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Abstract 
Euler-Bernoulli beam equation is very important that can be applied in the 
field of mechanics, science and technology. Some authors have put forward 
many different numerical methods, but the precision is not enough high. In 
this paper, we will illustrate the high-precision numerical method to solve 
Euler-Bernoulli beam equation. Three numerical examples are studied to 
demonstrate the accuracy of the present method. Results obtained by our 
method indicate new algorithm has the following advantages: small computa-
tional work, fast convergence speed and high precision. 
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1. Mathematical Modeling 
The Mathematical Model of Euler-Bernoulli Beam Equation 

Under the free vibration, the equation of transverse motion of a uniform Eu-
ler-Bernoulli beam is determined by a partial differential equation [1] [2], as 
shown in  

( ) ( ) ( ) ( )4 2 4
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where , , eEI m r , and ir  are the beams flexural rigidity and mass per unit 
length, external (air) damping coefficient, and Kelvin-Voigt internal damping 
coefficient [3], respectively. The transverse displacement ( ),u x t  of the beam 
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varies with the position x and time t. 
In [4], define ( ),u x t  as the transverse deflection of the beam, ( ),f x t  as 

the generic arbitrary dynamic loads that distribute along the beam axis and t is 
time. The axial deformation is not considered here, namely the axial deforma-
tion is assumed to be zero. Using the Hamilton principle and employing the Eu-
ler-Bernoulli beam theory, variable coefficient Euler-Bernoulli beam equation 
can be obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 2

4 2

, , ,
, ,e i

u x t u x t u x t
EI x m x r x r x u x t f x t
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In this paper, we consider the following variable coefficient Euler-Bernoulli 
beam equation 
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the initial conditions are expressed as: 

( ) ( ) ( ) ( ) [ ],0 , ,0 , 0, ,tu x x u x x x lφ ψ= = ∈                (4) 

and the boundary conditions are expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 30, , , , 0, , , , 0,x xu t p t u l t p t u t p t u l t p t t= = = = ≥   (5) 

where, ( ),u x t  represents an unknown function at position x and time t. 
( ) , 0,1, ,7id x i =   is a known function. If ( ), ,f x t u  is nonlinear of u, the eq-

uation is a nonlinear Partial differential equation. If ( )f u  is linear of u, then 
the Equation (3) is linear Partial differential equation.  

2. The Barycentric Lagrange Interpolation Collocation  
Method 

2.1. In Model (1), If ( ) ( )f x t u f x t, , ,= , the Model Is a Linear  
Problem 

The model (3) can be written as: 
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We introduce the barycentric Lagrange interpolation collocation method 
[5]-[10] to solve this problem: 

We consider a regular region [ ] [ ]0, 0,W l T= × , the interval [ ]0, l  is divided 
into M different nodes and the interval [ ]0,T  is also divided into N different 
nodes. The nodes on the interval [ ]0, l  and [ ]0,T  constitute two groups of 
column vectors respectively. They are defined as: 

[ ] [ ]TT0 0
1 2 1 2, , , , , , , ,M Nx x x x t t t t= =                 (7) 
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then the matrixs X, T above the region Ω  can be generated by the above col-
umn vectors 0 0,x t , and the form of matrixs X and T are as follows:  

( ) ( ) ( )T T TT 0 0 0 0 0 0, , , , , , , .X x x x T t t t   = =    
             (8) 

The matrix X, T are respectively written as column vectors x, t of N M×  
dimension: 

[ ] [ ]T T
1 2 1 2, , , , , , , .M N M Nx X X X t T T T× ×= =              (9) 

The relations between the components ,i jx y  of the Formula (11) and the 
components ,K KX Y  of Formula (13) are as follows:  
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            (10) 

The barycentric interpolation of ( ),u x t  at nodes ( ),i jx t  can be written as 
[5]-[10]: 
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Use Formula (11), the l k+  order partial derivative of function ( ),v x t  at 
nodes can be expressed as: 

( ) ( ) ( ) ( )
1 1

, , 1, 2, .
l k M N

l k
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x t

ξ η
+

= =

∂
= =

∂ ∂ ∑∑              (12) 

At nodes ( ),p qx t , the function values of partial derivative are defined as:  
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       (13) 

The function values of the Formula (11) and the Formula (12) at the node 
form column vectors ( ),, l ku u , and they are as follows: 

[ ]T1 2, , , M Nu u u u ×=  , ( ) ( ) ( ) ( ) T, , , ,
1 2, , ,l k l k l k l k

M Nu u u u ×
 =   , 

( ),p p pu u X T= , ( ) ( ) ( ), , ,l k l k
p p pu u X T= , 1,2, ,p M N= × . 

(13) can be written in following matrix form [5]-[10]: 
( ) ( ), , .l k l k=u D u                         (14) 

In the above formula, ( ) ( ) ( ),l k l k= ⊗D C D  is the Kronecker product of matrix 
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( )lC  and ( )kD , which is also called ( ),l k  order partial differential matrix at 
nodes ( ){ }, , 1, 2, , ; 1, 2, ,i jx t i M j N= =  . ( )lC  is l order differential matrix 
on x direction nodes, and ( )kD  is k order differential matrix on t direction 
nodes.  

Denote: 
( ) ( )0 0, ,M NC I D I= =                        (15) 

where, MI  and NI  are M order unit matrix and N order unit matrix respec-
tively. 

By using the notation (11), (12), (13), the calculation formula of barycentric 
Lagrange interpolation collocation method for model (3) can be written in fol-
lowing matrix form:  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
4 2

,0 0, 4,1
4 7

0 1
.i i

i i
i i

diag d x diag d x diag d x+
= =

 + + =  
∑ ∑D D D u f  (16) 

Here, diag is a symbol of diagonal matrix composed of vectors. 

2.2. If the Model Is a Nonlinear Problem, We Can Use the Solution  
Method of the Linear Problem Above 

Given initial value 0v , we can construct following linear iterative format:  
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So the model (17) can be written as the following matrix:  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
4 2

,0 0, 4,1
4 7 0

0 1
.i i

i i
i i

diag d x diag d x diag d x+
= =

 + + =  
∑ ∑D D D u f  (18) 

The discretization of initial boundary conditions requires the use of the bary-
center interpolation Formula (11). By acting on the initial boundary conditions, 
the discrete formula of initial boundary conditions is given:  
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∑∑ ∑∑

∑∑ ∑∑

   (19) 

The boundary conditions are replaced by displacement method.  

3. Numerical Simulations 

In this section, following the guidance of the discussions in Section 2, we will se-
lect appropriate free parameters and present some numerical simulations for 
preceding cases, which implies that our current method is a satisfactory and effi-
cient algorithm. 
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Example 1 We consider the vibration Euler-Bernoulli beam equation of 
fixed-supported at both ends. 

( ) ( ) ( ) ( )

( ) ( ) [ ]
( ) ( ) ( ) ( )

2 22

2 2 2

, ,
, ,

,0 ,0 0, 0,1 ,

0, 1, 0, 1, 0, 0,
t

x x

u x t u x t
EI x f x t

x x t

u x u x x

u t u t u t u t t

  ∂ ∂∂
+ =   ∂ ∂ ∂  


= = ∈

 = = = = ≥

         (20) 

1) where ( ) 1 sinEI x x= + π , and the source term ( ),f x t  is determined by 
(21) consistent with the chosen solution. The exact solution of beam deflection is 
as follows:  

( ) ( ) ( ) 2, 1 sin 4 e .tu x t x x x t −π= −                (21) 

By the proposed algorithm, we obtain the numerical solution and the absolute 
error which are given in Figures 1-3 and Table 1. 

2) where ( )
21 11 exp 40

4 3
EI x x

  
= + − −      

, and the source term ( ),f x t  is  

determined by (22) consistent with the chosen solution. The exact solution of 
beam deflection is as follows: 
 

 

Figure 1. Exact solution for Example 1 (i). 
 

 

Figure 2. Numerical solution for Example 1 (i). 
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Figure 3. Absolute errors for Example 1 (i). 
 
Table 1. Numerical comparison of absolute errors of Example 1 (i) with M = 31, N = 15. 

x t Numerical 
solution 

Exact 
solution 

Absolute errors 
Rational interpolation 

Absolute errors 
Lagrange interpolation 

0.0990 0.0251 −0.0019 −0.0018 1.1803E−12 5.3171E−13 

0.7939 1.0000 −0.0315 −0.0315 2.2247E−13 2.0698E−13 

0.1654 1.9010 0.0651 0.0651 8.7291E−15 4.4977E−12 

 

( ) ( ) ( )3 2, sin 4 exp .u x t x t tπ= −                 (22) 

By the proposed algorithm, we obtain the numerical solutions which are given 
in Figures 4-6 and Table 2. 

Example 2 We consider a cantilever Euler-Bernoulli beam equation.  
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( ) ( ) [ ]

( ) ( ) ( ) ( )
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π
  

           (23) 

By the proposed algorithm, we obtain the numerical solution and the absolute 
error which are given in Figures 7-14 and Table 3. 

Example 3 Consider the model (3) with ( )0d x x= , ( ) ( ) ( )1 2 3 0d x d x d x= = = , 

( ) ( )
2

4
1 11 exp 40
4 3

d x EI x x
  

= = + − −      
, ( )5d x x= , ( )6 sind x x= , 1 0α = , 

2 0α = , 4 0α = , ( ) ( ) 2, , ,f x t u g x t u= + . The exact solution for this problem is  

( )
1 2
2 34, e .

3
x t

u x t
−

=  

The numerical solution and the absolute error diagram of Example 3 are given 
in Figure 15 and Figure 16 and Table 4, respectively. As can be seen from the 
Figure, the method can be used to obtain a smaller absolute error. 
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Figure 4. Exact solution for Example 1 (ii). 
 

 

Figure 5. Numerical solution for Example 1 (ii). 
 

 

Figure 6. Absolute errors for Example 1 (ii). 
 
Table 2. Numerical comparison of absolute errors of Example 1 (ii) with M = 31, N = 15. 

x t 
Numerical 

solution 
Exact 

solution 
Absolute errors 

Rational interpolation 
Absolute errors 

Lagrange interpolation 

0.1284 0.3765 0.0058 0.0058 2.3209E−11 2.2052E−10 

0.5522 1.6234 0.4990 0.4990 3.5232E−10 4.2077E−09 

0.8715 1.9749 0.0327 0.0327 1.6892E−10 6.1629E−10 
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Figure 7. Exact solution for Example 2. 
 

 

Figure 8. Numerical solution for Example 2. 
 

 

Figure 9. Absolute errors by using Lagrange interpolation at 21, 15M N= =  for Exam-
ple 2. 
 
Table 3. Numerical comparison of absolute errors of Example 2 with M = 31, N = 15. 

x t 
Numerical 

solution 
Exact 

solution 
Absolute errors 

Rational interpolation 
Absolute errors 

Lagrange interpolation 

0.5000 0.5661 0.1819 0.1819 1.5702E−11 4.72800E−11 

0.6545 1.0000 0.2545 0.2545 1.4067E−11 3.0668E−10 

0.9567 2.0000 0.0013 0.0013 2.2005E−09 1.6833E−08 
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Figure 10. Absolute errors by using Lagrange interpolation at 31, 15M N= =  for Ex-
ample 2. 
 

 

Figure 11. Absolute errors by using Lagrange interpolation at 41, 15M N= =  for Ex-
ample 2. 
 

 

Figure 12. Absolute errors by using rational interpolation at 21, 15M N= =  for Exam-
ple 2. 
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Figure 13. Absolute errors by using rational interpolation at 31, 15M N= =  for Exam-
ple 2. 
 

 

Figure 14. Absolute errors by using rational interpolation at 41, 15M N= =  for Exam-
ple 2. 
 

 

Figure 15. Numerical solution obtained by the present method for Experiment 3 with 
50, 50M N= = . 
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Figure 16. Absolute error for Experiment 3 with 8, 10M N= = . 
 
Table 4. Comparison of the absolute errors for Example 3. 

x t 
Numerical 

solution 
Exact 

solution 
Absolute errors Present 

method ( 8, 10M N= = ) 
Absolute errors Variational 

iteration method 

0.5 0.2 1.4983 1.4983 0.0040E−05 0.004732E−02 

0.5 0.4 1.3113 1.3113 0.0249E−05 0.006379E−02 

0.5 0.8 1.0044 1.0044 0.1163E−05 0.013248E−02 

0.5 1.0 0.8790 0.8790 0.1743E−05 0.000969E−02 

1.0 0.2 1.9239 1.9239 0.0025E−05 0.006076E−02 

1.0 0.6 1.4736 1.4736 0.0392E−05 0.019163E−02 

1.0 0.8 1.2896 1.2896 0.0781E−05 0.017012E−02 

1.5 0.2 2.4703 2.4703 0.0008E−05 0.007802E−02 

1.5 0.4 2.1620 2.1620 0.0065E−05 0.010516E−02 

1.5 0.8 1.6559 1.6559 0.0359E−05 0.021844E−02 

1.5 1.0 1.4492 1.4492 0.0601E−05 0.001597E−02 

4. Conclusion 

In this paper, we use the method of barycentric Lagrange interpolation colloca-
tion method to solve Euler-Bernoulli beam equation. Some calculation results of 
this method and comparison with other methods show that this method has 
high accuracy and convergence. From this article, we can find that our method 
can be applied to solving such demographic models. So, we can extend this me-
thod to a winder area in the future. 
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