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Abstract  
We consider the response of a test subject upon a skin area being heated with 
an electromagnetic wave or a contact surface. When the specifications of the 
electromagnetic beam are fixed, the stimulus is solely described by the heat-
ing duration. The binary response of a subject, escape or no escape, is deter-
mined by the stimulus and a subjective threshold that varies among test rea-
lizations. We study four methods for inferring the median subjective thre-
shold in psychophysical experiments: 1) sample median, 2) maximum like-
lihood estimation (MLE) with 2 variables, 3) MLE with 1 variable, and 4) 
adaptive Bayesian method. While methods 1 - 3 require samples of time to 
escape measured in the method of limits, method 4 utilizes binary outcomes 
observed in the method of constant stimuli. We find that a) the adaptive 
Bayesian method converges and is as efficient as the sample median even 
when the assumed model distribution is incorrect; b) this robust convergence 
is lost if we infer the mean instead of the median; c) for the optimal perfor-
mance in an uncertain situation, it is best to use a wide model distribution; d) 
the predicted error from the posterior standard deviation is unreliable, dom-
inated by the assumed model distribution. 
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1. Introduction 

In psychophysical experiments, it is always desirable to understand the mechan-
isms that give rise to the observed behavior [1]. Three types of psychophysical 
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methods are commonly used in estimating the point of subjective equality and 
the just noticeable difference: the method of adjustment, the method of limits 
and the method of constant stimuli [2]. In the present study, we restrict our at-
tention to the method of limits and the method of constant stimuli in psycho-
physical experiments. 

We consider the response of a test subject upon a skin area being heated with 
a contact surface [3] [4] or with an electromagnetic wave [5]. In the case of con-
tact heating, when the size and temperature of the contact surface are fixed (or 
in the case of electromagnetic heating, when the cross-section and power density 
of the beam are fixed), the strength of stimulus is solely described by the time 
period of heating, which we shall call the exposure duration. At any time, the test 
subject has two options: allowing the heating to continue or escaping from the 
heating when the heat induced exceeds the subject’s personal pain tolerance. The 
subject’s response by any given time is binary: escape or no escape. Once the 
subject moves away from the heating, that particular trial is completed and the 
time elapse from the start of heating to the escape is recorded as the escape time. 
The measured escape time in each trial provides a sample value of subjective 
threshold for a particular subject in a particular realization. The point of subjec-
tive equality (PSE) is given by the median of subjective threshold: when the ex-
posure duration is set to the median subjective threshold, 50% of subjects are 
expected to escape. The objective of this study is to infer the median subjective 
threshold by adaptively adjusting test procedures and using the data collected in 
trials. We examine four different approaches and thereby identify an optimal 
approach for estimating the median subjective threshold. 

2. Mathematical Formulation 

Due to the biovariability and other uncertainties, the escape time of the test sub-
ject will be different from one trial to another. We model the subject response as 
solely determined by the stimulus (the exposure duration) and a subjective 
threshold that varies among test subjects and varies among different trial realiza-
tions for a given subject. The outside stimulus and the internal threshold are 
connected via the pain signal generated at the heat-sensitive nociceptors acti-
vated by the skin temperature increase [6]. The internal threshold on the noci-
ceptors signal is manifested outside as the observable threshold on the exposure 
duration. 

Let Z be the subjective threshold. We set 0t =  as the start of heating expo-
sure. By time t u= , the cumulative stimulus (the exposure duration) is u and 
the subject response is determined by stimulus u and subjective threshold Z. 

( )
no escape if 

Subject response
escape if 

u Z
u

u Z
<

=  >
             (1) 

In a particular trial realization, Z is fixed but unknown. In (1), we write the 
subject response as a function of stimulus u to emphasize that in a trial, as the 
exposure duration u increases, the escape response will eventually occur. Over 
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many subjects and over many trial realizations, mathematically Z is a random 
variable, reflecting the biovariability and other uncertainties. By definition, Z is 
the minimum exposure duration needed to induce the escape response for a par-
ticular subject in a particular trial. Since Z is naturally constrained by 0Z > , we 
use a Weibull distribution to model Z. The actual distribution of Z may be dif-
ferent. We will investigate the consequence of this discrepancy on the inference 
accuracy. The probability density function (PDF) of the Weibull distribution is 

( )
1

exp , 0Z
z zz z
β β

β β

βρ
α α

− −
= > 

 
                 (2) 

which is described by two parameters: shape parameter β  and scale parameter 
α . The mean, median and standard deviation of U have the expressions 

( ) 11E Z α
β

 
= Γ + 

   
( ) ( ) ( )

1
med ln 2mz Z βα≡ =                     (3) 

( )
2

2 1std 1 1Z α
β β

   
= Γ + −Γ +   

     
Here ( )med Z  denotes the median of Z, and ( )Γ  is the gamma function. 
Two types of psychophysical experiments may be conducted using, respec-

tively, the method of limits (ML) [7] [8] or the method of constant stimuli 
(MCS) [7] [9]. In the method of limits, the heating is kept on until the subject 
escapes. In other words, the stimulus (exposure duration) keeps increasing until 
escape. The recorded escape time gives the sample value of threshold for that 
particular trial realization. In this way, independent samples of the subjective 
threshold can be collected from multiple trials. In the method of constant stimu-
li, the stimulus (exposure duration) is prescribed. At the end of exposure, the 
escape may or may not occur, depending on the prescribed stimulus and the 
(unknown) value of threshold in that particular trial. The binary outcome, es-
cape or no escape, is recorded in each trial. 

Let z be the sample value of the subjective threshold in a particular trial. Un-
der the condition that the test subject is unaware of the test type used in the trial, 
it is reasonable to expect that threshold z is independent of the test type. In a test 
using the method of constant stimuli, let u be the prescribed stimulus (exposure 
duration). For a random trial with stimulus u, under the assumption that Z has a 
Weibull distribution, the probability of escape is given by the Weibull psycho-
metric function denoted by ( )P u , which is the cumulative distribution func-
tion (CDF) of the Weibull distribution. 

( ) ( ) ( ) ( )
0

Pr escape Pr d 1 exp
u

Z
uZ u z z P u
β

βρ
α

 −
= < = = − ≡ 

 
∫       (4) 

The median subjective threshold ( ) ( )medmz Z≡  satisfies ( )( ) 50%mP z = . In 
the context of psychometric function ( )P u , ( )mu z=  is the point of subjective 
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equality (PSE), the stimulus level at which it is equally likely that the heat in-
duced is above or below the subjective pain tolerance. If we view ( )P u  as a 
dose-response relation, ( )mu z=  is the half maximum response dose. We write 
the psychometric function ( )P u  in terms of ( )mz  and β . 

( ) ( )
( )( )

ln 2
1 exp

m

u
P u

z

β

β

 
− = −  

 
 

                   (5) 

The goal of this study is to estimate ( )mz  from data/observations. We choose 
to infer ( ) ( )medmz Z=  instead of ( )E Z  for several reasons: 
• ( )mz  is the point of subjective equality (PSE) in the psychometric function. 
• If we measure samples of Z using the method of limits, the sample median is 

less susceptible to outliers, which may occur in real experiments. 
• The median is preserved in any monotonic transformation, which allows us 

to work with random variable 10logY Z=  to infer ( )med Y  in the adap-
tive Bayesian method. Notice that while Z is constrained by 0Z > , variable 
Y is unconstrained. 

• In the adaptive Bayesian method, the convergence of the inferred median is 
independent of whether the assumed model is correct. In our simulation 
analysis, we will demonstrate that even when the assumed model deviates 
from the actual psychometric function, the inferred median still converges to 
the correct value. If we choose ( )E Z  as the inference variable, however, 
this convergence property is lost. 

3. Inference Methods 

We discuss four inference methods. Each method is based on different assump-
tions and thus is applicable in different situations. 

3.1. Method 1: Sample Median 

This method does not assume any particular distribution form of Z. It is appli-
cable for estimating the median of any random variable. We measure indepen-
dent samples of subjective threshold Z in psychophysical tests using the method 
of limits. The data set is 

( ) { }, 1, 2, ,data
jZ z j N= =                      (6) 

We use ( ),1ˆ mz  to denote the inference result of method 1 for ( )med Z . 

( ) { },1ˆ sample median of , 1, 2, ,m
jz z j N= =               (7) 

3.2. Method 2: Maximum Likelihood Estimation  
with 2 Unknown Variables 

Like method 1 above, the maximum likelihood estimation (MLE) requires data 
set ( )dataZ , consisting of measured independent samples of Z. MLE (2 variables) 
assumes that the subjective threshold Z has the Weibull distribution given in (2), 
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with shape parameter β  and scale parameter α  both unknown. MLE (2 va-
riables) is applicable only when Z has the Weibull distribution. MLE (2 va-
riables), we infer ( ),α β  simultaneously by maximizing the likelihood and then 
calculate ( )mz  from ( ),α β . For mathematical convenience, let βη α≡ . In 
terms of ( ),η β , the likelihood function and the log-likelihood have the expres-
sions: 

( )( ) ( )
1

data

1 1
, ; exp

N N
j j

Z j
j j

z z
L Z z

β ββ
η β ρ

η η

−

= =

 −
= =   

 
∏ ∏

 

( )( ) ( )( ) ( )data data 1

1 1

1, ; ln , ; ln ln
N N

j j
j j

Z L Z z N zβ βη β η β η β
η

−

= =

−
= = − +∑ ∑    (8) 

We maximize the log-likelihood ( )( )data, ; Zη β  to estimate ( )ˆˆ,η β . 

( ) ( )
( )( )data

,
ˆˆ, arg max , ; Z

η β
η β η β=                    (9) 

Once η̂  and β̂  are determined, the inference result of method 2 for 

( )med Z , denoted by ( ),2ˆ mz , is calculated using Equation (3) and 
1
ˆˆ ˆ βα η= . 

( ) ( )
1

,2 ˆˆˆ ln 2mz βη=                        (10) 

3.3. Method 3: Maximum Likelihood Estimation  
with 1 Unknown Variable 

Like methods 1 and 2 above, method 3 requires data set ( )dataZ , consisting of 
measured independent samples of Z. This method assumes 1) the subjective 
threshold Z has the Weibull distribution of the form (2) and 2) the shape para-
meter β  is known, which leaves the scale parameter α  as the only unknown. 
MLE (1 variable) is applicable only when Z has the Weibull distribution and the 
true value of β  is given. We write the log-likelihood in terms of βη α≡ . 

( )( ) ( )( ) ( )data data 1

1 1

1; ln ; ln ln
N N

j j
j j

Z L Z z N zβ βη η η β
η

−

= =

−
= = − +∑ ∑     (11) 

The log-likelihood has the derivative 

( )( )data
2

1

d 1; .
d

N

j
j

NZ zβη
η ηη =

= −∑

 

The maximization problem of ( )( )data; Zη  has an analytical solution. 

( )( )data

1

1ˆ arg max ;
N

j
j

Z z
N

β

η
η η

=

= = ∑                 (12) 

The inference result of method 3 for ( )med Z , denoted by ( ),3ˆ mz , is calcu-
lated using (3) 

( )

1
1

,3

1

1ˆˆ
N

m
j

j
z z

N

β
ββη

=

 
= =  

 
∑                     (13) 
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3.4. Method 4: Adaptive Bayesian Method 

Unlike methods 1-3 above, the adaptive Bayesian method does not require 
measured independent samples of Z. Rather it utilizes binary outcomes observed 
in tests using the method of constant stimuli (MCS). Suppose a sequence of n 
trials of the MCS type have already been completed with prescribed stimuli (ex-
posure durations) { }, 1, 2, ,ju j n=  . The observed binary outcome jI  of each 
trial indicates either j jz u>  (if no escape occurs) or j jz u<  (if escape oc-
curs). 

( )
( )

0 no escape if 
1 escape if 

j j
j

j j

z u
I

z u
>=  <

                 (14) 

Here jz  is the (unknown) value of subjective threshold in trial j. In trials of 
the MCS type, values of { }jz  are not fully revealed. Instead, only j jz u>  or 

j jz u<  is observed. 
Following the approach used in the Quest package [10], we use variable 

10logx u≡  to quantify the stimulus. Thus, stimulus x corresponds to exposure 
duration 10xu = . Notice that 10logx u≡  is mathematically unconstrained and 
covers a wide range of exposure duration u when x is varied moderately. The 
data set from the n trials consists of n pairs of ( ),x I  where x is the stimulus 
and I is the corresponding outcome. 

( ) ( ){ }, , 1, 2, ,n
j jD x I j n= =                    (15) 

To infer ( ) ( )medmz Z≡  in a Bayesian framework, we treat ( ) ( )
10logm my z≡  

as a random variable and use a normal distribution as the prior. 
( ) ( )2Prior of ,m

y yy N µ σ                    (16) 

For a trial with stimulus x (exposure duration 10xu = ), under the assumption 
that the subjective threshold Z has a Weibull distribution, the probability of es-
cape is described by the psychometric function ( )P ⋅  in (5) 

( ) ( ) ( )
( )( ) ( ) ( )10

Pr 1 Pr 10 10

1 exp 10 , log ln 2
m

x x

x y

I Z P

F x
β δ

δ
− +

= = < =

 
= − − ≡ ≡ 

   
The model psychometric function ( )F x  has parameters β  and  
( ) ( )

10logm my z= . In experiments, however, the probability of escape is governed 
by the actual psychometric function ( )actualF x , which may be different from 
( )F x . 
In the adaptive Bayesian method, we assume β  is given and our goal is to 

infer ( )my . For that purpose, we need to view the probability of escape as a 
function of ( )my . We write ( )F x  in terms of ( )( )mx y−  and β  as. 

( ) ( )( );mF x x yφ β= −                      (17) 

where ( );sφ β  is parameter-free function defined as 
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( ) ( ) ( )10; 1 exp 10 , log ln 2ss β δφ β δ+≡ − − ≡             (18) 

To facilitate the inference of ( )my , we shift ( )my  by its prior mean and con-
sider ( )m

yyξ µ≡ − . The prior distribution of ξ  is 

( ) ( )
2

pri
2exp

2 y
ξ

ξρ ξ
σ

 −
  
 

                     (19) 

(19) is our prior knowledge about ξ . When data set ( )nD  from n trials be-
comes available, the posterior distribution of ξ  is calculated according to the 
Bayes theorem. 

( ) ( )( ) ( ) ( ) ( )( )post pri

1
| ; ,

n
n

j y j
j

D B x Iξ ξρ ξ ρ ξ φ µ ξ β
=

− −∏         (20) 

where ( ) ( )1, 1 kkB p k p p −≡ −  is the Bernoulli distribution. A key component of 
the adaptive Bayesian method is to select the stimulus for the next trial based on 
the current posterior of ξ . Suppose n trials have been conducted and the data 
set ( )nD  is used to calculate the posterior ( ) ( )( )post | nDξρ ξ  in (20). Let 1nx +  
denote the stimulus for the next trial. The optimal choice of 1nx +  is the point of 
subjective equality (PSE) of the actual psychometric function where  

( )actual 1 50%nF x + = . The PSE of the actual psychometric function is unknown. It 
is the inference variable. We use the best available estimate of PSE as the next 
stimulus. We set stimulus 1nx +  to the posterior median of ( )m

yy µ ξ= + , which 
reflects the prior of ( )my  and the observed outcomes of the preceding n trials. 

( ) ( )( )( )post
1 med | n

n yx Dξµ ρ ξ+ = +                 (21) 

Once stimulus 1nx +  is prescribed, trial ( )1n +  is carried out and the ob-
served binary outcome 1nI +  is used to update the posterior distribution of ξ . 

( ) ( )( ) ( ) ( )( ) ( )( )post 1 post
1 1| | ; ,n n

n y nD D B x Iξ ξρ ξ ρ ξ φ µ ξ β+
+ +− −      (22) 

It is important to emphasize that the probability of escape in real experiments 
is governed by ( ) ( )1 actual 1Pr 1n nI F x+ += = , independent of the assumed model 
distribution. 

We repeat the process of adaptively selecting stimulus x based on the current 
posterior distribution, carrying out the next trial and using the observed out-
come to update the posterior distribution. The iterative process of (21)-(22) is 
repeated either for a specified number of trials or until the standard deviation of 
posterior ξ  is less than a specified tolerance. When the adaptive Bayesian itera-
tion is completed, the inference result of method 4 for ( )med Z , denoted by 

( ),4ˆ mz , is calculated as the posterior median of ( ) ( )
10

mm yz =  
( ) ( ) ( ) ( ) ( )( )( ),4,4 ,4 postˆ ˆˆ 10 , med |

mm m Ny
yz y Dξµ ρ ξ= = +          (23) 

4. Relative Errors of Inference Results:  
Direct Monte Carlo Simulations 

We use Monte Carlo simulations to evaluate the inference accuracy for each of 
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the four methods described in the previous section. 

4.1. Measurement of Relative Error 

We define the relative error as the root-mean-square (RMS) relative difference 
between the inference result and the true value. For each inference method, we 
carry out M rounds of Monte Carlo simulations. For methods 1 - 3, each round 
of simulations involves generating a data set of N samples and calculating an in-
ference result from each simulated data set. For method 4, each round of simula-
tions consists of repeating for N trials the Bayesian process of adaptively select-
ing the stimulus based on the posterior distribution, carrying out the trial and 
updating the posterior distribution according to the observed outcome. Let 
• ( ),m ez  be the true value of ( )med Z  and 
• ( , , )ˆ m k iz  be the inferred ( )med Z , using method k in round i of simulations. 

From the Monte Carlo simulations, we calculate the relative error of method k 
as 

( )
( ) ( )

( )

2, , ,

,
1

ˆ1err
m k i m eM

k
m e

i

z z
M z=

 −
=   

 
∑                 (24) 

4.2. Parameters in Simulations 

We use 610M =  rounds of Monte Carlo simulations in the calculation of each 
relative error (each entry in Table 1 and Table 2). We calculate the relative error 
of each inference method, for each prior and for each sample size of 2N = , 20, 
40 or 80 trials. 

Before we select values of ( ),α β , we point out that random variable Z, the 
exact and inferred (mean, median, std) of Z, are all proportional to scale para-
meter α . In particular, both ( ), ,ˆ m k iz  and ( ),m ez  are proportional to α . Thus, 
the relative error is independent of α . 

In simulations of this section, we use 2.5β =  and 5. For the convenience of 
setting up simulations, we set ( )

1
ln 2 βα

−

=  to make ( )med 1Z = . Figure 1 dis-
plays the Weibull distributions and Weibull psychometric functions for three 
values of β . For a smaller value of β , the Weibull distribution is wider (the 
normalized standard deviation is larger). 

4.3. Prior Distribution of ( )mz10log  in Method 4 

In the adaptive Bayesian method, an estimate of ( )mz  is obtained via inferring 
( ) ( )

10logm my z≡ . The prior for ( )my  is a normal distribution:  
( ) ( )2,m

y yy N µ σ . The corresponding prior of ( )mz  is a log-normal distribu-
tion. 

( )( ) ( )2
10

022
0

log1 exp , ln10
22

ym

yy

s
z s q

q s

µ
ρ

σσ

 − − = = =
 π  

    (25) 

The prior (mean, median and standard deviation) of ( )mz  are related to  
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Figure 1. Effect of shape parameter β . Left panel: 3 Weibull distributions with median = 1. Right panel: 3 
Weibull psychometric functions with PSE = 1. 

 
( ),y yµ σ  by 

( )( ) ( )2 2
0 010 exp , ln10ym

yE z q qµ σ= =
 

( )( )med 10 ym
z z µµ ≡ =

 
( )( ) ( ) ( )2 2 2 2

0 0std 10 exp exp 1ym
z y yz q qµσ σ σ ≡ = −           (26) 

Suppose we know the prior median and standard deviation of ( )mz  from ex-
isting data of measurements on the subjective threshold Z. Given ( ),z zµ σ , we 
can build the normal prior of ( )my  by solving for ( ),y yµ σ  in (26) 

10logy zµ µ=  
2

0
0

1 1 1ln 1 4 , ln10
2 2

z
y

z

q
q

σ
σ

µ

   = + + =    

           (27) 

For small ( )z zσ µ , the Taylor expansion of the RHS yields 
2

0

1 3 11
4 ln10

z z z
y

z z zq
σ σ σ

σ
µ µ µ

      
 = − + ≈     
       

            (28) 

The prior relative uncertainty of ( )mz  is described by the ratio z zσ µ . From 
the given z zσ µ , the prior standard deviation of ( )my  is calculated using Equ-
ation (27). In Monte Carlo simulations, the prior mean of ( )my  is set to a ran-
dom variable 

( )( ), 2,m e
y yN yµ σ

 
where ( ) ( ), ,

10logm e m ey z=  is the exact median of ( ) ( )
10logm my z= . This ran-

domness of yµ  in simulations is both realistic and necessary. In real applica-
tions, the exact value of ( ),m ey  is unknown. In the adaptive Bayesian method, 
the inference result for ( )my  is given by the median of the posterior ( )my . If we 
set ( ),m e

y yµ = , then before any Bayesian updating, the prior distribution already 
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gives the exact solution, which is unreasonable. Setting ( )( ), 2,m e
y yN yµ σ  is con-

sistent with that the prior error of ( )my  is yσ . 

4.4. Simulation Results of the Four Methods 

In all simulations, data sets are generated using the actual distribution. In Sec-
tion 4, the actual distribution and the assumed model distribution have the same 
Weibull form and the same shape parameter β . The median of the actual dis-
tribution, ( ),m ez , is set to 1 while the median of the model distribution, ( )mz , is 
the inference variable. Not all methods utilize the Weibull distribution form or 
the value of β . 
• Method 1 (the sample median) does not assume any distribution form. 
• Method 2 (MLE, 2 variables) assumes the Weibull distribution form of Z but 

leaves shape parameter β  as an unknown variable. 
• Method 3 (MLE, 1 variable) both assumes the Weibull distribution form and 

uses the value of shape parameter β . 
• Method 4 (adaptive Bayesian) both assumes the Weibull distribution form 

and uses the value of shape parameter β . 
The situation where the actual distribution deviates from the assumed model 

distribution will be investigated in Section 5. 
The relative errors for 2.5β =  are reported in Table 1. Methods 1 - 3 are 

based on measured escape times in tests using the method of limits. Of these 
three methods, the sample median has the largest relative error (except for 

2N = ). This is reasonable since the sample median does not assume any distri-
bution form. 

Accordingly, MLE (1 variable) has the smallest relative error since it assumes 
both the correct distribution form and the correct shape parameter. Method 4 is 
based on binary outcomes (escape or no escape) observed in tests using the me-
thod of constant stimuli. Intuitively, a binary outcome provides less information 
than a full sample of escape time. The relative error of method 4 is larger than 
that of method 3 even though they have the same assumptions. However, we will 
learn in Section 5 that method 4 is very robust with respect to an incorrect mod-
el while for method 3, an incorrect model is fatal. The relative error of method 4  

 
Table 1. Relative errors of the four inference methods: 2.5β = . 

Method 
Relative error of inferred ( )mz  

2N =  20N =  40N =  80N =  
Sample median 31.21% 12.43% 8.95% 6.39% 

MLE (2 variables) 32.26% 10.47% 7.43% 5.25% 

MLE (1 variable) 28.30% 8.94% 6.34% 4.47% 

Adaptive Bayesian, prior 40%z zσ µ =  29.00% 12.45% 9.00% 6.42% 

Adaptive Bayesian, prior 20%z zσ µ =  17.94% 10.83% 8.31% 6.15% 

Adaptive Bayesian, prior 10%z zσ µ =  9.71% 7.88% 6.72% 5.41% 
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is comparable to that of method 1. This feature will be examined in more detail 
in Section 5. An interesting result of Table 1 is that with 20 trials ( 20N = ), the 
relative error is well above 10% unless we use the correct distribution form and 
the correct shape parameter in method 3, and use a very narrow prior in method 
4 (adaptive Bayesian). 

The relative errors for 5β =  are reported in Table 2. As β  increases, both 
the actual distribution and the model distribution (they are the same in Section 
4) get narrower (see Figure 1). A narrower distribution reduces the relative er-
rors in all methods. 

4.5. Relative Error vs Sample Size N 

We study numerically the relative error ( ( )err k ) of each inference method as the 
number of trials (N) is increased. The simulation results for 2.5β =  are shown 
in Figure 2. For each of the three methods based on measured samples of ran-
dom variable Z (left panel), the relative error is proportional to 1 N . Method 
1 has the largest proportionality coefficient while method 3 has the smallest. 

Method 4 (adaptive Bayesian) updates the prior distribution based on binary  
 

Table 2. Relative errors of the four inference methods: 5β = . 

Method 
Relative error of inferred ( )mz  

2N =  20N =  40N =  80N =  

Sample median 16.03% 6.23% 4.48% 3.20% 

MLE (2 variables) 16.28% 5.24% 3.72% 2.62% 

MLE (1 variable) 15.17% 4.50% 3.18% 2.24% 

Adaptive Bayesian, prior 40%z zσ µ =  22.05% 6.71% 4.67% 3.27% 

Adaptive Bayesian, prior 20%z zσ µ =  14.69% 6.30% 4.53% 3.22% 

Adaptive Bayesian, prior 10%z zσ µ =  8.98% 5.45% 4.17% 3.08% 

 

 
Figure 2. Relative error vs N for 2.5β = . Left panel: three methods based on measured samples of Z in the 
method of limits. Right panel: adaptive Bayesian method based on observed binary outcomes in the method of 
constant stimuli. 
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outcomes observed in the method of constant stimuli. Unlike the three methods 
in the left panel, method 4 has a finite relative error (the prior) before any binary 
outcome is observed. Intuitively, the prior can be viewed as an existing set of 0n  
binary outcomes. A narrower prior corresponds to a larger existing set (larger 

0n ). Consequently, the relative error is expected to be proportional to 01 N n+ . 

( ) ( )
( )

2
prior4 4

0 prior
0

err , , err
err

z

z

C CN n
N n

σ
µ

 = = = +  
        (29) 

The right panel of Figure 2 confirms that the relative error of the adaptive 
Bayesian method is well explained by relation (29). 

4.6. Effect of Shape Parameter β 

We explore how the relative error changes as the shape parameter β  of the 
Weibull psychometric function is varied. We reiterate that in all simulations of 
Section 4, both the actual and the model psychometric function have the same 
Weibull form and the same shape parameter β . The situation where the actual 
psychometric function deviates from the model will be studied in the next section. 

Figure 3 compares the results of 2.5β =  and 5β = . For 5β = , the beha-
viors of relative error vs N are qualitatively the same as those for 2.5β = . The 
proportionality coefficients are noticeably smaller for 5β = , consistent with the 
observation that the Weibull distribution is narrower for 5β =  (see Figure 1). 

5. Inference Errors When the Actual Psychometric Function 
Deviates from the Model 

As demonstrated in Figure 3, relative errors of inference are smaller when β  is 
larger. To reduce the inference error, one may attempt to use a large β  in the 
model disregarding the true β  of the actual psychometric function (or in the 
absence of knowing the true β ). In this section, we focus on the two methods 
that require the value of β  as an input: the MLE (1 variable) and the adaptive 

 

 
Figure 3. Comparison of relative error vs N for 2.5β =  and for 5β = . Left panel: MLE (2 variables) and MLE 
(1 variable). Right panel: adaptive Bayesian method. 
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Bayesian method. We examine the behaviors of relative errors in several situa-
tions where the model deviates from the actual psychometric function. 

5.1. Situation 1: The Actual Psychometric Function and the Model 
are Both Weibull 

When both the actual psychometric function and the model have the Weibull 
form, we write them as two functions of 10logx u=  with different shape para-
meters and medians. 

( ) ( ) ( )( ),
actual ;m e eF x x yφ β= −

 

( ) ( )( )model ;mF x x yφ β= −
 

where function ( );sφ β  is defined in (18). In the actual psychometric function, 
( )eβ  is the true shape parameter and ( ),m ey  the true median of 10log Z . In the 

model psychometric function, β  is the prescribed shape parameter and ( )my  
the inference variable. 

The results for the 4 cases of ( )( ) ( ) ( ) ( ) ( ){ }, 2.5, 2.5 ; 2.5,5 ; 5,2.5 ; 5,5eβ β =  
are displayed in Figure 4. It is clear that when ( )eβ β≠ , the MLE (1 variable) 
does not converge to the true median (left panel of Figure 4). Therefore, we ar-
rive at the conclusion below regarding the method of MLE (1 variable): 
• the β  value cannot be set arbitrarily in the MLE (1 variable); and 
• when the true ( )eβ  of the actual psychometric function is unknown, the 

method of MLE (1 variable) is simply not applicable. 
One striking feature of the adaptive Bayesian method is that it converges to 

the true median even when a wrong β  value is prescribed in the model (right 
panel of Figure 4). At any given N, the relative error is mainly influenced by the 
true ( )eβ  of the actual psychometric function. A smaller ( )eβ  corresponds to a 
wider actual distribution and leads to a larger relative error at any given N. We 
discuss separately ( )eβ β>  and ( )eβ β< . 

When the prescribed β  in ( )modelF x  is larger than the true ( )eβ  in  
 

 

Figure 4. Relative error vs N when ( )eβ β≠ . Left panel: MLE (1 variable). Right panel: adaptive Bayesian me-
thod. Both methods require an input of β . 
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( )actualF x , the model distribution is narrower than the actual distribution. When β  
deviates from ( )eβ  in the direction of ( )eβ β> , the relative error becomes notice-
ably larger than that of ( )eβ β= . In addition, the decay of relative error vs N no 
longer follows the trend of 01 N n+ . Fitting ( )0

dC N n+  to the relative error 
vs N for ( ){ }5, 2.5eβ β= =  yields an exponent of 0.43d =  instead of 0.5. The fit-
ting curves respectively for ( )eβ β>  and for ( )eβ β=  have the expressions 

( )
( )

0.43

0.50err for 5 2.5
1.6

e

N
β β= = > =

+  
( )0.58err for 2.5

2.1
e

N
β β= = =

+  
When the prescribed β  in ( )modelF x  is smaller than the true ( )eβ  in 

( )actualF x , the model distribution is wider than the actual distribution. When β  

deviates from ( )eβ  in the direction of ( )eβ β< , the relative error increases on-

ly slightly from that of ( )eβ β= . The relative error vs N is still approximately 

described by the law of 01 N n+ , with the coefficient slightly above that of 
( )eβ β= . The fitting curves respectively for ( )eβ β<  and for ( )eβ β=  are 

( )0.35err for 2.5 5
0.74

e

N
β β= = < =

+  
( )0.30err for 5

0.56
e

N
β β= = =

+  
In the right panel of Figure 4, the relative errors for ( )5 2.5eβ β= > =  (tri-

angles) are noticeably higher than those for ( ) 2.5eβ β= =  (diamonds), which 
are already relatively large due to the small ( )eβ . In comparison, the relative er-
rors for ( )2.5 5eβ β= < =  (squares) are only slightly higher than those for 

( ) 5eβ β= =  (circles), which are relatively small due to the large ( )eβ . This ob-
servation suggests that when facing an uncertainty of ( ) ( ) ( ), ,,e e L e Hβ β β ∈   , the 
best strategy for minimizing the inference error is to use the lower end of the 
range, ( ),e Lβ β= , in the model. In this way, if ( )eβ  is near the lower end, then 
it is well captured by β ; if ( )eβ  is near the higher end, then the relative error 
for ( )eβ β=  is small and the relative error for ( )eβ β<  is only slightly higher. 
Notice that the lower end of ( )eβ  corresponds to the wider end of the distribu-
tion width. In summary, when facing an uncertainty in the actual distribution 
width, the best strategy for minimizing the inference error is to use a wide dis-
tribution in the inference model. 

5.2. Situation 2: The Actual Psychometric Function  
Is Gamma and the Model Is Weibull 

We consider the situation where the model distribution of subjective threshold Z 
is Weibull while the actual distribution of Z is gamma, which has the form 

( ) ( ) ( )

1
gamma 1 expz zz

κ

ρ
κ θ θ θ

− −   =    Γ    
              (30) 
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where κ  is the shape parameter and θ  the scale parameter of the gamma dis-
tribution. Two Weibull distributions for { }2.5;5β =  and three gamma distri-
butions for { }4;8;16κ =  are compared in the left panel of Figure 5. In each 
distribution, the scale parameter is selected to make median = 1 so all distribu-
tions are aligned at the same median. In terms of 10logx u= , the actual and the 
model psychometric functions are 

( ) ( )actual
1 10,

x

F x γ κ
κ θ

 
=  Γ    

( ) ( )( )model ;mF x x yφ β= −
 

where ( ), sγ κ  is the lower incomplete gamma function defined as 

( ) 1
0

, e d
s ts t tκγ κ − −= ∫  

As in the case of Weibull distribution, when the actual distribution of Z is 
gamma, the relative error of inferred ( ) ( )medmz Z≡  is independent of the 
scale parameter θ . 

We test the adaptive Bayesian method using the Weibull model with 2.5β =  
on three actual psychometric functions of gamma distributions with respectively 

4κ = , 8, and 16. Relative errors vs N are plotted in the right panel of Figure 5. 
The results clearly demonstrate that the adaptive Bayesian method converges to 
the true median even when the assumed model and the actual psychometric 
function are of different types. 

Now we look at the most important reason why we choose to infer ( )med Z  
instead of ( )E Z . In the assumed model (Weibull), the mean is related to the 
median by 

( ) ( ) ( )
111 ln 2 medE Z Zβ

β

− 
= Γ + 

 
                (31) 

which varies with β . In the actual psychometric function, the relation between 
 

 
Figure 5. Left panel: two Weibull and three gamma distributions with media = 1. Right panel: inference errors 
of the adaptive Bayesian method using Weibull model with 2.5β =  on three actual psychometric functions of 
gamma distribution with 4κ = , 8, and 16. 
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the mean and the median is in general different from (31). Given the conver-
gence of inferred ( )med Z , it follows that if we choose to infer ( )E Z , then the 
inferred ( )E Z  does not converge to the true ( )E Z . That is, if we choose to 
infer ( )E Z , the convergence of inference is lost. 

In the left panel of Figure 5, the three gammas span a range of distribution 
width. In the right panel of Figure 5, we carried out inferences using the Weibull 
model of 2.5β = , which is more consistent with the wider end ( 4κ = ) of the 
three gammas. Next we try inferences using the Weibull model of 5β = , which 
is more consistent with the narrower end ( 16κ = ) of the three gammas. Figure 
6 compares the relative errors of the two strategies of selecting β  in the infe-
rence model: 1) selecting a smaller β  to accommodate the wider end in a 
possible range of the actual distribution width or 2) selecting a larger β  to ac-
commodate the narrower end. 

The results indicate that it is more important to accommodate the wider end 
in a possible range of the actual distribution width. If the actual distribution has 
a large width, failing to accommodate it will lead to a significant increase in rela-
tive error (compare triangles and diamonds in Figure 6). On the other hand, if 
the actual distribution has a small width, failing to accommodate it will increase 
the relative error only slightly (compare squares and circles in Figure 6). In ad-
dition, the relative errors for the case of small actual distribution width are sig-
nificantly below those for the case of large actual distribution width. All these 
observations suggest that we should accommodate the wider end in a possible 
range of the actual distribution width. 

5.3. Relation between the Actual Relative Error and the  
Prediction from the Posterior Standard Deviation 

In the adaptive Bayesian method, the posterior distribution of ( ) ( )
10logm my z=  

not only produces a posterior median as the inference result for ( ),m ey , but also  
 

 
Figure 6. Comparison of the two strategies of selecting β  in the inference model: 1) 
smaller β  (wider distribution) or 2) larger β  (narrower distribution). 
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yields a posterior standard deviation ( )post
yσ . When the sample size N is not very 

small, the posterior of ( )my  is approximately a normal distribution. A normal 
posterior for ( )my  translates to a log-normal posterior for ( )mz . We view the 
posterior standard deviation of ( )mz  divided by the posterior median of ( )mz  
as the predicted relative error in the inferred ( )mz . This prediction is practically 
operational since it comes out naturally from the posterior. The predicted rela-
tive error is expressed in terms of ( )post

yσ  using (26). 

( )( )
( )

( )

( )( ) ( )( )

post

post

2 2post post2 2
0 0 0

Predicted relative error in inferred 

exp exp 1 , ln10

m z

z

y y

z

q q q

σ
µ

σ σ

≡

    = − =        

       (32) 

Figure 7 compares the actual and the predicted relative errors when the adap-
tive Bayesian method using the Weibull model is applied on actual psychometric 
functions of the gamma-type (Situation 2). As we discussed in Figure 4 (Situa-
tion 1) and Figure 5 & Figure 6 (Situation 2), the actual relative error is mainly 
influenced by the width of the actual distribution of Z: the larger the width, the 
larger the error. The predicted relative error, on the other hand, is determined 
by the width of the model distribution. 

The blue line and red line in the left panel of Figure 7 are almost identical to 
those in the right panel while the actual distributions (specified by κ ) are very 
different for these two panels. For an actual distribution that is relatively wide 
( 4κ =  in the left panel), if we use 5β = , the narrow model distribution sig-
nificantly increases the actual error and significantly decreases the predicted er-
ror at the same time. Thus, using a narrow model distribution gives a false sense 
of inference accuracy: the predicted error is small while the actual error is much 
larger. We want to avoid this situation, which is another reason for not using a 
narrow model distribution. For an actual distribution that is relatively narrow 
( 16κ =  in the right panel), if we use 2.5β = , the wide model distribution in-
creases the actual error only slightly and increases the predicted error significantly.  

 

 
Figure 7. Comparison of the actual and the predicted relative errors. The model distribution is Weibull with 
β . The actual distribution of Z: is gamma with κ . 
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Thus, using a wide model distribution yields a predicted error that is too con-
servative. A wide model distribution is less a problem for minimizing the actual 
error than for precisely predicting the error. Synthesizing the results of subsec-
tions 5.2 and 5.3, we draw two conclusions regarding the adaptive Bayesian me-
thod: 
• when presented with the choice of two likely candidate model distributions, 

to minimize the actual error of inference in this uncertain situation, the best 
strategy is to select the wider one; and 

• the error predicted from the posterior standard deviation is dominated by the 
assumed model distribution and is unreliable; the actual error of inference is 
mainly influenced by the actual distribution of the subjective threshold. 

5.4. Performance Comparison of the Adaptive Bayesian  
Method and the Sample Median 

The sample median is calculated from independent samples of the subjective 
threshold Z measured in the method of limits. The adaptive Bayesian method 
utilizes binary outcomes observed in the method of constant stimuli. Intuitively 
each binary outcome contains less information than a full sample value of Z: it 
only indicates whether the value of Z in that trial is below or above the pre-
scribed stimulus. Given the difference in information content between these two 
types of data, we like to find out if the adaptive Bayesian method based on binary 
outcomes is less efficient in inferring ( )med Z  than the sample median calcu-
lated from full samples of Z. 

Figure 8 compares the relative errors vs N of the two methods. In the Monte 
Carlo simulations, the actual distribution of Z is gamma with 4κ = . In the 
adaptive Bayesian method, the model distribution is Weibull with 2.5β = . A 
fairly uninformative prior ( 100%z zσ µ = ) and a moderately informative prior 
( 40%z zσ µ = ) are tested. Despite the fact that the assumed model is different  

 

 
Figure 8. Comparison of the sample median and the adaptive Bayesian method. The ac-
tual distribution of Z is gamma with 4κ = . The assumed model is Weibull with 

2.5β = . 
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from the actual psychometric function, the Bayesian method is as efficient as the 
sample median in estimating ( )med Z . For moderately large N, the relative er-
rors of the Bayesian method are indistinguishable from those of the sample me-
dian, and are fairly independent of the prior. Thus, we conclude that for esti-
mating the point of subjective equality (PSE) in psychophysical experiments, the 
method of constant stimuli is as efficient as the method of limits. 

6. Concluding Remarks 

We considered the psychophysical experiments in which a skin area of a test 
subject is exposed to an electromagnetic heating or a contact heating. Once the 
heat induced exceeds the subject’s personal pain tolerance, the subject escapes 
from the heating. In this stimulus-response problem, when the specifications of 
heating (the spot size and power density of the electromagnetic beam) are fixed, 
the stimulus is solely described by the exposure duration, and the escape re-
sponse is governed by a subjective threshold that varies among different subjects 
and varies among different realizations for the same subject. Mathematically, the 
subjective threshold is a random variable (Z). In the context of psychometric 
function, the median subjective threshold is the point of subjective equality 
(PSE). We studied the problem of inferring the median subjective threshold in 
psychophysical experiments. There are two types of experiments: a) the method 
of limits, and b) the method of constant stimuli. In the method of limits, the 
heating is kept on until escape (i.e., the stimulus keeps increasing until escape). 
The recorded escape time gives a sample value of the subjective threshold for 
that particular trial. In this way, independent samples of the subjective threshold 
are measured. In the method of constant stimuli, the heating is kept on only for 
a prescribed duration (i.e., the stimulus is prescribed). The observed outcome is 
binary: escape or no escape. In the inference, we modeled the subjective thre-
shold as a Weibull distribution which is described by shape parameter β  and 
scale parameter α . The actual distribution of the subjective threshold may de-
viate from the assumed model. 

We examined four methods for inferring the median subjective threshold: 1) 
sample median, 2) maximum likelihood estimation (MLE) with 2 unknown va-
riables (α  and β  are both unknown), 3) MLE with 1 unknown variable ( β  
is given and α  is unknown), and 4) adaptive Bayesian method. Methods 1 - 3 
are based on independent samples of subjective threshold measured in the me-
thod of limits. Out of methods 1 - 3, method 1 does not assume any distribution 
form; not surprisingly it has the largest inference error. Method 3 assumes both 
the Weibull distribution form and the exact value of β ; it has the smallest infe-
rence error. However, when the assumed β  value is wrong or the actual dis-
tribution deviates from the assumed Weibull model, method 3 produces an in-
correct result. 

A large part of our study was focused on the adaptive Bayesian method, which 
assumes a Weibull model distribution and uses it to extract information from 
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binary outcomes observed in the method of constant stimuli. Based on the 
Monte Carlo simulation results, we draw several key conclusions about the 
adaptive Bayesian method. 
• Even when the actual psychometric function deviates from the assumed 

model, the inferred ( )med Z  in the adaptive Bayesian method converges to 
the true value. 

• If we choose to infer ( )E Z  (the mean subjective threshold) in the adaptive 
Bayesian method, this nice convergence property is lost. 

• At any fixed N (number of trials), the actual relative error of the adaptive 
Bayesian method is mainly influenced by the width of the actual distribution 
of Z: a wider actual distribution leads to a larger relative error. 

• When the width of the assumed model distribution is wider than that of the 
actual distribution, the actual relative error is fairly insensitive to the incon-
sistency. In contrast, when the width of the assumed model distribution is 
narrower than that of the actual distribution, the actual relative error in-
creases significantly with the inconsistency. 

• The predicted relative error from the posterior standard deviation is mainly 
influenced by the width of the assumed model distribution. Using a model 
distribution that is too narrow produces both a large actual error and a false 
sense of accuracy (small predicted error). On the other hand, using a model 
distribution that is too wide yields a predicted error that is too conservative. 

• When facing an uncertainty in the actual distribution width, the best strategy 
is to select a smaller β  in the Weibull model to accommodate the wider 
end in a possible range of the actual distribution width. 

• The actual errors of the adaptive Bayesian method are indistinguishable from 
those of the sample median, and are fairly independent of the prior used. 

In summary, the adaptive Bayesian method is as efficient as the sample me-
dian for estimating the point of subjective equality in psychophysical experi-
ments. This efficiency of the Bayesian method is remarkable since the sample 
median requires measuring full sample values of the subject threshold in the 
method of limits. In contrast, the adaptive Bayesian utilizes the binary outcomes 
observed in the method of constant stimuli. In addition, the Bayesian method 
achieves this efficiency even when the actual psychometric function deviates 
from the assumed model. In the adaptive Bayesian method, the error predicted 
from the posterior standard deviation is unreliable; it does not reflect the actual 
error. The actual error is mainly determined by the actual distribution of Z while 
the predicted error is dominated by the assumed model. To minimize the actual 
inference error when the actual distribution width is uncertain, it is best to use a 
wider model distribution. 
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