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Abstract 
In this article, we consider quasilinear Schrödinger equations of the form  

( ) ( ) ( )2 ,   in .Nu V x u u u f x u−∆ + − ∆ = 
 

Such equations have been derived as models of several physical phenomena. 
The nonlinearity here corresponds to the superfluid film equation in plasma 
physics. Unlike all known results in the literature, the nonlinearity is allowed 
to be indefinite. It is very interesting from physical and mathematical view-
point. By mountain pass theorem and some special techniques, we prove the 
existence of solutions for the quasilinear Schrödinger equations with indefi-
nite nonlinearity. This indefinite problem had never been considered so far. 
So our main results can be regarded as complementary work in the literature. 
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1. Introduction 

Solutions of semilinear elliptic equations 

( ) ( ) 2   in p Nu V x u a x u u−−∆ + =                 (1.1) 

are standing waves of the corresponding time-dependent Schrödinger. For the 
existence of solutions of Equation (1.1), one of the important role is the sign of 
( )V x  and ( )a x . We say Equation (1.1) is linearly indefinite if ( )V x  changes 

sign, and superlinearly indefinite if ( )a x  changes sign. There are many results 
of Equation (1.1) for the superlinearly indefinite problem, linearly indefinite or 
not, we refer to [1] [2] [3]. In this paper, we consider the following modified 
Schrödinger equations 
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( ) ( ) ( ) 22   in .p Nu V x u u u a x u u−−∆ + − ∆ =             (1.2) 

This kind of equations arise when we are looking for standing waves 
( ) ( ), e iwtt x u t−Ψ =  for the time-dependent quasilinear Schrödinger equation 

( ) ( ) ( )2 2p
ti V x a x −− ∂ Ψ = −∆Ψ + Ψ − ∆ Ψ Ψ − Ψ Ψ

 
which was used for the superfluid film equation in plasma physics by Kurihar 
[4]. This model also appears in plasma physics and fluid mechanics, dissipative 
quantum mechanics and condensed matter theory. For more information on the 
relevance of these models and their deduction, we refer to [5]. 

To the best of our knowledge, the first mathematical studies of the Equation 
(1.2) seem to be Poppenberg et al. [6] for the one dimensional case and Liu-Wang 
[7] for higher dimensional case. The proofs in these papers are based on con-
strained minimization argument. Formally, Equation (1.2) associates with the 
Euler functional 

( ) ( ) ( ) ( )22 21 1 11 2 d d d .
2 2N N N

pJ u u u x V x u x a x u x
p

= + ∇ + −∫ ∫ ∫  
 

Unfortunately, the functional J is not defined for all u X∈ , unless 1N = . 
Therefore, it is difficult to use the standard variational methods to study the 
functional J. To overcome this difficulty, Jeanjean [8] introduced a transforma-
tion f so that if v is a critical point of 

( ) ( ) ( ) ( ) ( )2 21 1 1d d d ,
2 2N N N

p
v u x V x f v x a x f v x

p
Φ = ∇ + −∫ ∫ ∫  

  (1.3) 

where f is defined by 

( )
( )( )

[ ) ( ) ( ) ( ]1
2 2

1   on 0,   and   on ,0 .
1 2

f t f t f t
f t

′ = ∞ = − −∞
+

 
Then ( )u f v=  is a solution of (1.2). 
Since the publication of [8], Problem (1.2) has been studied extensively. For 

example, the case that the potential V is N  is studied in Silva-Vieira [9]. By 
Nehari manifold method, Fang-Szulkin [10] studied the case that the nonlinear-
ity is 4-superlinear and the potential has a positive lower bound. For problems 
with critical nonlinearities, see Silva-Vieira [9]. 

In all these papers, it is required that the potential V and nonlinearity satisfy 
the positive condition. With this condition and suitable conditions on the non-
linearity, the mountain pass theorem can be applied to produce a solution of 
(1.2). 

In the literature, there are some existence results which allow the potential V 
to be negative somewhere. The strategy is to write V V V+ −= −  with 

{ }max 0,V V± = ± . Then if V −  is in some sense small, it can be absorbed and 
the functional still verifies the mountain pass geometry. We refer the reader to 
[11]. Recently, by a local linking argument and Morse theory, Liu-Zhou [12] ob-
tains a nontrivial solution for the problem (1.2) with indefinite potential. For li-
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nearly indefinite case, we also refer to [13].  
However, this is a gap in the high dimensional quasilinear Schrödinger equa-

tions with indefinite nonlinearity. The one dimensional case has been partially 
studied in [14] by critical point theory. The purpose of this paper is to present 
some results about indefinite quasilinear Schrödinger equations in higher di-
mensional. More precisely, we present our assumptions on the potential ( )V x  
and ( )a x  

(V1) ( )inf 0
Nx

V xα
∈

= >


; 
(V2) ( ) ( )NV x C∈   and for each 0M > , ( ){ }|Nx V x M∈ ≤ < ∞ , 

where α  is a constant and A  denotes the Lebesgue measure of a measurable 
set NA∈ ; 

(A1) ( ) ( ) ( )N Na x C L∞∈    and { } 0+Ω ≠ , where  
( ){ }| 0Nx a x+Ω = ∈ >

. 

(P1) *4 2 2p< < ⋅  where the critical Sobolev exponent * 22
2

N
N

=
−

 for 

3N ≥  and *2 = ∞  for 2N = . 
Then we have 
Theorem 1. Suppose that (V1), (V2), (A1) and (P1) hold. Then Equation (1.2) 

has at least one nontrivial solutions. 
Notation. 1 2, , ,C C C   will denote different positive constants whose exact 

value is inessential. 

2. Preliminaries 

Before prove our results, we shall introduce the appropriate space to find critical 
points of the Euler functional. Let 

( ) ( ){ }1 2| d .N
NX u H V x u x= ∈ < ∞∫

 
with the inner product 

( ), dNu v u v V x uv x= ∇ ∇ +∫  
and the norm 

1
2, .u u u=  

Then X is a Hilbert space. By Bartsch and Wang [15], we know that the em-
bedding X  ↪ ( )s NL   for is compact for )*2, 2s ∈  . 

Below we summarize the properties of f in (1.3). Proofs may be found in [8]. 
Lemma 2.1. The function f has the following properties: 
(f1) f is uniquely defined, C∞  and invertible. 
(f2) ( )f t t≤  and ( ) 1f t′ ≤  for all t∈ . Moreover, ( )0 1f ′ = . 

(f3) For all 0t >  we have ( ) ( ) ( )1
2

f t f t t f t′≤ ≤ . 

(f4) For all t∈  we have ( ) ( ) ( )2f t f t f t t′≥  and ( )
1 1
4 22f t t≤ . 

(f5) There exists a positive constant κ  such that ( )f t tκ>  for 1t ≤ , 
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( )
1
2f t tκ>  for 1t ≥ . 

By Lemma 2.1, it is easy to see that ( ) ( )1v C XΦ ∈ , moreover 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

, N N

N

p

v w u w V x f v f v w

a x f v f v f v w
−

′ ′Φ = ∇ ∇ +

′−

∫ ∫
∫
 



          (2.1) 

for all ,v w X∈ . 

3. Proof of the Theorem 1 

Because the principle part of Φ , denoted by 

( ) ( ) ( )2 21 1d d
2 2N NQ v v x V x f v x= ∇ +∫ ∫   

is not a quadratic form on v, it’s not so obvious to verify that Φ  satisfies the 
mountain pass geometry. Similar to [12], by taking into account the Taylor ex-
pansion of Q at the origin, it is easy to deduce that 0u =  is a strict local mini-
mizer of Φ . 

Lemma 3.1. Under the assumptions of Theorem 1, then 
(i) 0u =  is a strict local minimizer of Φ . 
(ii) There is ,Xω ρ +∈ ∈  with ω ρ>  such that ( ) 0ωΦ < . 
Proof. By the properties of the transformation f, it is easy to see that Q is a 

C2-functional on X. Since ( ) ( )0 0, 0 1f f ′= = , we get ( ) ( )0 0 0Q Q′= = . Ac-
cording to the Taylor formula, as 2 0v → , we have 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( )

2

2 22 2

2 22

1 0 ,
2
1 0 0 0 d
2
1 d .
2

N

N

Q v Q v v o v

v V x f f f v x o v

v V x v x o v

′′= +

′ ′′= ∇ + + +

= ∇ + +

∫

∫



  
Therefore, combining this with Lemma 2.1 (f2), there exists 0c >  such that 

( ) ( ) ( ) ( )

( )2 2

1 d

1 .
2

N

p

p

v Q v a x f v x
p

v c v o v

Φ = −

≥ − +

∫

 
this implies that the zero function 0 is a strict local minimizer of Φ . 

On the other hand, since 0+Ω ≠  and ( )a x  is continuous in N , we may 
choose Xϕ ∈  such that suppϕ +⊂ Ω  and ( ) 0xϕ ≥  for all x +∈Ω . Then for 
any 0s > , using Lemma 2.1 (f2),(f5), we deduce 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ){ } ( ) ( )

2
2 2

2 2
2 2

2 2
2 2

| 1

1 1d d d
2 2

1d d d
2 2

1d d d
2 2

N N N

N N N

N N

p

p

p

x s x

ss x V x f s x a x f s x
p

s sx V x x a x f s x
p

s sx V x x a x f s x
p ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ+Ω <

Φ ≤ ∇ + −

≤ ∇ + −

= ∇ + −

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫
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( ){ } ( ) ( )

( ) ( ){ } ( ) ( )

( ) ( ){ } ( )

| 1

2 2
2 2

| 1

2 2
2 2 2 2

| 1

1 d

1d d d
2 2

1d d d
2 2

N N

N N

p

x s x

p

x s x

p p

x s x

a x f s x
p

s sx V x x a x f s x
p

s sx V x x s a x x
p

ϕ

ϕ

ϕ

ϕ

ϕ ϕ ϕ

ϕ ϕ κ ϕ

+

+

+

Ω ≥

Ω ≥

Ω ≥

−

≤ ∇ + −

≤ ∇ + −

∫

∫ ∫ ∫

∫ ∫ ∫







 

 

 

Since 4p > , we know that ( ) 0sϕΦ <  for s sufficiently large. Thus the con-
clusion(ii) follows from choosing sω ϕ=  with s  large.                 

Lemma 3.2. Under the assumptions of Theorem 1. Then the functional Φ  
satisfies Cerami condition. 

Proof. Let { }nv  be a Cerami sequence of Φ , that is ( )nv dΦ → , 

( ) ( )1 0n nv v′+ Φ →  for some d ∈ . 
First we claim that there exists 0C >  such that 

( ) .nQ v C≤                          (3.1) 

Let ( ) ( )21 2n n nf v f vφ = + . By direct computation, we get  

( )
( )

2

2

2
1

1 2
n

n n
n

f v
v

f v
φ

 
∇ = + ∇  + 

. By (1.3) and (2.1), there exists 1 0C >  such that 

( ) ( ) ( )

( )
( )

( ) ( )

( ) ( )

( )

2
2

2

2

2 2

1

11

21 1 1 d
2 1 2

1 1 d
2

1 2 1 1 d
2 2

.

N

N

N N

n n n

n
n

n

n

n n

n

d o v v
p

f v
v x

p f v

V x f v x
p

v V x f v x
p p

C Q v

φ′+ = Φ − Φ

  
= − + ∇    +  

 
+ − 
 
   

≥ − ∇ + −   
   

≥

∫

∫

∫ ∫





 

 
Therefore, our claim is true. 
Next, we claim that there exists 2 0C >  such that 

( ) ( ) ( )2 2
2d d .N Nn n n n nv x V x f v f v v x C v′∇ + ≥∫ ∫ 

        (3.2) 

Indeed, we may assume that 0nv ≠  (otherwise the conclusion is trivial). We 
argue by contradiction and assume that 

( ) ( )2 2d d 0,N Nn n nw x V x g x w x∇ + →∫ ∫ 
             (3.3) 

where n
n

n

v
w

v
=  and 

( ) ( )n n
n

n

f v f v
g

v
′

= . By direct computation, we have 

( ) ( )( )
( )( )

1
2 2

d 1 0,
d

1 2
f t f t

t
f t

′ = >
+

               (3.4) 

This implies ( ) ( )f t f t′  is strictly increasing. So we get ( )ng x  is positive if 
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( ) 0nw x ≠ . Combining this with (3.3), we obtain 

( ) ( ) ( )2 2 2d 0, d 0, d 1.N N Nn n n nw x V x g x w x V x w x∇ → → →∫ ∫ ∫  
   (3.5) 

We claim that for each 0ε > , there exists a constant 3 0C >  independent of 
n such that nA ε< , where { }3: :N

n nA x v C= ∈ ≥ . Otherwise, there is an 

0 0ε >  and a subsequence { }nkv  of { }nv  such that for any positive integer k, 

0 0nkA ε≥ > , where { }: :nk nkA x v k= ≥ . By the properties of f described in 
Lemma 2.1 and (V1), there exists a constant 4 0C >  such that 

( ) ( ) ( ) ( ) ( )2 2
4 0

1 1d d   as ,
2 2N

nk
nk nk nkA

Q v V x f v x V x f v x C k kε≥ ≥ ≥ →∞ →∞∫ ∫  
a contradiction. Hence the assertion is true. Then for each 0ε > , 3C  may be 
chosen so that nA ε≤ . Next, keeping 3nv C≤  in mind. Let /N

n nB A=  . By 
(3.4), as in the proof of the Lemma 3.10 in [10], it is easy to see that as 3t C≤ , 
there exists 0δ >  such that 

( ) ( )( )d 0.
d

f t f t
t

δ′ ≥ >
 

Combining this with (3.3) and the Mean Value Theorem, we have 

( ) ( ) ( )2 2d d 0.
n n

n n nB B
V x w x V x g x w xδ ≤ →∫ ∫             (3.6) 

Since ( ) 2dN nV x w x∫  is uniformly bounded, by the integral absolutely conti-

nuity there exists 0ε >  such that whenever nA ε≤ , ( ) 2 1d
2n

nA
V x w x <∫ . For 

this ε , we have 

( ) ( ) ( ) ( )2 2 2 21d d d d .
2N

n n n
n n n nB A B

V x w x V x w x V x w x V x w x= + ≤ +∫ ∫ ∫ ∫  
This and (3.6) contradict with (3.5). Therefore, this claim is true. 
Lastly, together (3.2) and Lemma 2.1(f4) give us 

( ) 2 .n nQ v C v≥  
Combining this with (3.1) implies nv  is bounded in X. Up to a subsequence 

we may assume nv v  in X. Since embedding X  ↪ pL  is compact for 

)*2, 2p ∈  , by a standard argument, we can show that nv  has a convergent 
subsequence, see [16] (Theorem 2.1, Step 3). We omit it here. This completes the 
proof. 

To prove Theorem 1, we will apply the following Mountain Pass Theorem 
[17]. 

Theorem 2. Let X be a Banach space and ( )1C XΦ∈  be a functional satis-
fying the Cerami condition. If e X∈  and 0 r e< <  are such that 

( ) ( ){ } ( )max 0 , inf ,
u r

a e u b
=

= Φ Φ < Φ =
 

then 

[ ]
( )( )

0,1
inf sup

t
c t

γ
γ

∈Γ ∈
= Φ
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is a critical value of Φ  with c b≥ , where  
[ ]( ) ( ) ( ){ }0,1 , | 0 0, 1C X eγ γ γΓ = ∈ = = . 

Proof of the Theorem 1 
Proof. From Lemma 3.1 and Lemma 3.2, we know Φ  satisfies the conditions 

of Theorem 2. Hence Equation (1.2) has at least one nontrivial solution under 
assumptions (V1), (V2), (A1) and (P1). 

4. Conclusion 

By mountain pass theorem and Taylor expansion, we prove the existence of so-
lutions for the quasilinear Schrödinger equations with indefinite nonlinearity. 
This indefinite problem had never been considered so far. So our main results 
can be regarded as complementary work in the literature. On the other hand, 
our approach seems much simpler than those presented in [9] [16]. 
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