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Abstract 
In this paper, we evaluate the integrals that are solutions of the heat and 
Stokes’ equations obtained by Fokas’ transform method by deriving exact 
formulas. Our method is more accurate and efficient than the contour de-
formation and parametrization used by Fokas to compute these integrals. In 
fact, for the heat equation, our solution is exact up to the imaginary error 
function and for the Stokes equation, our solution is exact up to the incom-
plete Airy function. In addition, our solutions extend to the lateral boundary 
without convergence issues, allow for asymptotic expansions, and are much 
faster than those obtained by other methods. 
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1. Introduction 

Fokas’ method (Fokas, 1997 [1] and 2002 [2]) is a recently introduced approach 
that allows solving a large class of PDEs. Also known as the unified transform, 
this method extends classical approaches, such as separation of variables or the 
scattering transform, contains them as special cases, and gives solutions in situa-
tions where the classical methods cannot. 

Classical methods work only poorly for spatial domains with boundary, when 
dealing with inhomogeneous boundary conditions. In this context, the key con-
tribution of Fokas is the so-called “global relation”, which combines specified 
and unknown values of the solution and its derivatives on the boundary. 

Fokas’ method gives the solutions as integrals on an unbounded contour in 
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the complex plane. For example, for the heat and Stokes (first kind) equations 
on the half-line  

( ) ( )
( ) ( )
( ) ( )
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and  
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= ≤

= ≤

             (1.2) 

respectively, this method constructs the solutions ( ),q x t  as integrals (2.1) and 
(2.2) in the complex plane involving an x-transform of the initial condition 0q  
and a t-transform of the boundary condition 0g . 

To evaluate these integrals numerically, Flyer-Fokas (2008, [3]), Fokas et al. 
(2009, [4]), and Papatheodorou-Kandili (2009, [5]) used the steepest descent 
method, deforming the contour in the complex plane, then used the simple tra-
pezoid rule, after parametrizing the curve, to compute the integral. 

Following Flyer-Fokas [3] and for the sake of enabling a comparison, we make 
the choice  

( ) ( ) ( )0 00, sin .q x g t tλ= =  

But, any reasonable (e.g. tempered distribution) Dirichlet boundary condition 
( )0g t  can be decomposed into a superposition of sines, using the sine Fourier 

transform. Thus, we can solve the above equations for general boundary data. 
Initial data are simpler, to the point that one does not need Fokas’ method to 
handle them and will be treated elsewhere. 

In this paper, we evaluate the integrals (2.1) and (2.2) by an alternative ap-
proach. First, we obtain a closed formula for the solution ( ),q x t  of the heat 
Equation (1.1) in terms of elementary functions and one special function, name-
ly the imaginary error function erfi:  

( ) ( )( ) ( )( )
2

2 2
1 2

4

1 2
e, e erfi e erfi ,

2

x
t

z zq x t i z i z
−

− − = + − + + − R  

where 1z  and 2z  are defined later. Second, we obtain an exact expression for 
the solution of Stokes’ Equation (1.2) in terms of elementary functions and 
another special function, the incomplete Airy functions:  

( ) ( ) ( )
1
331 6

2 2 * *3

1

1 1, sin e sin ,
2 4

i x

i
i

q x t t x t F x
λ

λ λ λ α
 

− +  
 

=

 
  = + + +   
  

 

∑  

where ( )* *,iF xα  are functions of the incomplete Airy functions and will be 
determined later. The quantities ( )

1
* 33x t x−=  and ( )

1
* 33i itα α= . 

The above formulas lend themselves well to applications, since there exist fast 
and highly accurate methods for computing the imaginary error function and 
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incomplete Airy functions. For example, the imaginary error function is a stan-
dard function in MATLAB, where it is estimated with 10−20 accuracy by means of 
Padé approximants (Cody, 1969 [6]). Hence, our numerical solution is more ac-
curate than Fokas’ solution and even than that of Papatheodorou-Kandili (2009, 
[5]), who obtained a solution with 10−15 accuracy for the heat equation on a finite 
spatial domain. We also obtained speed improvements of at least an order of 
magnitude, see the Appendix A. 

A related problem is that, as stated in Flyer-Fokas: “for 0x = , the integration 
interval is infinite and any truncation will result in the integral not converging 
exactly to the boundary condition”. By contrast, our exact expressions for the 
solutions extend all the way to the lateral boundary 0x =  without this issue of 
convergence (they are still ill-behaved as 0t → , though). 

In this paper, we also derive the asymptotic expansion for the heat equation 
solution with precise bounds for the error term, which allows one to compute 
the solution with arbitrarily high precision. This only requires evaluating ele-
mentary functions and the imaginary error function erfi. 

The paper is organized as follows. In the next section, we briefly describe Fo-
kas’ method as applied to Equations (1.1) and (1.2). In Section 3 we derive the 
exact formulas for the solutions. In Section 4 we obtain an asymptotic expansion 
for the heat equation solution, together with an estimate for the error size. Fi-
nally, in the Appendix B, we describe the numerical implementation of our 
scheme and compare the results to those of Flyer-Fokas. 

2. Fokas’ Integral Solutions 

In this section, we present the solutions of Equations (1.1) and (1.2) given by 
Fokas and that take the form of integrals. For the heat equation on the half-line 
with initial condition ( ( )0 0q x = ) and a Dirichlet boundary condition  
( ( ) ( )0 sing t tλ= ), the solution is:  

( )
2 2

2 2

1 e e e e, e d
2

i t k t i t k t
ixk

D
q x t k k

k i k i

λ λ

λ λ+

− − −

∂

 − −
= −  − + π ∫          (2.1) 

For the Stokes’ equation of the first kind with the same initial and boundary 
conditions as above the solution is:  

( )
3 3

2
3 3

3 e e e e, e d
4

i t itk i t itk
ixk

D
q x t k k

k k

λ λ

λ λ+

−

∂

 − −
= +  − + π ∫          (2.2) 

To evaluate numerically these integrals, Flyer-Fokas (2008, [3]) and Fokas et 
al., (2009, [4]) deformed the contour of integration to a path in the region where 
the integrand decays exponentially fast for large k. Specifically, in order to get 
rapid convergence of the numerical scheme, they deformed the contour of inte-
gration to a hyperbola above the real axis and asymptotically below D+∂ . After 
that, they mapped the hyperbola from the complex plane to the real line using 
the following parametrisation:  

( ) ( ) ( )sin cos sinh sin cosh ,k i i iθ γ α θ γ α θ α θ= − = +          (2.3) 
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which maps points θ  on the real line to points ( )k θ  on a hyperbola in the 
complex plane. The integral in Equation (2.1) becomes (also see Formula (3.8) in 
Flyer-Fokas):  

( )
( )

( )

( )

( )
( ) ( ) ( )

2 2

2 2

e e e e, e cos d .
2

k t k ti t i t
ixkq x t k i

k i k i

θ θλ λ
θγ θ α θ θ

θ λ θ λ

− −−
∞

−∞

 − − = − −
π  − + 
∫  (2.4) 

The parameters α  and γ  were set to 1. After mapping the integral to the 
real line, Flyer-Fokas truncated the infinite integration interval to a finite one and 
used the simple trapezoidal rule. The same deformation-mapping procedure was 
used with the stokes Equation (2.2) except that 8α = π  was replaced with 6π .  

( )
( )

( )

( )

( )
( ) ( ) ( )

3 3

2
3 3

3 e e e e, e cos d .
4

ik t ik ti t i t
ixkq x t k i

k k

θ θλ λ
θγ θ α θ θ

λ θ λ θ

−
∞

−∞

 − − = − −
 − +π 

∫  (2.5) 

3. Exact Formulas for the Solutions 
3.1. The Heat Equation 

Using several variables and contour changes, as well as Cauchy’s residue theo-
rem, we obtain a more manageable expression for the solution ( ),q x t  of the 
heat Equation (1.1). Our starting point is identity (2.1). Define the following 
four quantities iz , 1 4i≤ ≤ , which will appear in the computation:  

4 2 2
1,2,3,4 .

2 22 2
x t x tz i t i

t t
λ λλ

 
= + − = ± + ±  

 
 

More precisely, let  

1 2

3 4
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2 2 2 22 2

, .
2 2 2 22 2

t x t t x tz i z i
t t

t x t t x tz i z i
t t

λ λ λ λ

λ λ λ λ

   
= − + − = + +      

   
   

= − + + = + −      
   

 

They have the property that 1 4z z= −  and 2 3z z= − . Consequently, 2 2
1 4z z=  

and 2 2
2 3z z= , We also note for future reference that  

2 2
2 2 2 2
1 4 2 3, .

4 2 2 4 2 2
x xz x i x t z z x i x t z
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λ λ λ λλ λ

   
= − + − − = = − − + + =      

   
 

Lemma 3.1. The solution of Equation (1.1) is given by:  
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Proof. First, we convert the integral along the infinite contour to an integral 
on the real line. From (2.1), we have  

( )
( ) ( ) 23 3

4 2

e e 2 e1, e d
2

i t i t tk
ixk

D

i k k i k k i k
q x t k

k

λ λλ λ λ

λ+

− −

∂

 − + + −
 =
 +
 

π ∫   (3.2) 

We consider the contour [ ]
2 1

, R RD
C R R C C C+∂
= −    , where 

D
C +∂

 is the 
part of C on the boundary of the domain D+  and 

1RC  and 
2RC  are circular 

arcs of radius R. Let ( )f k  denote the integrand. On the contour C there are 
two removable singularities at k iλ=  and at k iλ= − − . There are no poles 
either inside or on the contour. Using the analyticity of the integrand, we have: 

The contributions of the integrals along 
1RC  and 

2RC  vanish as R →∞ , by 
Jordan’s lemma. Equation (3.1) can be written as:  

( )
2

2 2 4 2

e e e e e, d d d .
2 2

i t ixk i t ixk tk ixk

D D D

k k i kq x t k k k
k i k i k

λ λ λ
λ λ λ+ + +

− − +

∂ ∂ ∂π π
= − −

− + +π∫ ∫ ∫   (3.3) 

Along 
1RC , eik R θ= , for 0

4
θ≤ ≤

π  and d e dik Ri θ θ= . The first integral in 
(3.3) becomes  

2 2 e
4

2 20

e e d
e

ii ixR

i

R i
R i

θθ

θ θ
λ

π

−∫  

We will show that the integral of the modulus of the integrand converges to 0 
as R →∞  and therefore the integral of the integrand converges to 0 as well. 

2 2 e 2 sin 2
sin4 4 4

2 2 22 20 0 0

e e ed d e d
e e

ii ixR xR
xR

i i

R i R R
R i RR i

θθ θ
θ

θ θ
θ θ θ

λ λλ

π π−π
−≤ ≤

− −−∫ ∫ ∫  

Therefore, when R →∞ , the integral converges to 0 since ( )sin 0θ ≥  for 
0

4
θ≤ ≤

π . 
For the second integral in (3.3), we have  

2 2 e 2 sin 2 sin
sin4 4 4 4

2 2 2 2 2 20 0 0 0

e e e ed d d e d
e e e

ii ixR xR xR
xR

i i i

R i R R
R i R i R

θθ θ θ
θ

θ θ θ
θ θ θ θ

λ λ

−π −π π π
−≤ ≤ =

+ +∫ ∫ ∫ ∫  

which also converges to 0 as R →∞ . 
For the third integral, we have  

2 2 2

2

e e 2 cos 2 sin
4 4

4 4 2 4 4 20 0

cos 2 sin4
2 0

e e e e ed d
e e

1 e d

i ii tR ixR i tR xR

i i

tR xR

R Ri R
R R

R

θ θθ θ θ θ

θ θ

θ θ

θ θ
λ λ

θ

− − −

−

π

π
−

π

≤
+ +

≤

∫ ∫

∫

 

which converges to 0 as well as R →∞  since ( )sin 0θ ≥  and ( )cos 2 0θ ≥  
for 0

4
θ≤ ≤

π . 
Therefore, the three integrals vanish also along 

2RC  since ( )sin 0θ ≥  and 
( )cos 2 0θ ≥  for 3

4
θπ

≤ ≤ π . Also, as R →∞ , the contour 
D

C +∂
 becomes 

D+−∂ . Therefore, as R →∞ ,  
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( ) ( )d d .
D

f k k f k k+

∞

∂ −∞
=∫ ∫  

and,  

( )
2

2 2 4 2

e e e e e, d d d .
2 2

i t ixk i t ixk tk ixkk k i kq x t k k k
k i k i k

λ λ λ
λ λ λ

− − +
+∞ +∞ +∞

−∞ −∞ −∞π π
= − −

− + +π∫ ∫ ∫    (3.4) 

Now, we evaluate each of these three integrals. The first and second one are 
computed directly using the residue theorem. The third one is computed using a 
different strategy. 

For the first integral, we consider a contour that is the boundary of an upper 
semicircular region of a circle of a radius large enough to include the pole iλ . 
Using the residue theorem and Jordan’s lemma, we get: 

( ) 2 2
2

e e ed 2 Res e
2 2 2

i t ixk i t x i x tk ik i i
k i

λ λλ λ λ

λ
λ

 
− − − + −  +∞  

−∞

 
π π π

= =
− 

∫       (3.5) 

In this integral, we need not consider the residue at the other pole iλ−  
since it is not inside the contour. Same holds for the second integral. We con-
sider a contour that is the boundary of an upper semicircular region of a circle of 
radius large enough to include the pole iλ− − . Using the residue theorem, we 
get:  

2 2
2

e e d e
2 2

i t ixk x i x tk ik
k i

λ λλ λ

λ

 
− − −  +∞  

−∞
=

+π ∫                (3.6) 

In this integral as well, we need not consider the residue at the other pole 
iλ−  since it is not inside the contour. Summing (3.5) and (3.6) gives:  

2
2 2

e e e ed d e sin
2 2 2

i t ixk i t ixk xk kk k x t
k i k i

λλ λ λ λ
λ λ

− −+∞ +∞

−∞ −∞π π

 
− = − −  − +  

∫ ∫    (3.7) 

For the third integral in (3.4), we use the partial fractions decomposition of 

4 2

k
k λ+

 as:  

4 2

1 1 1 1 1 .
4

k
ik k i k i k i k iλλ λ λ λ λ
 

= + − − + − + − − + − 
     (3.8) 

We get: 
2 2 2

2 2

4 2

e 1 e ed d d
4

e ed d

tk ixk tk ixk tk ixk

tk ixk tk ixk

i k k k k
k k i k i

k k
k i k i

λ
λ λ λ

λ λ
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+∞ +∞ +∞

−∞ −∞ −∞

− + − +
+∞ +∞

−∞ −∞

−
− = ++ − +


− − − − + − 

π π∫ ∫ ∫

∫ ∫

    (3.9) 

We next compute these four integrals. After changing the variable k by 
k k t=  and completing the square in k , we have:  
 The first integral 

2

22 2
4e ed e d ,

xk i
xtk ixk t

tk k
k i k i tλ λ

 
− − − +  −+∞ +∞

−∞ −∞
=

− −∫ ∫
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Another change of variable: 
2

xk k i
t

= − , gives:  

22 22
4

1
2

e ed e d ,

xi
xtk ixk kt

t

xi
t

k k
k zk iλ

+∞−
− + −−+∞

−∞
−∞−

=
+−∫ ∫               (3.10) 

where 1 2 22 2
x t x tz i i t i

t t
λ λλ

 
= − = − + −  

 
. 

The integrand in the right hand side of (3.10) has 1z−  as a pole. Deforming 
the integral back to the real line will result in a residue at 1z−  exactly when  

( )1Im
2 2
t xz

t
λ

− = −  is non-positive (Cauchy’s theorem). If 2x t λ≥ , then 

there is a residue. If 2x t λ< , then the pole is not inside the contour. There-
fore, the first integral is:  

( )
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22 2
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4
1
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4
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+
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 +

π

π − >
 +

∫

∫ ∫

∫

 

where the integral is interpreted in the principal value sense when 1z ∈  
and  

( ) ( )
2 22 2

1

1

2 24 4
1 1

1

eRes lim e e e .
x xk x i x tz

t t
k z

z k z
k z

λ λ λ
 

− − + − − − −  
 

→−
− = + = =
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   (3.11) 

 The second integral 
22 2

4

2

e ed e d ,
xtk ixk k

tk k
k zk iλ

− + −−+∞ +∞

−∞ −∞
=

++∫ ∫  

where 2 2 22
t x tz i

t
λ λ 

= + +  
 

. Note that in this case there is no residue  

associated with the pole 2z−  since it is outside the contour when deforming the 
integral to the real line. 
 The third integral 

22 2

4

3

e ed e d ,
xtk ixk k

tk k
k zk iλ

− + −−+∞ +∞

−∞ −∞
=

+− −∫ ∫  

where 3 2 22
t x tz i

t
λ λ 

= − + +  
 

. Note also that deforming the integral on the  

real line in this case will not result in a residue since the pole 3z−  is never in-
side the contour. 
 The fourth integral 
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where 4 2 22
t x tz i

t
λ λ 

= + −  
 

. Deforming the integral on the real line will  

result in a residue depending on the location of the pole 4z− . The residue at 

4z−  is:  

( ) ( )
2 22 2

4
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The difference of the residues at 1z−  and 4z−  is  

( ) ( ) ( )
2

2 2
1 4 24

1 4Res Res e e e 2 e sin ,
2

x xz ztz z i x t
λ λ λ

−− − −  
− − − = − = −  

 
 

which cancels in the boundary case 2x t λ= . Therefore, the sum of (3.7) and 
(3.9) produces (3.1), which is what we wanted to prove.                    

We note that  
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is odd and ( ) ( )F z F z= . Since 1 4z z= −  and 2 3z z= − , it follows that 
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Therefore Equation (3.1) becomes:  
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R

R

 (3.14) 

3.2. The Stokes Equation of the First Kind 

Lemma 3.2. The solution of Equation (1.2) is given by:  

( ) ( )
( )1 3

331 6
2 23

1

1 1 e, sin e sin d .
2 4

i i tk xkx

i i

q x t t x t k
k

λ

λ λ λ
α

  +− +  
 

=

 
  = + + +    −  

 
π∑∫  (3.15) 
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where 
1
3

1α λ= , 
1
3

2α λ= − ∈ ; 
1
3

3
1 3
2 2

iα λ
 

= +  
 

,  

1
3

4
1 3
2 2

iα λ + 
= − + ∈  
 

 ; 
1
3

5
1 3
2 2

iα λ
 

= −  
 

, 
1
3

6
1 3
2 2

iα λ − 
= − − ∈  
 

 . 

Proof. From Equation (2.2), we have that  

( )
( ) ( ) 32 5 2 5 5

2 6

e e 2 e3, e d .
4

i t i t itk
ixk

D

k k k k k
q x t k

k

λ λλ λ

λ+

−

∂

 + + − −
 =
 
 

π −∫  (3.16) 

We convert the integral along the infinite contour to an integral on the real 
line. Consider the contour [ ]

1 2
, R RD

C R R C C C+∂
= −    , where 

D
C +∂

 is the 
part of C on the boundary of the domain D+  and 

1RC  and 
2RC  are circular 

arcs of radius R. Let ( )f k  denote the integrand. On the contour C, there are  

four poles: 
1
3

1k λ= , 
1
3

2k λ= − , 
1
3

3
1 3
2 2

k i λ
 

= +  
 

 and 
1
3

4
1 3
2 2

k i λ
 

= − +  
 

. 

Using the analyticity of the integrand, we obtain:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
1 2

1 2 3 4

d d d d d

Res Res 2Res 2Res

0,

R RD

R

C R C C C
f k k f k k f k k f k k f k k

i k k k k

+∂
−

= + + +

= +π + +

=

∫ ∫ ∫ ∫ ∫

 

because the residues at 1k , 2k , 3k  and 4k  are all equal to 0. (It is easy to 
show that. The proof is available upon request). 

The contributions of the integral vanish along 
1RC  and 

2RC . In fact, ( ),q x t  
can be written as:  

( )
32 2 5

3 3 6 2

3 e 3 e 3 e, e d e d d
4 4 2

ikx ikx ikx itk
i t i tk k kq x t k k k

k k k
λ λ

λ λ λ

+
−= + +

π π π− + −∫ ∫ ∫
  

 

Along 
1RC , eik R θ= , for 0

3
θ≤ ≤

π  and d e dik Ri θ θ= . Therefore:  
 The first integral becomes 

3 3 e
3

3 30

e e d
e

ii ixR

i

R i
R

θθ

θ θ
λ

π

−∫  

Therefore,  
3 3 e 3 sin 3

3 sin3 3 3
3 3 33 30 0 0

e e ed d e d
e e

ii ixR xR
xR

i i

R i R R R
R RR

θθ θ
θ

θ θ
θ θ θ

λ λλ

π −π π
−≤ =

− −−∫ ∫ ∫  

when R →∞ , the integral converges to 0 since ( )sin 0θ ≥  for 0
3

θ≤ ≤
π .  

 For the second integral, we have: 
3 3 e 3 sin

3 3
3 3 30 0

e e ed d
e

ii ixR xR

i

R i R
R R

θθ θ

θ θ θ
λ λ

π π −

≤
+ +∫ ∫  

which converges to 0 as R →∞ .  
 The third integral 

3 3
2 3

6 6 e e 6
6 sin sin 33 3

6 6 2 6 20 0

e e e d e d
e

i ii itR ixR
xR tR

i

R i R R
R R

θ θθ
θ θ

θ θ θ
λ λ

− −
π π

≤
− −∫ ∫  
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which converges to 0 as R →∞  since ( )sin 0θ ≥  and ( )sin 3 0θ ≥  for 
0

3
θ≤ ≤

π .  
Along 

2RC , the three integrals vanish also since ( )sin 0θ ≥  and ( )sin 3 0θ ≥  
for 2

3
θπ

≤ ≤ π .  
Also, as R →∞ , the contour 

D
C +∂

 becomes D+−∂ .  
Therefore, as R →∞ , ( ) ( )d d

D
f k k f k k+

∞

∂ −∞
=∫ ∫ .  

Therefore, the contour is deformed to the real axis:  

( )
3 3

3

2
3 3

2 2 5

3 3 6 2

3 e e e e, e d
4

3 e 3 e 3 ee d e d d
4 4 2

i t ik t i t ik t
ikx

ikx ikx ikx itk
i t i t

q x t k k
k k

k k kk k k
k k k

λ λ

λ λ

λ λ

λ λ λ

−

+
−

π

π π π

 − −
= +  − + 

= + +
− + −

∫

∫ ∫ ∫



  

 (3.17) 

The first and second integrals are computed directly using the residue theo-
rem. For the first one, the roots of the denominator of the integrand are:  

1
3

1k λ= , 
1
3

2
1 3
2 2

k i λ
 

= − +  
 

 and 
1
3

3
1 3
2 2

k i λ
 

= − −  
 

. We therefore consider  

a contour that is the boundary of an upper semicircular region of a circle that 
has a radius large enough to include the poles 1k  and 2k . We do not need to 
consider the residue at the other pole 3k  since it is not in the considered con-
tour. Therefore:  

( ) ( ){ } ( ) ( ){ }1 2 1 2
3 3e Res 2 Res e Res 2Res ,

4 4
i t i tii k i k k kλ λ+ = +π π

π
 

where (after some computations)  

( ) ( )

1
1 3
3

3
2 2

1 2
e eRes , Res

3 3

i x
i x

k k
λ

λ

 
− +  
 

= − = −  

Substitution of ( )1Res k  and ( )2Res k  in the integral gives  
1

1 3
3

3
2 2e e 2e

4

i x
i t i xi λ
λ λ

 
− +  
 

 
 − + 
 
 

 

For the second integral, the roots of the denominator of the integrand are: 
1
3

1k λ= − , 
1
3

2
1 3
2 2

k i λ
 

= +  
 

 and 
1
3

3
1 3
2 2

k i λ
 

= −  
 

. We therefore consider a  

contour that is the boundary of an upper semicircular region of a circle that has 
a radius large enough to include the poles 1k  and 2k . We do not need to con-
sider the residue at the other pole 3k  since it is not in the considered contour. 
Therefore:  

( ) ( ){ } ( ) ( ){ }1 2 1 2
3 3e Res 2 Res e Res 2Res .

4 4
i t i tii k i k k kλ λ− −+ = +π π

π
 

where (after some computations),  

( ) ( )

1
1 3
3

3
2 2

1 2
e eRes , Res

3 3

i x
i x

k k
λ

λ

 
− +  −  

= =  
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Substitution of ( )1Res k  and ( )2Res k  in 2I  gives  
1

1 3
3

3
2 2

2 e e 2e
4

i x
i t i xiI

λ
λ λ

 
− +  − −  

 
 = + 
 
 

 

Therefore,  

( )
1
33 11

2 23
1 2

1 1sin e sin .
2 2

x

I I t x t
λ

λ λ λ
 

− +  
 

 
+ = + +  

 
 

For the third integral, we use the partial fractions decomposition of 
5

6 2

k
k λ−

 
as follows:  

5

6 2 1 1 1 1
3 3 3 3

1 1
3 3

1 1 1 1 1
6 1 3 1 3

2 2 2 2

1 1
1 3 1 3
2 2 2 2

k
k

k k k i k i

k i k i

λ
λ λ λ λ

λ λ



= + + +−     − + − + − −          



+ +     − − − − − +           

 

Therefore, 

( )

( )
( )1 3

3

1 2 3

31 6
2 23

1

,

1 1 esin e sin d ,
2 4

i i tk xkx

i i

q x t I I I

t x t k
k

λ

λ λ λ
α

  +− +  
 

=

= + +

 
  = + + +    π −  

 

∑∫


 

  
In light of identities (3.1) and (3.15), to obtain exact formulas for the solutions 

of Equations (1.1) and (1.2) we are left with evaluating integrals of the form:  

( )
2

1 e d
k

i
i

F z k
k z

−

+π
= ∫



 

and 

( )
( )3

1 e, , d .
i tk xk

i
i

F x t k
k

α
α

+

=
−π ∫  

These Cauchy integrals can be computed by means of the Hilbert transform. 
When restricted to the positive half-line [ )0,+∞ , the first integral is known as 
the Goodwin-Staton integral, see Abramowitz and Stegun [7]; also see Dawson’s 
integral. We compute both integrals in the following section in terms of special 
functions. 

3.3. The Hilbert Transform 

Lemma 3.3. Consider two entire functions f and g, such that f ig+  is bounded 
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on +  and f ig−  is bounded on − , then f g= . In particular, consider 
two entire functions f and g such that f and g are real-valued on the real line and 
f ig+  is bounded on + . Then f g= .  

Proof. Since f ig+  is bounded on + , its Fourier support is contained in 
[ )0,∞ , (that is its Fourier transform vanishes over ( ),0−∞ ). Therefore, for 

0ξ < , ( ) ( )ˆ ˆ 0f igξ ξ+ = . Likewise, the −  boundedness of f ig−  implies 
that ( ) ( )ˆ ˆ 0f igξ ξ− =  for 0ξ > . Hence, for 0ξ ≠ , ( ) ( )( ) ( )ˆĝ i sgn fξ ξ ξ= − , 
and therefore f g= . For 0ξ = , under our boundedness assumptions, one 
cannot get anything worse than a constant, and the Hilbert transform is only 
unique up to a constant.  

For the second conclusion, by the Schwartz reflection principle ( ) ( )f z f z=  
and ( ) ( )g z g z= , so ( ) ( ) ( ) ( )f z ig z f z ig z+ = − . Hence the boundedness of 
f ig+  in the upper half-plane implies that of f ig−  in the lower half-plane 

and we can fall back on the previous argument.   
Regarding the error function, since 

2
e z−  and ( )2

e erfiz z−−  are real-valued 
on the real axis and ( )( )2

e 1 erfiz i z− −  is bounded in the upper half-plane, it 
follows that the Hilbert transform of 

2
e k−  is  

( )( ) ( ) ( )2 2 2
e e erfi e erf ,k z zH z z i iz− − −= − =  

which is also an analytic function, and real-valued on the real line. Here the im-
aginary error function ( )erfi z  is defined as ( ) ( )erfi erfz i iz= −  and ( )erf z  
is the usual error function:  

( ) 2 2

0

2 2erf e d 1 e d .
z t t

z
z t t

∞− −=
π

= −
π ∫ ∫  

For z∈ , ( )erfi z  is real-valued too, as seen from the fact that  

( ) 2

0

2erfi e d .
z tz t

π
= ∫  

This Hilbert transform is closely related to Dawson’s function and to the Mit-

tag-Leffler functions 1 2E : ( )2 2 2e k D z−
+=

π
 , see [7].  

Writing the Cauchy kernel as a combination of the Poisson and Hilbert ker-
nels, we get:  

( ) [ ]( )
( ) [ ]( )

( ) [ ]( )

,
1 d ,

, .

f z z
f k

PV k if z f z z
k z

if z f z z

+∞ +

−∞
−

 ∈
= − + ∈

−π  + ∈
∫









        (3.18) 

Therefore:  

( )( ) ( )

( )( ) ( )( )

( )( ) ( )( )

2 2

2
2 2 2

2 2 2

e e erfi ,

1 e d e e e erfi ,

e e e erfi ,

k z

k
z k z

z k z

z z z

PV k i z i z z
k z

i z i z z

− −

−
+∞ − − − +

−∞

− − − −

 = − ∈
= − + = − + ∈

− 
 + = − ∈

π ∫













  (3.19) 

where PV  denotes the Cauchy principal value,   the Hilbert transform, 
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( )erfi z  the imaginary error function, { }: , , 0z x iy x y y+ = = + ∈ >  the 
upper half complex plane, and −  the lower half complex plane. 

The expression (3.19) is analytic, for z +∈  and for z −∈  separately, and 
is bounded on the complex plane, but is not continuous, due to the jump  

discontinuity across the real axis. It decays at a rate of 1
Im

O
z

 
  
 

 as Im z →∞ . 

At this stage, we obtain an exact formula for the solution of the heat equation.  
Proposition 3.4. The exact solution of Equation (1.1) is given by  

( ) ( )( ) ( )( )
2

2 2
1 2

4

1 2
e, e erfi e erfi .

2

x
t

z zq x t i z i z
−

− − = + − + + − R      (3.20) 

The above formula is valid for all ( ),x t  with 0x ≥ , 0t >  (since iz  are 
not defined when 0t = ). This agrees with the fact that, although the expression 
(3.1) defines a discontinuous function, the solution ( ),q x t  is continuous up to 
the boundary and smooth for 0t > .  

Proof. Of the four values iz , 2z  and 3z  are always in the upper half-plane, 
while 1z  and 4z  can be in + ,  , or − . Thus, we have to distinguish the 
following three cases: 
 If 2x t λ< , then 1z  and 4z  are in −  and 2z  and 3z  are in + . 

Therefore,  

( )( )
( )( )
( )( )

( )( )

2
1

22 2

2
3

2
4

1 1

2 2

3 3

4 4

e erfi ,

e erfi ,e d
e erfi ,

e erfi ,

z

zk

z

z

i z z z

i z z z
PV k

k z i z z z

i z z z

−

−−
+∞

−∞ −

−

π

π

 − − =

− + − == 

+ −π

π

+ − =

 − − =

∫  

and from Equation (3.1) above  

( )

( ) ( )( ) ( )( )

( )( ) ( )( )

2
2 2

2 2

2 2 2 2
1 4 1 2

2 2
3 4

2

2

2 44
2

1 3

4 4

1 2

3 4

24

1

e e e, e sin d d
2 4

e ee e e erfi e erfi
2 4

e erfi e erfi

e e er
4

j

x
k ktx

j jj j

x x
t t

z z z z

z z

x
t z

j

q x t x t k k
k z k z

i z i z
i

i z i z

i

λ λ λ
− − −− +∞ +∞

−∞ −∞
= =

− −

− − − −

− −

−
−

=

  
= − − − −    π + +    

= − − − − − − + −

+ + − − − − 

= +

∑ ∑∫ ∫

∑ ( )( ) ( )( )

( )( ) ( )( )

2

2

2 2
1 2

2

1

4

1 2

fi e erfi

e Re e erfi e erfi .
2

jz
j j

j

x
t

z z

z i z

i z i z

−

=

−

− −

 
− + + − 

 

 = + − + + − 

∑

 (3.21) 

Here we used the fact that 1 4iz iz=  and 2 3iz iz= , so ( ) ( )4 1erfi erfiz z− = − . 

 If 2x t λ= , then 1 2
tz λ

= −  and 4 2
tz λ

=  are in  ; and  
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2 2
2
tz i tλ λ= +  and 3 2

2
tz i tλ λ= − +  are in + . Therefore, 

( )
( )( )
( )( )

( )

2
1

2
2 2

2
3

2
4

1 1

2 2

3 3

4 4

e erfi ,

e erfi ,e d
e erfi ,

e erfi ,

z

zk

z

z

z z z

i z z z
PV k

k z i z z z

z z z

−

−−
+∞

−∞ −

−

− − =

− + − == 

+

π

− + − =

− −

π

π

= π

∫  

and  

( )

( )( ) ( )( )

2 2

2 2
1 2

2 42

1 3

2

1 2

e e e, d d
4

e Re e erfi e erfi .
2

t
k k

j jj j

t

z z

q x t k k
k z k z

i z i z

λ

λ

− − −
+∞ +∞

−∞ −∞
= =

−

− −

 
= − − 

+ +  

 =

π

+ − + + − 

∑ ∑∫ ∫
    (3.22) 

 If 2x t λ> , then all the roots iz  are in + . Therefore,  

( )( )
( )( )
( )( )
( )( )

2
1

22 2

2
3

2
4

1 1

2 2

3 3

4 4

e erfi ,

e erfi ,e d
e erfi ,

e erfi ,

z

zk

z

z

i z z z

i z z z
PV k

k z i z z z

i z z z

−

−−
+∞

−∞ −

−

− + − =

− + − == 

+ − + − =

− +

π

π

=

π

− π

∫  

and  

( )

( )( ) ( )( )

2
2 2

2

2 2
1 2

2 44

1 3

4

1 2

e e e, d d
4

e Re e erfi e erfi .
2

x
k kt

j jj j

x
t

z z

q x t k k
k z k z

i z i z

− − −
+∞ +∞

−∞ −∞
= =

−

− −

 
= − − 

+ +  

 = + − + + −

π



∑ ∑∫ ∫
    (3.23) 

The Formulas (3.21) and (3.23), which correspond respectively to the regions 
2x t λ<  and 2x t λ> , are the same and reduce to the Formula (3.22) when 

x approaches 2t λ  from both regions. In all three cases, we have proved 
(3.20).                                                            

For arbitrary boundary data ( )0g t , this leads to the following solution of the 
heat equation:  

( ) ( )( ) ( )( ) ( )

2

2 2
1 2

4

1 2 00

e ˆ, Re e erfi e erfi d ,
2

x
t

z z sq x t i z i z g λ λ
−

∞ − − = + − + + − π ∫
 

where 0ˆ sg  is the sine transform of the boundary condition 0g :  

( ) ( ) ( )0 00

2ˆ sin d .sg g t t tλ λ
∞

π
= ∫  

Next, we compute the integral ( ), ,iF x tα  and obtain an exact expression for 
the solution of the Stokes equation of the first kind. The change of variable 

( )
1

* 33k t k=  in the expression of ( ), ,iF x tα  gives: 

https://doi.org/10.4236/jamp.2021.94055


M. Lachaab, M. Beceanu 
 

 

DOI: 10.4236/jamp.2021.94055 823 Journal of Applied Mathematics and Physics 
 

( )

*3
* *

3
* * *

* *

1 e, d ,

ki x k

i
i

F x k
k

α
α

 
 + 
 

−π
= ∫



                (3.24) 

where ( )
1

* 33x t x−=  and ( )
1

* 33i itα α= . This is the Cauchy integral of  
*3

* *
3e

ki x k
 
 + 
  , which is an analytic function bounded on the real line—so, for fixed 

x and y∈ , ( ), BMOF iy x⋅ + ∈ . 

Proposition 3.5. The exact solution of Equation (1.2) is given by:  

( ) ( ) ( )
1
331 6

2 2 * *3

1

1 1, sin e sin ,
2 4

i x

i
i

q x t t x t F x
λ

λ λ λ α
 

− +  
 

=

 
  = + + +    
   

∑     (3.25) 

where ( )* *,iF xα  are computed later.  
Proof. By analogy with (3.18) and following Constandinides-Marhefka [8], let 

the incomplete Airy functions be given by:  

( ) ( )

( ) ( )

( )

3

3

3

3 3

3 3

3

Ai e d ,

Bi e d ,

Ci e d .

ti xti
k k

ti xti
k k

ti xti
k k

x t

x t

x t

 
 + + ∞  

 
 + − + ∞  

 
 + − ∞  

=

=

=

∫

∫

∫

                 (3.26) 

For the integral to converge, the upper integration limit in (3.26) can be taken 

to be eiθ∞ , for 
2 4 50, , ,

3 3 3 3
θ      ∈     

    

π π π π
π


  . Over each range, the integral 

is constant. 
Due to the integrand’s rapid decay, the integral (3.26) converges for any 

,x k ∈ , defining an analytic function of both. ( )Aik x  is known as the in-
complete Airy integral, introduced by Levey-Felsen (1969, [9]). Also see Michae-
li (1996, [10]) for a so-called “Airy-Fresnel integral”. 

When 0k = , ( )0Ai x , ( )0Bi x , and ( )0Ci x  solve the inhomogeneous Airy 
equation 1y xy′′ − = . More generally, for any k ∈  they solve it with a source 
term of  

3

3
e .

ki xk

y xy

 
 +
 
 ′′ − =  

The three incomplete Airy functions are then related, modulo the usual Airy 
functions ( )Ai x  and ( )Bi x :  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )Bi Ai 2 Ai , Ci Ai Ai Bi .k k k kx x x x x x x= − = − +π π  

Since (by a change of variable t it′ = )  

( )
3 3
3 3Ci e d e d ,
t ti xt xti

k k ik
x t i t

 
 + − + − ∞ +∞ = = −∫ ∫             (3.27) 

( )Cik x i∈   for k i∈   and x∈ . Hence ( ) ( )Ci iki x ∈  for k ∈  and 
x∈ . 
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By the Schwartz reflection principle, it follows that ( ) ( )Ci Cikki x i x= , so 
( ) ( )Ci Cikk x x= − . In particular, ( ) ( )Ci Cik kx x− = −  for k ∈  and x∈ .  

For 0k =  and x∈ , ( )0Ci x  is purely imaginary:  

( ) ( ) ( )
3

3
0 0

Ci , e d .
t tx

x iC x x t
− ++∞

= − = ∫  

When x∈ , ( ) ( )0,C x ∈ ∞  is a positive real number. ( )0C  is an absolute 
constant that can be computed in terms of the Γ  function:  

( ) ( )
3

2 33
0

0 e d 3 1 3 .
t

C t
−+∞ −= = Γ∫  

When 0x = , ( )Ci 0k  can also be expressed in terms of the incomplete Γ  
function:  

( ) ( ) ( )( )
3

1 3
1 32 3 2 3 2 33

3
Ci 0 e d 3 e d 3 1 3, 3 .

t
t

k ik ik
i t i t t i ik

−+∞ +∞− − − −= − = − = − Γ∫ ∫  

However, for 0k ≠  and 0x ≠ , the incomplete Airy functions cannot be 
reduced to a simpler expression. 

Lemma 3.6. The function  

( )
3 3

3 3, e e d
k txk xt

k
f k x t

− − ++∞
= ∫  

is uniformly bounded for ( ) 0k ≥R . 
Proof. 

 If k +∈ , then the integral converges and gives a continuous function of k 
and therefore it is uniformly bounded. 

 If k +∉ , then we have k iy+  and the first part of the above function be-
comes: 

( ) ( ) ( ) ( )
3 2 33 32 2

3 3 33 3e e e ,
k yk yk iy kk x y i xyk iy x k x y

phase
 

+  − + + − −− + − + 
 = = ×  

which is bounded given that 
2

e 1ky− ≤ . The absolute value of the integral of the 
above function is also bounded. In fact:  

( ) ( )
3 3

2 2 2 2
3 3

0 0
e e d e e d

k kk x y k x yy yky kyy y
− + − + + −=∫ ∫





   

  
Now, let k ik=   and t it=   then ( ) 0k ≥R  implies Im 0k ≤  and the above 

function becomes:  

( ) ( )
3 3 3 33

3 3 3 33, e e d e e d e Ci ,
k k t kti xk i xk i xt i xkxt i

kik k
f k x t i t i x

       
       − + − + + − +− +       +∞ − ∞       = = =∫ ∫
  



  





 



  

which is bounded for Im 0k ≤ . 
Now, let k kε=  , where 3 1ε = , then the above function will be expressed in 

terms of the two other incomplete Airy functions. In fact: 

( ) ( ) ( )( )

( ) ( )

3 3 3 3

3

3 3 3 3
1

3
1

e e d e Bi e Ci

, e

k t k ki xk i xt i xk i xk

k kk

ki xk

i t i x i x C x

f k x iC x

ε
       
       − + + − + − +       ∞       

 
 − + 
 

= = +

= +

∫
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where ( ) ( ) ( )( )1 Ai BiC x x i x= −π− , is bounded for k  in some half-plane. On 
the other half plane, the function becomes:  

( ) ( ) ( )( )

( ) ( )

3 3 3 3
2

3

3 3 3 3
2

3
2

e e d e Ai e Ci

, e

k t k ki xk i xt i xk i xk

k kk

ki xk

i t i x i x C x

f k x iC x

ε
       
       − + + − + − +       ∞       

 
 − + 
 

= = +

= +

∫
  



  



 











 

where ( ) ( ) ( )( )2C x Ai x iBi xπ= + , is also bounded.  
Therefore: 

( ) ( ]

( )


( )

( )


( )

3

3

3
1

3
2

ˆ 0; ,0

e 0; on some half-line

e 0; on the other half-line

ki xk

ki xk

f

f iC x

f iC x

ξ ξ

ξ ξ

ξ ξ

 
 − + 
 

 
 − + 
 

 = ∈ −∞

 
 + =   

 
  + =   









    (3.28) 

Now Let’s apply the same change of variables to the derivative of the above 
function with respect to x. We have: 

( )
3 3

3 3, e e d
k txk xt

k
f k x t t

− − ++∞
′ = ∫  

Then the change of variables k ik=   and t it=   gives:  

( )

( )

3 3 3 3

3

3 3 3 3

3

, e e d e e d

e Ci ,

k t k ti xk i xt i xk i xti i

k k

ki xk

k

f k x t t i t t

i x

       
       − + + − + +       − ∞ − ∞       

 
 − + 
 

′ = − =

′=

∫ ∫
 

 

 

 

 









   

 

which is bounded. In terms of the two other incomplete Airy functions, we let 
k kε=  , where 3 1ε = . Therefore:  

( ) ( ) ( )( )

( ) ( )

3 3 3 3

3

3 3 3 3
1

3
1

e e d e Bi e Ci

, e

k t k ki xk i xt i xk i xk

k kk

ki xk

i t t i x i x C x

f k x iC x

ε
       
       − + + − + − +       ∞       

 
 − + 
 

′ ′ ′= = +

′ ′= +

∫
  



  



 







 



 

where: ( ) ( ) ( )( )1 Ai BiC x x i x′ ′ ′= −π − , and  

( ) ( ) ( )( )

( ) ( )

3 3 3 3
2

3

3 3 3 3
2

3
2

e e d e Ai e Ci

, e

k t k ki xk i xt i xk i xk

k kk

ki xk

i t t i x i x C x

f k x iC x

ε
       
       − + + − + − +       ∞       

 
 − + 
 

′ ′ ′= = +

′ ′= +

∫
  



  



 







 



 

where: ( ) ( ) ( )( )2 Ai BiC x x i x′ ′ ′= π + , which are both bounded.  
Now, we have the general formula of the Hilbert transform for the function 

3

3e
ki xk

f
 
 − + 
 = : 

( ) ( )Ci Ci .k kf f f x f xα β γ ′= + +  
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Taking the Fourier transform and using the above results, we get:  

( ) ( ) ( ]
( ) ( )

( ) ( )
2

ˆ ˆ Ci Ci , ,0
ˆ ˆ Ci Ci , on some half-line
ˆ ˆ Ci Ci , on the other half-line

k k

k k

k k

if f f x f x

i f f f x f x

i f f f x f x

α β γ ξ

ξ α β γ ξ

ξ α β γ ξ

 ′= + + ∈ −∞
 ′= + +


′= + +

 

Using Equation (3.28), the above system becomes: 

( ) ( )
( ) ( )

1 1
2

2 2

i
i C x C x
i C x C x

α
ξ α β γ
ξ α β γ

=
 ′= − −
 ′= − −

                 (3.29) 

Therefore, the solution for α , β , and γ : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
2 1

1 2 2 1

2
1 2

1 2 2 1

1 1

1 1

i

i C x C x

C x C x C x C x

i C x C x

C x C x C x C x

α

ξ ξ
β

ξ ξ
γ

=


 ′ ′− − −  = ′ ′−
  − − −  = ′ ′−

              (3.30) 

Using the formulas for ( )1C x , ( )2C x , ( )1C x′ , ( )2C x′ , ( )3 iξ = − + , 

( )2 3 iξ = +  and the Wronskian ( ) ( )( )Ai ,Bi 1W x x = π , we get after simpli-
fication:  

( ) ( ) ( )
( ) ( ) ( )

1 Ai 3 Bi

1 Ai 3 Bi

i

i x i x

i x i x

α

β

γ

=


′ ′= − −
 = − +

                  (3.31) 

Now, we have:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3

3 3e e 1 Ai 3 Bi Ci

1 Ai 3 Bi Ci

k ki xk i xk

k

k

i i x i x x

i x i x x

   
   − + − +   
      ′ ′= + − − 

  ′+ − +  


 

Thus,  

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*3
* *

*

*

*3
* *

*

*

3 * * *

1
* * * * 31,2

3 * * *

* *

* * * *
3,4

e 1 Ai 3 Bi Ci

1 Ai 3 Bi Ci , for 3

1 Ai 3 Bi Ci
,

11 Ai 3 Bi Ci , for
2

i
i

i

i

i
i

i

i

i x

i x

i

i i x i x x

i x i x x t

e i x i x x
F x

i x i x x

α
α

α

α

α
α

α

α

α λ

α
α

 
 +
 
 

 
 +
 
 

  ′ ′+ − − 

  ′+ − + = ±  

 ′ ′− − 
=

  ′+ − + = ± +  

π

π

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

*3
* *

*

*

1
3

3 * * *

1
* * * * 35,6

3 3 ,
2

e 2 1 Ai 3 Bi Ci

1 31 3 Bi Ci , for 3
2 2

i
i

i

i

i x

i t

i i x i x x

i Ai x i x x i t

α
α

α

α

λ

α λ

 
 +
 
 











       

   ′ ′+ − − 
     ′+ − + = ± −    

π
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and finally 

( ) ( ) ( )
1
331 6

2 2 * *3

1

1 1, sin e sin ,
2 4

i x

i
i

q x t t x t F x
λ

λ λ λ α
 

− +  
 

=

 
  = + + +    
   

∑  

  

4. Asymptotic Expansion of the Heat Equation’s Solution 
4.1. Deriving the Asymptotic Expansion 

Our exact expression (3.20) for the solution q is not very transparent. In order to 
better understand its properties, we next derive an asymptotic expansion for 
( ),q x t . It is well known, see Abramowitz and Stegun [7], that the imaginary er-

ror function ( ) ( )erfi erfz i iz= −  has the following asymptotic expansion:  

( ) ( )2

3 5 7 2 1

2 1 !!e 1 1 3 15erfi ,
2 4 8 2

z

n n

n
z i

z z z z z +

− 
= − + + + + + + + 

π 
        (4.1) 

Here ( ) ( )2 1 !! 1 3 5 2 1n n− = ⋅ ⋅ −
 is the semifactorial function, with the con-

vention that ( )1 !! 1− = . 
For completeness, we rederive this formula below, together with some precise 

bounds for the error in this expansion. We start from the definition of the error 
function:  

( ) 2 2

0

2 2erf e d 1 e d
iz t t

iz
iz t t

+∞− −= −
π

=
π ∫ ∫  

By repeated integration by parts, we obtain  

( )( ) ( )

( ) ( )

2
2

2

2 3 3 5 2 1

1

1 2 1
0

1 3 2 1 1e 1 1 1 3e d
2 2 2 2

2 1 !!e ,
2

z
t

NN Niz

z N

Nn n
n

N
t R z

i z z z z

n
R z

i z

∞ −
−

−

+ +
=

 × × × − −×
= + + + + +  

 

−
= +

∫

∑





 

where ( )NR z  is the remainder after N terms and is given by  

( ) ( ) ( ) 2

2

2 1 !! e1 d .
2

t
N

N N Niz

N
R z t

t

−
+∞−

= − ∫  

Therefore, 

( ) ( ) ( ) ( )
2 1

2 1
0

2 1 !!eerfi erf
2

z N

Nn n
n

n
z i iz i R z

z

−

+
=

−
′− = − − = − − +

π ∑         (4.2) 

where  

( ) ( )( ) ( ) 2

21

1 2 1 !! e d .
2

N t

N NN iz

i N
R z t

t

−
+∞

−
=

π

− − −
′ ∫               (4.3) 

Replacing (4.1) in (3.20), we formally get the asymptotic expansion of the so-
lution  

( ) ( ) ( )
2

4

1 2 1 1 2 1
0 1 2

2 1 !! 2 1 !!e, Re .
2 2

x
t

n n n n
n

n n
q x t

z z

−
∞

+ + + +
=π

− − 
− + 

 
∑           (4.4) 
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However, this computation is slightly misleading, because it does not give a 
good estimate for the size of the error. If we use Formula (4.4), the error will be 
large in some cases of interest. In fact, Formula (3.1) is better in a certain sense 
than Formula (3.20), because the sine term in the former, which is absent in the 
latter, can sometimes be a leading term, see below. 

4.2. Estimating the Error in the Asymptotic Expansion 

A more straightforward approach also leads to a better error estimate. For this 
purpose, we discard the exact Formula (3.20), obtained by estimating the Cauchy 
integral using the Hilbert transform, and go back to (3.1). 

Lemma 4.1. The following asymptotic expansion is valid as z →∞  for  
[ ] [ ]arg , , 2z δ δ δ δπ +π∈ − π−

, 0δ > :  

( )2

2 1
0

2 1 !!e d .
2

k

n n
n

n
k

k z z

− ∞∞

+−∞
=

−
−

π
− ∑∫   

More precisely,  

( ) ( )
2 1

22 1
0

2 1 !!e d ,
2

k N

Nn n
n

n
k Q z

k z z

− −∞

+−∞
=

π−
= − +

− ∑∫               (4.5) 

where the error is bounded by  

( ) ( )
2 2

2 1 !!
,

2 Im
N NN

N
Q z

z z

π−
<                      (4.6) 

which converges to 0 for fixed N as Im z →∞ .  
Proof. The fraction 1

k z−
 can be written as:  

( )
2 1

2 3

1 1 1 1 .
1

N N

N N

k k k k
kk z z z z z z k z z
z

− 
= − × = − + + + + + − − −

  

Therefore,  

( )
2

22
1

2
1

e 1d e d ,
k N

m k
Nm

m
k k k Q z

k z z

−
∞ ∞ − −

−∞ −∞
=

= − +
− ∑∫ ∫          (4.7) 

where  

( )
( )

22

2 2

e d .
N k

N N

kQ z k
k z z

−
∞

−∞
=

−∫  

The values of the integrals in (4.7) are known: for 1m −  odd they are zero 
because the integrands are odd. For even values of 1 2m n− =  we obtain, by re-
peated integrations by parts,  

( )22 2 1 !!
e d .

2
n k

n

n
k k

∞ −

−∞

−
=

π
∫                   (4.8) 

Therefore  

( ) ( )
2 1

22 1
0

2 1 !!e d .
2

k N

Nn n
n

n
k Q z

k z z

− −∞

+−∞
=

π−
= − +

− ∑∫  
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An upper bound for the error term 2NQ , based on the exact formula above, is  

( ) ( )22
2 2 2

2 1 !!1 e d .
Im 2 Im

N k
N N NN

N
Q z k k

z z z z
∞ −

−∞

−
< =

π
∫  

  
Substituting (4.7) in Formula (3.1) and taking into account (3.14), we get the 

following asymptotic expansion of the solution ( ),q x t :  
Proposition 4.2. The solution ( ),q x t  to Equation (1.1) admits the following 

asymptotic expansion:  

( )

( ) ( )

( ) ( )

2

2

14
2

21 2 1 1 2 1
0 1 2

14

21 2 1 1 2 1
0 1 2

2 1 !! 2 1 !!ee sin , 2
2 2 22

,

2 1 !! 2 1 !!e , 2 ,
2 22

x
Ntx

Nn n n n
n

x
Nt

Nn n n n
n

n n
t x Q x t

z z
q x t

n n
Q x t

z z

λ λλ λ

λ

−
−−

+ + + +
=

−
−

+ + + +
=


  − −  ′− − + +         = 

 − −  ′− + +

π

π
 

∑

∑





R

R

 (4.9) 

where the error 2NQ′  is bounded by 

( )
2

4

2 2

2e 2 1 !!
.

max , 2
4

x
t

N N

t N
Q

xt x t
t

λ λ

−
−

′ <
 

− 


π


 

Proof. From (3.1) and (4.4) we get the following rough bound for the error 

2NQ′ :  

( )

( ) ( )

2

2 2

4

2 2

4 4

2 2

e 2 1 !!1 4
4

2
2 2 22 2

e 2 1 !! 2e 2 1 !!
.

max , max , 2
4 2 42

x
t

N N

N

x x
t t

N N

N
Q

t x t x t
t t

N t N

x x t xt t x t
t tt

λ λ λ

λλ λ λ

−

− −

−
′ < ⋅

   + − −     

− −
≤ ≤

   
− −   

   

π
π

π π

 

The first line can also be used to obtain other bounds, e.g.  

( )
2

1 2 4

2 2 1

2 e 2 1 !!
.

2

x
N t

N N

t N
Q

x t λ

−+

+

−
′

− π
<  

  
Thus, the asymptotic expansion (4.9) may be inaccurate near the diagonal 

2x t λ= , but covers both the case when x is fixed and t is large and the case 
when t is fixed and x is large. 

5. Discussion 

Interestingly, the solution behaves differently in these two regions. In the large x 
regime, the leading order approximation to the solution is given by (after simpli-

https://doi.org/10.4236/jamp.2021.94055


M. Lachaab, M. Beceanu 
 

 

DOI: 10.4236/jamp.2021.94055 830 Journal of Applied Mathematics and Physics 
 

fication)  

( ) ( ) ( ) ( )

2 25
3 24 42

1 2 2 2 34 2 4

8 e 2 e, , , .
16 2

x x
t tt x tq x t q x t Q Q Q

x t x t

λ
λ λ

− −

′′ ′= + = + <
+ −π π

 (5.1) 

The leading term 1q  and the error are both of size 
2

3 4e
x

tx
−− . 

The next term in this expansion is (after simplification)  

( )
( )

25 7 9 11
8 7 3 6 3 5 42 2 2 2

3 34 2 4

3 3 16 144 e
, .

16 16

x
tt x t x t x t x

q x t
x t

λ λ λ λ

λ

− 
+ − −  

 −
+ π

=      (5.2) 

Explicitly, as x →∞   

( ) ( ) ( )
( )

2

5 2 4

1 3 4 4 5

6 e, , , , .
2

x
ttq x t q x t q x t Q Q

x t λ

−

′ ′+ + <
− π

=  

The second term 3q  is of size 
2

4 4e
x

tx
−−  and the error is of size 

2

5 4e
x

tx
−− . 

On the other hand, in the large t regime, the term  

2e sin
2

x
t x

λ λλ
−  

−  
 

 

dominates (at least on average, since the sine can be zero), so as t →∞  the first 
two terms are  

( ) ( )

( )

2

2

5
42

2
24 2 4

1 2 4

2

8 e, e sin ,
2 16

2 e .
2

x
tx

x
t

t xq x t t x Q
x t

tQ
t x

λ λ λλ
λ

λ λ

−
−

−−

 
′= − + +   + 

′ <
−

π

π

 

Again, ( )1 ,q x t  has the same size, 3 2t− , as the remainder. Considering one 
more term, we have  

( ) ( ) ( )

2

2
1 3 4

3 2 4

4 2

, e sin , , ,
2

6 e .
( 2 )

x

x
t

q x t t x q x t q x t Q

tQ
t x

λ λλ

λ λ

−

−−

 
′= − + + +  

 

′
− π

<

 

Here 3 4q Q′+  has a size of at most 5 2t− . 
Finally, let us mention that along the diagonal 2x t λ=  a similar analysis 

implies that  

( )
2

2 , , .
2

t

eq t t t
t

λ

λ
λ

−

π
→ ∞
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Appendix A. A Comparison with Fokas’ Method 

For comparison with Fokas’ method, we repeatedly ran both our code and 
Flyer-Fokas’ code on the same publicly available MATLAB/Octave online im-
plementation http://www.tutorialspoint.com/execute_matlab_online.php, and 
averaged the times we obtained. The running times and averages are listed in 
Table A1. 

We found that it takes much longer to produce the figure below for the heat 
equation using Fokas’ method and that the difference in running times becomes 
more pronounced for a bigger grid. 
 
Table A1. Running time difference in seconds between Fokas' method and our method in 
solving the heat equation on a half-line. 

 
Fokas’ Method for Heat Equation Our Method for Heat Equation 

101 × 101 Grid 501 × 501 Grid 101 × 101 Grid 501 × 501 Grid 

 0.52904 12.191 0.04947 0.60803 

 0.51714 12.796 0.05220 0.57233 

 0.54877 11.895 0.07941 0.46863 

 0.49711 11.974 0.05840 0.47097 

 0.49120 11.515 0.07217 0.46541 

Average 0.51665 12.074 0.06233 0.51707 

Appendix B. Code 

For reference, this is the MATLAB/Octave code we used to compare the running 
times of Fokas’ method and our method and to generate Figure B1. 

 

  
Figure B1. The solutions of the heat equation displayed on [ ]0,1x∈  and [ ]0,4t∈ π  (left) and of Stokes equation displayed on 

[ ]0,1x∈  and [ ]0,1t∈  (right). 
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B.1. Our Matlab code for the heat equation 
 

 
 

B.2. Flyer-Fokas’ code for the heat equation (Adapted from [3]) 
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