset the boundary condition at 1u =  to 1u δ= −  where 
0 1δ<  . 

Since ( )u x L t=  the half-width of the fracture (3.44), with ( )f u  given by 
(4.6), is 

( ) ( )

1
12

1 2

2

2, 1 ,
2

n
n

n

n
n

n xh t x B
L t

K Bφ

−
−−

 
 −  −    
   

            (4.14) 

as ( )x L t→ , provided 2 5n< < . Differentiating (4.14) with respect to x and 
evaluating the limit of the result as ( )x L t→  gives 

( ) ( )

0, 2 3,
1 1 , 3, as .

2
, 3 5,

n

n
h n x L t
x K B L t

n
φ

 < <


∂ = − = →
∂ 

−∞ < <

        (4.15) 

It is clear that the spatial gradient of the half-width of a two-dimensional 
hyperbolic model fracture is singular at ( )x L t=  for 3 5n< <  and the thin 
fluid film approximation breaks down at the fracture tip. However, we see that 
for the hyperbolic crack law, the spatial gradient of the half-width at the fracture 
tip is not singular for 2 3n< ≤ . In the elasticity problem for an infinite body 
with a plane cut subject to symmetric loads Barenblatt describes similar beha-
viour near the cut tip [29]. 

5. Numerical Solution 

In this Section, we present the numerical solution for the boundary value prob-
lem (3.37) to (3.42). The boundary value problem is solved with the backward 
shooting method from the neigbourhood of the fracture tip, 1u δ= −  where 
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1δ  , to the fracture entry, 0u = . Formulating a numerical scheme so that its 
step-size is adjusted according to the behaviour of the solution and the resulting 
truncating error in each step can greatly improve the accuracy of numerical so-
lutions [30]. The boundary value problem presented in this work was solved us-
ing the Matlab ode45 solver, which applies to the problem the Runge Kutta me-
thod of order 4 and 5 with adaptive step-size [31]. A brief algorithm that shows 
how the problem is solved is provided below: 

1) Specify parameters ( ), , ,nK nβ φ , 
2) Choose an initial guess for the shooting parameter B, 
3) Solve the ODE (3.37) subject to the initial conditions ( )1asympf δ−  and 

1

d
d
asymp

u

f
u

δ= −

, 

4) While ( ) ( )0 0N Tf f tol− >  
Adjust B using the bisection method 
Solve the ODE (37) subject to the initial conditions ( )1asympf δ−  and 

1

d
d
asymp

u

f
u

δ= −

, 

end 
where ( )asympf u  is the asymptotic solution (4.6), ( )d dasympf u u  is its deriva-
tive (4.12), 0 1δ<  , ( )Nf u  is the numerical solution obtained, ( )Tf u  is 
the moving target (3.38) due to the changing parameter B and the tolerance 
within which a solution is accepted is 310tol −= . 

From steps 1 and 2 of the algorithm, it is clear that all parameters in the prob-
lem are specified. We fix 1nK =  for all values of n although nK  depends on n. 
We consider analysis of partially open fractures, therefore we choose the para-
meter β  in the range [ )0;1β ∈ . We expect the pressure difference at the 
fracture entry, ( ),0P t , given by Equation (3.50) to be positive, therefore 

2

.
1
βφ
β

<
−

                         (5.1) 

We let 
2

,
1
βφ γ
β

= −
−

                        (5.2) 

where ( )2 1γ β β< − . A random initial guess of the shooting parameter 0B >  
is made. 

In steps 3 and 4 of the algorithm the second order ODE is written as the sys-
tem of two first order ordinary differential equations. 

( )1
2

d
,

d
f f u
u
=                         (5.3) 

( )
2 2

22 2 2
1 22 2

12 1
1

d 1 2
d 2

n
n

nn

f f fu nf f n B
u K ff

f B
φ

φ
−

 
= − + + − 

 +
       (5.4) 
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where ( ) ( )1f u f u= . The boundary value problem is solved as an initial value 
problem by shooting a solution from the fracture tip to the fracture entry. The 
differential Equations (5.3) and (5.4) however have singularities at the fracture 
tip. We use (4.6) and (4.12) for ( )1f u  and ( )2f u  as 1u → . From (4.13) we 
see that (4.12) is singular at 1u =  for 3 5n< < . Thus (5.3) is singular at 1u =  
for 3 5n< < . Also in (5.4) we find that 

( )
( )

( )
5 2

2 2
2

1

1 as 1,
n

n
n

f u
u u

f u

−
−

− − →                (5.5) 

which is singular at 1u =  for 2.5 5n< < , 

( ) ( ) ( )
7 2

2 21 2 1 as 1,
n

nf u f u u u
−
−− →               (5.6) 

which is singular at 1u =  for 3.5 5n< <  and 

( )
( ) ( )

2 5 2
2 2

1

1 as 1,
n

n
f u

u u
f u

−
−− →

                (5.7) 

which is singular at 1u =  for 2.5 5n< < . It follows that the system of equa-
tions (5.3) and (5.4) is singular for 2.5 5n< <  as 1u → . While there are no 
singularities in 1d df f  and 2d df f  for 2 2.5n< ≤ , the algorithm is unable 
to solve the problem when the initial condition ( )1 1 0f =  is used in the entire 
range 2 5n< < . We therefore offset the boundary conditions at the fracture tip 
from 1u =  to 1u δ= −  for the entire range 2 5n< < . Therefore the system 
of Equations (5.3) and (5.4) is solved by shooting a solution from 1u δ= − , 
where 0 1δ<  , to the fracture entry. The initial conditions on ( )1f u  and 

( )2f u  are evaluated at 1u δ= −  using (4.6) and (4.12): 

( )

1
2

1
2

1 2

21 ,
2

n

n

n
n

nf
K B

δ δ
φ

−

−

 
− − =  

  

                 (5.8) 

( )

1
2

3
2

2 2

1 21 .
2

2

n
n

n

n
n

nf
n

K B
δ δ

φ

−
−
−

 
− − = −  −

  

              (5.9) 

The shooting method is applied iteratively, with the parameter B updated at 
each iteration by the bisection method, until the boundary condition at the frac-
ture entry (3.38), 

( )
1

1 0 ,nf Bβ=                        (5.10) 

is satisfied. The boundary condition (3.41) is identically satisfied while the value 
of the constant A in the source flux of fluid at the entry (3.42) can now be de-
termined from the boundary condition (3.39), 

( )
1

2

2

0 .
2 1

n

n
n

B Af
K φβ

β

= −
 
+ 

 

                 (5.11) 
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The numerical solution for ( )f u , obtained from solving the boundary value 
problem (3.37) to (3.42), is substituted into equations (3.43) to (3.48) which give 
the properties of the fracture as well as the behaviour of the fluid inside the frac-
ture. 

We now analyze the half-width of the model fracture ( ),h t x . Figure 2 shows 
the half-width ( ),h t x  of a partially open model fracture plotted against x for a 
range of dimensionless times and for 4n = , 3n =  and 2.5n = . From (3.50) a 
tortuous fracture with the hyperbolic crack law admits only one working condi-
tion of constant pressure difference at the fracture entry. Since the far-field 
compressive stress ( )

zzσ ∞−  is also constant this implies for the hyperbolic frac-
ture the pressure of fluid injection at the fracture entry, ( ),0p t , is constant. 
Due to the PKN approximation the half-width of the model fracture is also con-
stant for 0t ≥  at the fracture entry and is given by (3.51). This is clearly shown 
in Figure 2 where 0.5β = . Both the half-width ( ),h t x  for 0x >  and the 
length ( )L t  of the model fracture grow as time increases resulting in the vo-
lume of the model fracture per unit breadth, ( )V t , which from (2.45) is the area 
under the half-width curve, growing with increasing time t. 

The behaviour of 
h
x
∂
∂

 at the fracture tip given by (4.15) is clearly illustrated 

in Figure 2. The chosen values, 4n = , 3n =  and 2.5n = , lie in the ranges 

3 5n< < , 3n =  and 2 3n< <  and we see that 
h
x
∂
∂

 is negative infinity, finite 

and zero at the tip. 
The length, ( )L t , of a partially open fracture is plotted against time for a 

range of values of β  in Figure 3 and for a range of values of φ  in Figure 4. 
The parameter β  describes the extent to which the fracture si partially open 
while φ  compares the contribution of the pressure due to the contact regions 
with the pressure due to the fluid in the fracture. From Figure 3 we observe that 
for a prescribed value of φ  as the value of β  increases, the fracture becomes 
longer. From Figure 3 and Figure 4 it is clear that for fixed values of β  and 
φ , tortuosity increases, that is as n decreases from 5 to 2, the length of the model 
fracture increases. We also see from Figure 4 that there is less change in the 
length due to change in φ  as the tortuosity increases. 

The numerical solution of the boundary value problem (3.37) to (3.42) was 
obtained for a range of values of β , φ  and n with the diffusion constant pre-
scribed as 1nK = . The values obtained by the shooting method for A and B in 
the source flux of fluid at the entry, (3.42), are presented in Table 1. We see 
from Table 1 that as n decreases, that is as tortuosity increases, for fixed values 
of β  and φ , the constant A increases. Thus a stronger fluid flux at the fracture 
entry, ( )S t , is required to propagate a very tortuous fracture. From (3.43), the 
speed of propagation of the fracture is 

1
2d 1 1 .

d 2
L t
t B B

−
 = + 
 

                    (5.12) 
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(a) 

 
(b) 

 
(c) 

Figure 2. Numerical solution for the half-width ( ),h t x  of a partially open model frac-

ture, 0.5β =  with 0.45φ = , plotted against x with the diffusion constant 1nK =  and 
for increasing values of time t with (a) 4n = , (b) 3n = , (c) 2.5n = . 
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(a) 

 
(b) 

 
(c) 

Figure 3. Numerical solution of the length ( )L t  of a partially open model fracture 

plotted against time t for 0.5β = , 0.5β = , 0.7β = , with 0.45φ = , diffusion constant 
1nK =  and (a) 4n = , (b) 3n = , (c) 2.5n = . 
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(a) 

 
(b) 

 
(c) 

Figure 4. Numerical solution of the length of the fracture ( )L t  of a partially open mod-

el fracture plotted against time t for 0.1φ = , 0.3φ = , 0.45φ = , with 0.5β = , diffusion 
constant 1nK =  and (a) 4n = , (b) 3n = , (c) 2.5n = . 
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It is clear that the constant B determines the magnitude of the speed of prop-
agation of the fracture. From Table 1, for fixed values of β  and φ , the con-
stant B decreases as n decreases. Thus the speed of propagation of the fracture 
increases as tortuosity of the fracture increases. This agrees with Figure 3 in 
which ( )L t  is plotted against time t for a range of values of n, β  and φ . 

We also see from Table 1 that for fixed values of n and φ , A decreases as β  
decreases and therefore the flux of fluid at the entry is weaker when the width of 
the partially open fracture is smaller. For fixed values of n and φ , the constant B 
increases as β  decreases and therefore the speed of propagation of the fracture 
decreases for partially open fractures of smaller width, in agreement with Figure 
3. For fixed values of β  and n, A decreases as φ  decreases and therefore the 
fluid flux at the entry is weaker as the pressure ratio φ  decreases, consistent 
with Figure 5. Also for fixed values of β  and n, B increases as φ  decreases 
and therefore the speed of propagation of the fracture decreases as φ  decreases, 
consistent with Figure 4 for ( )L t . 

6. Width Averaged Fluid Velocity 

The ratio of the width averaged fluid velocity, xv , given by (3.46) to the speed of 
propagation of the fracture tip, 

( )

1
2d 1 11

d 2 2
L t
t B B BL t

−
 = + = 
 

                 (6.1) 

is 

( ) ( ) ( )
2

2 3, d2 .
d d d
x nn

n

v t u fK f u B f u
L t u

φ − 
= − +  

 
           (6.2) 

Using the asymptotic solutions (4.6) for ( )f u  and (4.12) for d df u  it can 
be verified that 

( )
1

,
1.

d d
x

u

v t u
L t

=

=                        (6.3) 

The width averaged fluid velocity therefore tends to the speed of propagation 
of the fracture tip as 1u → . Using the boundary conditions (3.38) and (3.39) 
for ( )f u  and d df u  at 0u =  we find that 

( )
0

,
.

d d
x

u

v t u AB
L t β

=

=                       (6.4) 

The curves of the width averaged fluid velocity ratio (6.2) plotted against u for 
0 1u≤ ≤  therefore have end points ( )0, AB β  at 0u =  and ( )1,1  at 1u = . 

In Figure 6, the velocity ratio curves (6.2) for a partially open fracture with 
0.5β =  and 0.1φ = , 0.3φ =  and 0.45φ =  respectively are plotted against u 

for 0 1u≤ ≤ , with the diffusion constant 1nK =  and for 4n = , 3n =  and 
2.5n = . The curves all pass through the point ( )1,1 . In Figure 6(c) for example, 

the end points at 0u =  for 0.1φ = , 0.3φ =  and 0.45φ =  are ( )0,0.5215 ,  
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Table 1. Numerical values of the parameters A and B in the source fluid flux at the frac-
ture entry for 1nK = . 

β  φ  n B A 

0.8 0.45 4 1.7524155 0.3382427 

  3 0.7457847 0.6639012 

  2.5 0.3446199 1.1274453 

 0.3 4 2.1924066 0.2747763 

  3 0.9751294 0.5241175 

  2.5 0.4718509 0.8657264 

 0.1 4 3.3093487 0.1896503 

  3 1.6608827 0.3350720 

  2.5 0.9358009 0.5065146 

0.7 0.45 4 2.5249437 0.2033224 

  3 0.9158396 0.4640380 

  2.5 0.3858645 0.8557741 

 0.3 4 3.2416202 0.1608757 

  3 1.2248475 0.3574608 

  2.5 0.5373179 0.6431685 

 0.1 4 5.232208 0.1039973 

  3 2.2368087 0.2135911 

  2.5 1.1350877 0.3528244 

0.6 0.45 4 3.7748033 0.1153083 

  3 1.1425685 0.3125406 

  2.5 0.4347681 0.6322624 

 0.3 4 4.9836486 0.0886191 

  3 1.5638223 0.2345268 

  2.5 0.6154305 0.4646207 

 0.1 4 8.7201325 0.0528904 

  3 3.0883509 0.1294658 

  2.5 1.3881294 0.2369838 

0.5 0.45 4 5.9303334 0.0604784 

  3 1.4569595 0.2002305 

  2.5 0.4944704 0.4503109 

 0.3 4 8.0619832 0.0450536 

  3 2.0402673 0.1462163 

  2.5 0.7108442 0.3234142 

 0.1 4 15.5130715 0.0244254 

  3 4.3911641 0.0736826 

  2.5 1.7140647 0.1521199 
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(a) 

 
(b) 

 
(c) 

Figure 5. Numerical solution of the source fluid flux ( )S t  at the entry of a partially 

open model fracture plotted against time t for 0.7β = , diffusion constant 1nK =  and 
(a) 4n = , (b) 3n = , (c) 2.5n = . 
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(a) 

 
(b) 

 
(c) 

Figure 6. Velocity ratio curves ( ) ( ), d dxv t u L t  of a partially open model fracture, 

0.5β = , plotted against u with the diffusion constant 1nK =  and for parameter values 
0.1φ = , 0.3φ =  and 0.45φ =  respectively with (a) 4n = , (b) 3n = , (c) 2.5n = . 
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( )0,0.4422  and ( )0,0.4272  respectively and are in good agreement with the 
exact result ( )0, AB β  which, with the aid of Table 1, gives ( )0,0.5215 , 
( )0,0.4598  and ( )0,0.4453 . We see from Figure 6 that the velocity ratio de-
creases as φ  increases, that is, as the effect of the pressure due to the contact 
regions increases. The effect of touching asperities is therefore to decrease the 
width averaged fluid velocity along the length of the tortuous fracture. We also  

see from Figure 6 that the velocity ratio ( ) d,
dx
Lv t u
t

 increases approximately  

linearly with u along the fracture for the values of the parameters considered. 
The linear approximation is best for 4n =  and less applicable as n decreases 
and the fracture becomes more tortuous. 

In order to derive approximate analytical solutions we will make the approx-

imation that the variation of d
dx
Lv
t

 along the fracture is linear in u for  

0 1u≤ ≤  [10] [14] [15]. In the approximate solution, we will replace ( )f u , A 
and B by ( )f̂ u , Â  and B̂ . By using the equation of the straight line between 
the points ( )ˆ ˆ0, AB β  and ( )1,1  and using Equation (6.2) we obtain 

( ) ( )
2

2 3
ˆ ˆ ˆˆ ˆdˆ ˆˆ2 1 ,

d
nn

n
f AB ABK f u B f u u
u

φ
β β

−   
− + = − +     

   
        (6.5) 

for 2 5n< < . Equation (6.5) is a first order ordinary differential equation for 
( )f̂ u  subject to the boundary conditions 

( )
1

ˆ ˆ0 ,nf Bβ=                         (6.6) 

( ) ( )

1

2 2

ˆ ˆˆd 0 ,
d 2

n

n
n

f B A
u K β β φ−

= −
+

                 (6.7) 

( )ˆ 1 0.f =                          (6.8) 

By using the differential Equation (6.5) and boundary condition (6.6) we see 
that the boundary condition (6.7) is identically satisfied. Integrating the ordinary 
differential Equation (6.5) gives 

( ) ( )
2

2
2

ˆˆˆ ˆ ˆˆ ˆ12 1 ,
2 2

nn n

n

B f uf AB ABK u u u C
n n

φ
β β

− 
  − + = − + +    −   

 

      (6.9) 

where C is an integration constant. Applying the boundary condition (6.8) gives 
ˆ ˆ1 1

2
ABC
β

 
= − +  

 
                     (6.10) 

and therefore 

( ) ( ) ( ) ( ) ( )
2

2
ˆ ˆˆ ˆ4 ˆ ˆˆ2 1 1 1 .

2
n nn nK AB ABn f u B f u u u

n n
φ

β β
−

   
− + = − − + +     −      

  (6.11) 

Finally, imposing the boundary condition (6.6) on (6.11) gives a relation be-
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tween Â  and B̂  for prescribed values of n, φ , β  and nK : 

( ) ( )
1

24ˆ 2 .ˆ 2

n
nK

A n n
n nB

ββ β φ
−

 + = − + −
              (6.12) 

Equation (6.12) can be re-expressed as 

( )ˆ , , , ,ˆ nA E n K
B
β β φ+ =                    (6.13) 

where 

( ) ( ) ( )
1

24
, , , 2 .

2

n
n

n
K

E n K n n
n n

β
β φ β φ

−

 = − + −
           (6.14) 

If B̂  is prescribed then 

ˆ .ˆA E
B
β

= −                         (6.15) 

The graph of Â  against B̂  is illustrated in Figure 7(a). We see that Â E<  
and that for ˆ 0A > , which from (3.42) describes fluid flux into the fracture at the 

entry ( 0u = ), then it is necessary that B̂
E
β

> . If Â  is prescribed then 

ˆ .ˆB
E A
β

=
−

                       (6.16) 

The graph of B̂  against Â  is illustrated in Figure 7(b). The inequalities 

Â E<  and B̂
E
β

>  are again apparent. 

From (6.11) 

( ) ( )

( ) ( ) ( )

2

2
1 3

ˆ ˆ ˆˆ ˆ ˆ21 1
2ˆ ,

4 ˆ ˆˆ2n n nn

AB AB ABu u
n n

f u
K

n f u n B f u

β β β

φ− −

    
− − − + +       −     =  
 − +
  

      (6.17) 

where 2 5n< <  and 0 1u≤ ≤ . Equation (6.17) is implicit because ( )f̂ u  ap-
pears on both sides. Therefore in order to find the approximate analytical solu-
tion ( )f̂ u , a numerical method is required in which (6.17) is iterated until 
convergence is reached. In (6.17) the numerator has the factor ( )1 u−  and the 
denominator has the factor ( )3nf u− . However, the iterative method used to 
solve for ( )f̂ u  requires that the iterated function (6.17) is neither factorised 
nor a power law. The parameters n, nK , β  and φ  are prescribed. Unlike the 
numerical solution, either Â  or B̂  can be prescribed. If Â  is prescribed 
then B̂  is obtained from (6.16) while if B̂  is prescribed then Â  is obtained 
from (6.15). In this work we prescribe B̂  and therefore the expression ˆ ˆAB β  
appearing in (6.17) is 

( ) ˆˆ ˆ , , ,
1.nE n K BAB β φ

β β
= −                  (6.18) 
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For 2.5n = , 0.5β = , 0.45φ =  and 1nK =  we found that if we let  

 
(a) 

 
(b) 

Figure 7. Graphs of parameters Â  and B̂  of the approximate analytical solution with 
2.5n = , 0.5β = , 0.45φ =  and 1nK = : (a) Graph of Â  against B̂ , (b) Graph of B̂  

against Â . 
 

ˆ 0.49447B B= =  then the approximate analytical value ˆ 0.403031A =  is in 
reasonable agreement with the numerical value 0.450311A =  since the frac-
ture is very tortuous with 2.5n = . 

In order to solve for the approximate analytical solution ( )f̂ u  we use a 
non-orthogonal linesearch method described in [32]. We define the function 
(6.17), with the aid of (6.18), as 

( ) ( )

( ) ( ) ( )

2

2
1 3

ˆˆ ˆ ˆ22
2ˆ .

4 ˆ ˆˆ2n n nn

EB AB EBu u
n n

H f
K

n f u n B f u

β β β

φ− −

  
− − − +  

−   =  
 − +
  

       (6.19) 
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We then consider two coordinates, ( )1 1
ˆ ˆ,i if f+ +  and ( )( )ˆ ˆ,i if H f , with which 

to calculate a gradient m: 

( )1

1

ˆ ˆ
.ˆ ˆ

i i

i i

f H f
m

f f
+

+

−
=

−
                     (6.20) 

We re-express (6.20) to give 1îf + : 

( )
1

ˆ ˆ
ˆ , 1, , ,

1
i i

i

mf H f
f i k

m+

−
= =

−
                (6.21) 

where k is a constant. Therefore in order to find the approximate analytical solu-
tion ( )f̂ u  we proceed as follows: 

1) Choose a value of m. 
2) Let the first guess for 1̂f  be a vector given by the asymptotic solution (4.6). 
3) Iterate with each solution for 1îf +  used as îf  in the next iteration, 
4) The iteration is continued until convergence is reached at the kth step where 

the solution 1
ˆ ˆ
i if f+ = . 

We choose 1m = −  which in a few iterations gives an approximate analytical 
solution ( )ˆ ˆf u . The gradient m is required to be negative because the spatial 
gradient of the upper half-width of the fracture is negative. 

For a very tortuous partially open fracture with 2 3n< ≤  we found that 
more iterations are required to obtain the approximate analytical solution for the 
half-width than for a less tortuous fracture with 3 5n< < . The computational 
time required to find the approximate analytical solution for the half-width of a 
partially open fracture with 0.5β = , and 0.45φ =  is approximately 0.7 
seconds. Figure 8 shows that the graphs of the approximate analytical solution 
for the half-width approximately overlap the graphs of the numerical solution. 
We found that the approximate analytical solution is a better approximation for 

3n ≥  than for 2 3n< ≤ . We also observe from Table 2 that with a specified 
value of ˆB B=  the parameter A obtained by the numerical method and the 
parameter Â  obtained from Equation (6.15) are very closely matched with an 
error below 6% for 3n ≥  and an increased error below 13% for 2 3n< < . 
This is in agreement with Figure 6 in which the approximation that the curves 
are linear is clearly better for the less tortuous fracture with 4n =  and 3n =  
than for the more tortuous fracture with 2.5n = . Results of the approximate 
analytical solution and the numerical solution are in good agreement as ob-
served both in Figure 8 and in Table 2. In the absence of an exact analytical so-
lution, it is clear that the approximate analytical solution is a reasonable alterna-
tive. 

7. Conclusions 

There are several novel features in this investigation. In the mathematical mod-
elling of the tortuous hydraulic fracture, the hyperbolic crack law was used with 
the PKN approximation. Previous research [2] with the hyperbolic crack law 
used the elasticity model with the Cautchy principal value integral (2.5) for the 
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stress in a two-sided fracture which has the advantage that the stress intensity  

 
(a) 

 
(b) 

 
(c) 

Figure 8. Numerical solution ( ) and approximate analytical solution ( ) 
for the half-width of a partially open model fracture, 0.5β = , plotted against x with 
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diffusion constant 1nK =  and for 0.45φ = , with (a) 4n = , (b) 3n = , (c) 2.5n = . 
 

Table 2. Numerical values A compared to approximate analytical values Â  for ˆB B=  
with 1nK = , and various values of β  and φ . 

β  φ  n ˆB B=  A Â  
Absolute error 

Â A−  

Relative error 

( )Â A A −   

0.5 0.45 4 5.930333 0.060478 0.0594377 0.001041 1.72% 

  3 1.45696 0.20023 0.1901529 0.010078 5.03% 

  2.5 0.49447 0.450311 0.4030306 0.04728 10.499% 

 0.3 4 8.061983 0.045054 0.0442305 0.000823 1.827% 

  3 2.040267 0.146216 0.1382677 0.007949 5.436% 

  2.5 0.710844 0.323414 0.2865605 0.036854 11.395% 

 0.1 4 15.513072 0.024425 0.0240191 0.000406 1.66% 

  3 4.391164 0.073683 0.0694683 0.004214 5.72% 

  2.5 1.714065 0.15212 0.1325598 0.01956 12.858% 

0.3 0.1 4 65.707525 0.0033255 0.0032643 0.000061 1.84% 

  3 10.041753 0.0179106 0.0169247 0.000986 5.504% 

  2.5 2.7260154 0.0509563 0.0450643 0.005892 11.56% 

 0.08 4 76.471225 0.0028806 0.002827 0.000054 1.86% 

  3 11.923956 0.0153093 0.0144406 0.000869 5.67% 

  2.5 3.298491 0.0430494 0.0378737 0.005176 12.02% 

 0.05 4 101.426187 0.0022121 0.0021722 0.00004 1.807% 

  3 16.598981 0.0113908 0.0107266 0.000664 5.83% 

  2.5 4.8195864 0.0311004 0.0271423 0.003958 12.73% 

 
factor at the fracture tip is non-zero but is difficult to analyze mathematically. 
With the PKN approximation, a nonlinear diffusion equation for a one-sided 
fracture was derived with a diffusion coefficient (2.24) not considered before in 
hydraulic fracturing. Although an exact analytical solution could not be derived, 
an existing model was developed based on the width-averaged fluid velocity 
which led to a new approximate analytical solution. In the mathematical analysis 
of the problem, the Lie point symmetry of the nonlinear diffusion equation had 
the special property that the coefficient ( ), ,t x hη  vanished which had a signif-
icant effect on the solution. A shooting method was developed to solve the prob-
lem numerically and a recently established non-orthorgonal line search method 
was applied to obtain an iterative solution for the implicit approximate analytical 
solution. The following discussion gives a summary of the results obtained. 

For the hyperbolic crack, law the only working condition at the fracture entry 
is constant pressure. From the PKN approximation, the half-width of the frac-
ture remains constant at the fracture entry. Mathematically these results follow 
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because in the Lie point symmetry, which generates the group invariant solution, 
the coefficient ( ), ,t x hη  vanishes. The exponent n in the power law in the 
modified Reynolds flow law lies in the finite range 2 5n< < . While the linear 
crack law yielded a full range of working conditions of both fluid injection and 
extraction at the fracture entry and 0 n< < ∞ , it was observed that for a very 
tortuous fracture, all solutions for a range of working conditions converged to-
wards the solution of the constant pressure working condition [14]. A brief 
comparison of the results for the linear crack law and the hyperbolic crack law 
suggests that for very tortuous fractures, the constant pressure working condi-
tion is a dominant condition at the fracture entry. 

The effect of the pressure due to contact regions is described by the pressure 
ratio φ . The length of the fracture after time t increases as φ  increases for all 
values n which shows that the effect of touching asperities is to grow the length 
of the fracture. The effect of φ  on the length of the fracture is more prominent 
in a very tortuous fracture with 2 3n< <  than in a less tortuous fracture with 

3n ≥ . The width averaged fluid velocity decreases as φ  increases near the 
fracture entry but is almost independent of φ  as the half-width decreases near 
the fracture tip. This shows that the effect of touching asperities is to decrease 
the width averaged fluid velocity in regions where the half-width is not small. 

As n decreases from 5n =  to 2n = , the tortuosity of the fracture increases. 
The value 3n =  describes the Reynolds flow law and even then there is some 
surface roughness. We saw that as n decreases from 4n =  to 2.5n =  the 
length of the model fracture after time t increases due to an increase in tortuosi-
ty. The tortuosity and the pressure due to contact regions both have the effect of 
increasing the fracture length. 

For the hyperbolic crack law the spatial gradient of the half-width is singular 
at the fracture tip for 3 5n< <  and the thin fluid film approximation breaks 
down at the tip. However, for the Reynolds flow law 3n =  the spatial gradient 
of the half-width is finite while for 2 3n< <  it is zero and the thin fluid film 
approximation remains valid over the whole length of the fracture. As with the 
linear crack law, increasing tortuosity removes the singularity at the fracture tip. 

The fluid flux at the fracture entry cannot be prescribed arbitrarily. It is de-
termined by the invariant solution. The dependence on time must be of the form 
(3.42) and the constants A and B are determined numerically by the shooting 
method. 

The approximate analytical solution is useful because there is no exact analyt-
ical solution for a hydraulic fracture with contact regions described by the 
hyperbolic crack law. There are no special cases which could lead to an analytical 
solution because constant pressure at the fracture entry is the only working con-
dition. The approximate analytical solution is implicit in form and has to be 
solved iteratively and numerically in the final step. It is in good agreement with 
the numerical solution although the error increases slightly as the tortuosity in-
creases. For the numerical solution neither of the constants, A or B, in the fluid 
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flux at the fracture entry can be specified. For the approximate analytical solu-
tion either Â  can be specified and B̂  is obtained from (6.16) or B̂  can be 
specified and Â  is obtained from (6.15). This is because, built into the ap-
proximate analytical solution is the approximate result that the ratio of the width 
averaged fluid velocity to the speed of propagation of the fracture changes li-
nearly along the fracture. 
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