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Abstract 
The paper presents a method of numerical solution of the Schrodinger equa-
tion, which combines the finite-difference and Monte-Carlo approaches. The 
resulting method was effective and economical and, to a certain extent, not 
improved, i.e. optimal. The method itself is formalized as an algorithm for the 
numerical solution of the Schrodinger equation for a molecule with an arbi-
trary number of quantum particles. The method is presented and simulta-
neously illustrated by examples of solving the one-dimensional and multidi-
mensional Schrodinger equation in such problems: linear one-dimensional 
oscillator, hydrogen atom, ion and hydrogen molecule, water, benzene and 
metallic hydrogen. 
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1. Introduction 

The paper [1] draws attention to the fact that the Schrodinger equations de-
scribing the dynamics of most interesting quantum systems cannot be obtained 
constructively due to the large dimension of the wave function. Indeed, if the 
quantum system includes n particles (hereinafter the spin of the particles is not 
taken into account), then the wave function  ψ will depend on 1 + 3n arguments, 
i.e. ( )1, , , nt= r rψ ψ , where t is time, 1, , nr r  are the radii-vectors of the po-
sitions of particles in space, of dimension 3. In quantum chemistry [2], in the 
Monte-Carlo quantum method [3] [4], this problem is solved in different ways. 
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We will especially note a group of variation methods and approaches, starting 
with the classical self-consistent Hartree-Fock field method [5] and subsequent 
variations and upgrades of the type of the functional density method [6]. 

In this paper, we consider a method for solving the Schrodinger equation, 
which will allow us to overcome this non-constructivity. The method is based on 
the idea of representing a set of quantum particles of an arbitrary as a finite set 
of subparticles (subunits). In terms of positioning a set of subparticles in a space 
of dimension 3n, a specially prepared random procedure is used, repeated use of 
this procedure allows to reconstruct the distribution of the average positions of 
the quantum particles of a molecule in the normal three-dimensional space. The 
proposed numerical method is efficient and computationally cost-effective and 
can be attributed to the intersection of finite difference and Monte-Carlo me-
thods. 

Some fragments of this work are published in a short article [7]. This article 
presents a numerical procedure for solving the Schrodinger equation in full. 

2. One Quantum Particle in One-Dimensional Space 

We write the Schrodinger equation for a single quantum particle in the one dimen-
sional case, i.e. 

2

2t xxi U
m

= − +


ψ ψ ψ ,                     (1) 

where   is the Planck’s constant, 
2

2,t xxt x
∂ ∂

= =
∂ ∂
ψ ψψ ψ , x is a space variable, 

( ),U U t x=  is a function of some potential, m is the mass of the quantum par-

ticle, 2 1i = − . 
Write the wave function in (1) as a decomposition into real and imaginary 

components, i.e. ( ) ( ) ( ), , ,t x u t x iv t x= +ψ , then 
2

2

,
2

.
2

t xx

t xx

u v Uv
m

v u Uu
m


= − +


− = − +









                     (2) 

As you know, the Schrodinger Equation (1) admits the existence of a proba-
bility conservation law, which can be written as an equation:  

( ) ( ) 0
2 x xi

t x m
∗ ∗ ∗∂ ∂  + − = ∂ ∂  

ψ ψ ψψ ψ ψ ,              (3) 

where the star denotes the complex conjugation operation. In the notation of the 
real and imaginary parts of the wave function, Equation (3) can be rewritten as: 

( ) ( )2 2 0x xu v uv u v
t m x

∂ ∂
+ + − =

∂ ∂
 .                (3') 

Let’s return to the pair of Equation (2), which are equivalent to the original 
Schrodinger equation in the form (1). According to (2) the quantum particle is 
described by a pair of functions ( ),u t x  and ( ),v t x . It is the system of Equa-
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tion (2) that we will use to construct a numerical method for solving the Schro-
dinger equation. 

We represent the original quantum particle in the form of a set of N 
subparticles. Let each of the subparticles have a corresponding positioning in 
space, , 1, ,ix i N=  . In this case, each subparticle is described by a pair of 
functions ( ) ( ), , 1, ,i iu t v t i N=  . One of the important aspects of the numeri-
cal method under consideration is the method of replacing the second space de-
rivatives in the system (2) with the following expressions: 

, ,1,
N

xx i j i jj j iu g u
= ≠

→ −∑ , , ,1,
N

xx i j i jj j iv g v
= ≠

→ −∑ ,           (4) 

where ,i j i ju u u= − , ,i j i jv v v= − ; , , , 1, ,i jg i j N=  , some matrix, the form of 
which we will specify later. 

We rewrite the system of Equation (2) taking into account the substitutions 
(4), then 

, ,1,

, ,1,

1 ,
2

1 ,
2

N
i i j i j i ij j i

N
i i j i j i ij j i

u g v U v
m

v g u U u
m

= ≠

= ≠

 = +

 = − −


∑

∑













                (5) 

where the point is the time derivative, and ( ),i iU U t x= . 
To satisfy the law of conservation of probability (3), (3') by the system of Equ-

ation (5), it is necessary: 

( )2 2
1

d 0
d

N
i ii u v

t =
+ =∑ .                       (6) 

Multiply the first Equation in (5) by iu , and the second, by iv , add both eq-
uations and sum by index 1, ,i N=  , then we get 

( ) ( )( )2 2
, ,1 , 1,

d
d 2

N N
i i i j j i j i i ji i j j iu v g g u v u v

t m= = ≠
+ = − −∑ ∑ .         (7) 

From (7), it clearly follows that to conserve the probability (in the format (6)), 
it is sufficient to assume the symmetry of the matrix g, i.e. require that there was 
the condition , , , , 1, ,i j j ig g i j N= =  . 

To select the species of matrix g, we compare the solution of the Schrodinger 
equation in the format (5) with the finite-difference representation of Equation 
(1). Without loss of generality, we further assume that there is no potential, i.e. 

0U ≡ . 
Let a certain scale of length 0L  be defined, which allows to introduce the 

characteristic time equal to the value 
2
0mL


 and reduce the Equation (1) to a 

dimensionless form. We consider further that the spatial variable x changes in 
the range [ ],L L− , and the value L is expressed in units of the length scale 0L . 

We introduce a uniform grid ( )1 , 1, ,ix L h i i N= − + − =  , where the grid 

step 2
1

Lh
N

=
−

. Using the finite-difference three-point approximation pattern of 

the second derivative in space, in dimensionless form, Equation (1) without po-
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tential can be rewritten as: 

1 1
2

21
2

i i i
ii

h
+ −− +

= −

ψ ψ ψ
ψ ,                     (8) 

where 2, , 1i N= − .  
From Equation (8) it follows that as the matrix g should choose a symmetric 

matrix with non-negative elements of the form: 
2

,

, 1;

0, 1.i j

h i j
g

i j

− − == 
− ≠

                       (9) 

Note that the finite-difference version of the solution of the Schrodinger Equ-
ation (8) does not suit us for two reasons: 1) it is necessary to determine the 
boundary conditions, which, in general, is not very important when solving the 
Schrodinger equation in the context of quantum mechanical problems; 2) the fi-
nite difference method of the type (8) has no obvious prospect of generalization 
to the multidimensional case. Note that in (9) the elements of the matrix g that 
are far from the main diagonal and its two nearest diagonals are zero. Taking 
into account the above remarks, consider the following representation for the 
matrix g: 

22
1

,
e , ;

0, ;

i j

i j
h i jg
i j

− −− ≠= 
=

ρρ                     (10) 

where 1 2,ρ ρ , some non-negative parameters. Representation (10) defines a 
symmetric matrix with non-negative elements. 

We rewrite the system of Equation (5) in dimensionless form and in the ab-
sence of potential, then 

, ,

, ,

1 ,
2

1 .
2

i i j i jj

i i j i jj

u g v

v g u

 =

 = −


∑

∑





                      (11) 

We introduce a vector column ( )T
1 1, , , , ,N Ny u u v v=    and a block matrix 

( ) ( )

( ) ( )

2

2

10
2

1 0
2

N N g g
G

g g N N

× −
=

− − ×
, where g, matrix (10) and the 2g  matrix is di-

agonal, with the sums on the diagonal 2, , ,, , 1, ,i i i jj j ig g i N
≠

= =∑  . Note that 

the unknown vector y has dimension 2N, and the matrix G is 2 2N N×  in size. 
Taking into account the vector y and the matrix G, the system of Equation (11) 
can be rewritten in the following compact form: 

y Gy= .                   (12) 

Compare the solutions of Equations (8) and (12). To do this, substitute in (8) 

the solution in the form ( )1 e
2

ii t kx
i L

− += ωψ . We impose periodic boundary 

conditions on the solutions, ( ) ( )
1

1 1e e
2 2

i t kL i t kL
NL L

− − − += = =ω ωψ ψ , then we 
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find , 0, 1, 2,lk l
L

= = ± ±
π

  and after substitution in (8), we obtain an expres-

sion for the energy: 

2

1 1 cos , 0, 1, 2,l
h l l

Lh
 π  = − = ± ±    

ω                (13) 

Similarly, we consider the solution of the system of Equation (12) with matrix 
(10). To do this, we present the solution of Equation (12) as ei ty z Ω= , where z 
is some constant vector of dimension column 2 1N × . In this case, the value of 
iΩ  is the eigenvalue of the matrix G. Such eigenvalues are in the general case 
2N. It is easy to understand that the search for the eigenvalues of the matrix G is 
reduced to the solution of the equation: 

( )2
1det 0
2 Ng g e− ± Ω = ,                   (14) 

where Ne , unit matrix of size N N× . We write the solutions of Equation (14) 
as a set 1, , N±Ω ±Ω . Choose the top plus sign. In this case, we obtain a set of 
frequencies 1, , NΩ Ω , which can be compared with the set (13), when  

0, , 1l N= − . 
To ensure coherence of the pair of energy spectra 0 1, , N −ω ω  and  

1, , NΩ Ω , it is necessary to select the appropriate values of the parameters h 
and L, which are included in Equation (13). Let’s call these values approximating 
and denote: apph  and appL . From the above values, one can also find the num-
ber of nodes appN  of the finite-difference scheme of format (8), which is equiv-
alent to our numerical scheme from the point of view of the maximum proximi-
ty of the spectra. The parameters apph  and appL  will be found by comparing 
the spectra, i.e. by minimizing the total comparison error of the type: 

( ) ( ){ }2

1, cos 1N
iiS S a b a a b i

=
= = − − − Ω  ∑ .            (15) 

Let function (15) reach a minimum when opta a=  and optb b= , then taking 

into account (13) we find 1
app

opt

h
a

= , app
opt opt

L
b a

π
= , 

2
1 app

app
app

L
N

h
= + . 

Figure 1 shows two graphs of the spectral decompositions of the pair of schemes, 
one of them is studied and the other is a finite difference, obtained at N = 10 
(Figure 1(a)) and N = 100 (Figure 1(b)), respectively. 

Note that the proximity of the spectra strongly depends on the coefficients 

1 2,ρ ρ . In the calculations, the results of which are shown in Figure 1, the op-
timal values of the coefficients 1, 2,,opt optρ ρ  were found. Table 1 shows the val-
ues of the parameters , ,app app apph L N  in calculations with different numbers of 
grid nodes N in our scheme. In all three cases, both spectra were close. From 
Table 1, it can be seen that, roughly speaking, the equivalent finite-difference 
scheme has nodes twice, and the localization segment is five times larger than 
the scheme under study. 

Let us proceed to the numerical solution of the system of Equations (10)-(12). 
We solve the Cauchy problem by choosing the initial values of the functions 
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( ) ( )0 , 0 , 1, ,i iu v i N=   random, provided that ( ) ( )2 2
1 0 0 1N

i ii u v
=

 + = ∑ . Since 
the systems of Equations (11), (12) preserve the probability, so far the equation 

( ) ( )2 2
1 1N

i ii u t v t
=

 + = ∑  will take place at all subsequent moments of the time 
( 0t > ). The last equation means that we have a discrete random variable X, the 
position of the quantum particle, which takes the values 1, , Nx x  with proba-
bilities 2 2

1 1 1w u v= + ,  , 2 2
N N Nw u v= + . You can also determine the average 

position of a quantum particle X  and its dispersion XD  according to classic-
al formulas: 

1
N

i iiX w x
=

= ∑ , ( )2

1
N

X i iiD w x X
=

= −∑ .           (16) 

Since the probabilities in the set ( ) ( )1 , , Nw t w t  depend on time, the aver-
age position ( )X X t=  and the dispersion ( )X XD D t=  of a quantum particle 
generally depend on time. 

 

 
(a) 

 
(b) 

Figure 1. (a) Comparison of the spectra of the studied and finite 
difference schemes for N = 10. (b) Comparison of the spectra of 
the studied and finite difference schemes for N = 100. 
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Table 1. List of parameter values when comparing spectra of the studied and finite-difference 
scheme. 

N Napp h happ L Lapp ρ1,opt ρ2,opt 

10 21 0.2222 0.5428 1 5.3770 25 5 

100 199 0.0202 0.0493 1 4.8845 25 5 

1000 1982 0.0020 0.0049 1 4.8401 25 5 

 
On the left graph Figure 2 an example of solving the system of Equations (11), 

(12) is given in terms of dynamics of the components of the wave function 
( )iu t′  and ( )iv t′  of a random i’-th subunit of a quantum particle placed with-

in the interval [ ],L L− . The right graph in Figure 2 shows the probability dis-
tribution of finding a quantum particle ( ) , 1, ,iw t i N=   in space at some time 
point t. Other design parameters were chosen as follows:  

2
1 2

21, 10 , , 25, 5
99

L N h= = = = =ρ ρ . From the right graph in Figure 2, it 

follows that at each instant of time the quantum particle is approximately un-
iformly “smeared” over the entire localization segment [ ],L L− . 

Figure 3 shows two dynamics: the average position of a quantum particle (left 
graph) and the dispersion of the position (right graph). Graphs in Figure 3 con-
structed according to the formulas (16) after finding solutions to the system of 
Equations (11), (12) with parameters having the following values:  

2
1 2

21, 10 , , 25, 5
99

L N h= = = = =ρ ρ . According to the left graph in Figure 3 

the average position of the quantum particle X  vibrates, and the dispersion of 
vibrations XD  also experiences vibrations. 

3. One Quantum Particle in Three-Dimensional Space 

We write the Schrodinger equation for a free quantum particle in a dimension-
less form in three-dimensional space with coordinates x, y, z then 

( )1
2t xx yy zzi = − + +ψ ψ ψ ψ .                   (17) 

In space we will define a cube [ ]3,L L−  with the center at the origin of coor-
dinates and place a quantum particle in it. We introduce finite-difference grids 
for each coordinate, considering the grid steps for each coordinate to be the  

same and equal to h, then ( )
1 1 1

21 , 1, , , 1i
Lx L h i i N N
h

= − + − = = + . Similarly,  

for the other two variables: ( )
2 2 1iy L h i= − + − , ( )

3 3 1iz L h i= − + − ;  

2 3, 1, ,i i N=  . In total, thus, in our grid that fills the selected cube, there are 
3N  nodes. 
Replace in (17) the second derivatives with the usual finite-difference expres-

sions according to the three-point pattern in the same way as it was done in (8). 
In this case, the finite-difference approximation of Equation (17) is written as: 

3 3 31 1 1 2 2 2
1 2 3

1 11 1 1 1
, , 2 2 2

22 2 i i ii i i i i i
i i ii

h h h
+ −+ − + − − +− + − +

= − − −

ψ ψ ψψ ψ ψ ψ ψ ψ
ψ .  (18) 
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Figure 2. The dynamics of the components of the wave function of a random subparticle (left schedule); probability distribu-
tion of particle localization in space at some point in time (right graph). 

 

 

Figure 3. Dynamics of the average position of a quantum particle (left graph); the dynamics of the dispersion of the position of 
a quantum particle (right graph). 

 
Looking for a solution to Equation (18) in the form: 

( )
( )1 2 31 2 3

1 2 3, , 3 2

1 e
2

i i ii t k x k y k z
i i i

L
− + + +

=
ωψ .               (19) 
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After substitution (19) in (18) we find the condition that (19) is the solution of 

Equation (18), namely ( )1 2 32

1 3 cos cos cosk h k h k h
h

= − − −ω . Let periodic 

boundary conditions be set on opposite faces of a three-dimensional cube 

[ ]3,L L− , then the wave vector ( )1 2 3, ,k k k=k  will take a discrete set of values, 

i.e. ( )1 2 3, ,k j j j
L
π

= , 1 2 3, , 0, 1,j j j = ±   In this case, the dependence  

( )= kω ω  can be rewritten as: 

1 2 3, , 1 2 32

1 3 cos cos cosj j j
h h hj j j

L L Lh
 = − − − 


π π π


ω ,        (20) 

where 1 2 3, , 0, 1,j j j = ±    
We generalize the expression for the matrix g in (10) to the three-dimensional 

case. To do this, we introduce multicomponent numbers ( )1 2 3, ,i i i=i ,  
( )1 2 3, ,j j j=j , where 1 1, , , 1, ,i j N=   . Suppose that  

( )2 1 1 2 2 3 32
1

,
e , ;

0, .

i j i j i j

i j
hg

− − + − + −− ≠= 
=

i j
i j

ρρ                (21) 

Note that the finite-difference representation of (18) can be interpreted in the 

sense that the Laplace operator 2 2 2x y z
∂ ∂ ∂

∆ = + +
∂ ∂ ∂

 is approximated on a sev-

en-point template. As in the one-dimensional case (4), replace the Laplace oper-
ator in the Schrodinger Equation (17) with the expression ,, g

≠
−∑ i j jj j i ψ , where 

the summation extends over all index values ( )1 2 3 1 2 3, , , , , 1, ,j j j j j j N= =j  , 
except i . After substituting the representation u iv= +ψ  into Equation (17), 
we obtain a system (11) where the indices i  and j  are multicomponent in-
dices ( )1 2 3, ,i i i=i , ( )1 2 3, ,j j j=j . 

It is possible to renumber the subparticles not by three subindexes, but by one. 
Let be ( )1 2 3, ,i i i=i , 1 2 3, , 1, ,i i i N=  . We introduce a single (one-component) 
numbering i of all grid nodes in a three-dimensional cube using the formula: 

( ) ( )2 3
1 2 31 1 1, ,i i N i N i N= + − + − = 

.             (22) 

After determining the single index of subparticles by the formula (22), the 
Schrodinger equation for the dynamics of a quantum particle in a three dimen-
sional space (without interaction potential) can be reduced to the equations in 
the format (11), (12). 

Let us compare the frequency spectrum of the finite-difference scheme 
(18)-(20) with the spectrum of the studied scheme of Equations (11), (12), when 
the transition from multi-index to monoindex is taken into account. Taking into 
account (22), solving the eigenvalue problem (14), we find the set of frequencies 

31, ,
N

Ω Ω . Compare the found set with the ordered set 31, ,
N

ω ω , obtained 
from (20) according to the following procedure. We assume that 

1 2 3, , 0,1, , 1j j j N= −  then we introduce a single frequency numbering ac-
cording to the algorithm of formula (22), i.e. 2 3

1 2 31 1, ,j j Nj N j N= + + + =  , 
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then sort the obtained values in ascending order. 
To ensure the proximity of a pair of spectra, the problem of minimizing the 

functional S was solved: 

( ) ( )
3 2

1, ,N
i iiS S a b a b

=
= = − Ω  ∑ ω ,              (23) 

where before of the numbering and sorting of frequencies (20) it was believed 
that ( )

1 2 3, , 1 2 33 cos cos cosj j j a bj bj bj= − − −ω . After obtaining the optimal values 

of parameters opta a=  и optb b= , the parameters 1
app

opt

h
a

= , app
opt opt

L
b a

π
= , 

2
1 app

app
app

L
N

h
= +  of the equivalent finite-difference scheme (18)-(20) were 

found. 
Figure 4 shows several samples comparing a pair of frequency spectra for the 

three cases when 7,10,15N = , the other parameters took the following values: 

1 2
21, , 25, 5

1
L h

N
= = = =

−
ρ ρ . Analysis of the graphs in Figure 4 indicates a 

good correspondence of the frequency spectrum of the studied and equivalent 
finite difference schemes. 

Table 2 summarizes the parameters of the studied and equivalent fi-
nite-difference scheme, the spectra of which are compared in Figure 4. Note that 
the parameters apph  and appL  were calculated by minimizing the functional 
(23).  

4. Linear Oscillator in One-Dimensional Case 
Let us write the potential function of a one-dimensional oscillator in the form 

( ) 2 21
2

U x m x= ω , where ω is the oscillation frequency of the oscillator. Intro-

ducing the characteristic values of time and length 1−ω  and 
1 2

m
 
 
 



ω
, we re-

write the corresponding Schrodinger equation in dimensionless form. Based on 
the notation of the system of Equation (2), we write 

2

2

1 1 ,
2 2

1 1 .
2 2

t xx

t xx

u v x v

v u x u

 = − +

 = −


                      (24) 

We choose a certain interval [ ],L L−  of integration over the space of the sys-
tem of Equation (24). We define at this interval generally speaking uneven grid 
with nodes: 1 2 1N NL x x x x L−− = < < < < = . In accordance with the studied 
solution scheme, we rewrite Equation (24) as a set of the following differential 
equations: 

2
, ,1,

2
, ,1,

1 1 ,
2 2

1 1 ,
2 2

N
i i j i j i ij j i

N
i i j i j i ij j i

u g v x v

v g u x u

= ≠

= ≠

 = +

 = − −


∑

∑





                 (25) 
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(a) 

 
(b) 

 
(c) 

Figure 4. (a) Comparison of the frequency spectra of the studied and the finite 
difference schemes for N = 4; (b) Comparison of the frequency spectra of the stu-
died and the finite difference schemes for N = 10; (c) Comparison of the fre-
quency spectra of the studied and the finite difference schemes for N = 15. 
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Table 2. List of parameter values when comparing spectra of the studied and finite-difference 
scheme. 

N Napp h happ L Lapp ρ1,opt ρ2,opt 

7 15 0.3333 0.8133 1 5.6008 25 5 

10 21 0.2222 0.5429 1 5.3183 25 5 

15 30 0.1429 0.3506 1 5.0939 25 5 

 
where 1, ,i N=  . The expression for the matrix , , , 1, ,i jg i j N=   is taken 
from (10). 

If you enter a column vector ( )T
1 1, , , , ,N Ny u u v v=   , then the system of 

Equation (25) can be rewritten in a form similar to (12), where 
0

0
Q

G
Q

=
−

, 

( ) ( )2
1
2

Q Q N N g g= × = − , ( )2
2 ,1,

N
i j ij j ig diag g x

= ≠
= +∑  is the diagonal matrix 

of size N N× , where on the diagonal are line-by-line sums of the elements of 
the matrix g plus double the value of the potential. 

Find solutions to the linear system of Equation (12). To do this, we will look 
for a solution in the form: e ty z= δ , where z is some constant column vector of 

size 2 1N × . Let vector z consist of two subvectors ( )T
1, , Na a a=  ,  

( )T
1, , Nb b b=  , i.e. 

a
z

b
= . Substitute the selected solution into Equation (12), 

then we obtain the following problem for finding the eigenvalues (δ) and vectors 
(z) of the matrix G: 

0
0
Q a a

Q b b
⋅ =

−
δ .                       (26) 

The problem (26) is reduced to a simpler problem of finding eigenvalues (Ω) 
and vectors ( ( )1c N × ) of the matrix Q, i.e. Qc c= Ω  with 

i= ± Ωδ , 
a c
b ic

=
±

.                      (27) 

According to (27), there are 2N eigenvalues and vectors of the problem (26), 
since the solution of the problem of finding eigenvalues and vectors of the ma-
trix Q implies N solutions. 

Choose some eigenvalue Ω and the corresponding eigenvector c and write the 
real particular solution ( )y tΩ  of Equation (12), i.e. 

( )
( )

1 2

1 2

cos sin
sin cos

C t C t c
y

C t C t cΩ

Ω + Ω
=

− Ω + Ω
,                   (28) 

where 1 2,C C  arbitrary real constants. 
Let us compare some approximate solutions (28) of the considered scheme 

with exact solutions for the quantum oscillator. 
As is known [8], the energy of the quantum oscillator (in dimensionless form) 

is found by the formula 
1 , 0,1,
2nE n n= + =   we write out the known first two 
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exact wave functions: 
21 1

2
0 1 4

21 e
it x− −

π
=ψ , 

2

1 4

3 1
2 2

1
2 e

it x
x

− −
=

π
ψ .              (29) 

Taking into account (29), we find the probability density ( )0 0 0W x ∗=ψ ψ ,
( )1 1 1W x ∗=ψ ψ  and compare it with the probability density distributions of solu-

tions (28) for the first two eigenvalues Ω1 and Ω2, and that eigenvalues are or-
dered in ascending order. We denote the corresponding probability distribution, 
constructed using the solutions to (28), in the form: 1, , 1, ,iw i N=   and  

2, , 1, ,iw i N=   for the eigenvalues Ω1 and Ω2 respectively. 
Figure 5 shows a comparison of the approximate (solid line) and the exact 

solution (dashed line). In Figure 5(a), the distribution densities 1, , 1, ,iw i N=   

and ( )0W x  were compared, and in Figure 5(b), 2, , 1, ,iw i N=   and ( )1W x . 
In the calculations of approximate solutions, the following parameter values 

were used: 3
1 2

63, 2 10 , , 25, 3.35
1999

L N h= = × = = =ρ ρ . Approximate solu-

tions are constructed according to (28), with the values of 1 2, ,t C C  chosen ran-
dom. 

The results of the comparison of the approximate and exact solutions pre-
sented in Figure 5 look quite satisfactory. It should be noted that a noticeable 
non-smooth nature of the approximate curves is due to the fact that the used 
grid { }1, , Nx x  was uneven. The uneven grid was deliberately chosen to en-
sure the effectiveness of this method of calculation. The advantages of the me-
thod are expressed in the absence of too strict requirements for the choice of 
grid uniformity, both in one-dimensional and multi-dimensional cases. 

5. Hydrogen Atom 

We construct an algorithm for calculating the dynamics of a pair of quantum 
particles, a proton and an electron, interacting according to the Coulomb law. 

Let 1m  and 2m  be the masses of proton and electron. We write the Schro-
dinger equation describing the dynamics of the hydrogen atom as: 

2 2 2

1 2
1 2 1 22 2t

ei
m m

= − ∆ − ∆ −
−r r

 

ψ ψ ψ ψ ,             (30) 

where ( )1 2, ,t= r rψ ψ , wave function of the hydrogen atom, 1 2,r r , the spatial 
positions of the proton and electron, respectively, e, the value of the charge. 
Laplace operators for each of the quantum particles have the form:  

2 2 2

1 2 2 2
1 1 1x y z

∂ ∂ ∂
∆ = + +

∂ ∂ ∂
, 

2 2 2

2 2 2 2
2 2 2x y z

∂ ∂ ∂
∆ = + +

∂ ∂ ∂
. 

We rewrite Equation (30) in dimensionless form. To do this, we introduce the 

characteristic length, mass, time and energy: 
2

9
2

2

5.2918 10 cmBr m e
−= ≅ ×

  ( Br

Bohr radius), 28
2 9.1093 10 gm −= × , 

3
17

4
2

2.4189 10 sec
m e

−= ×
 ,  
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4
112

2 4.3597 10 erg
m e −= ×


 respectively, then 

1 2
1 2

1 1
2 2ti = − ∆ − ∆ −

−r r
µψ ψ ψ ψ ,                 (31) 

where 42

1

5.4462 10
m
m

−= ≅ ×µ , the ratio of the mass of the electron to the mass 

of the proton. 
Let us replace the variables 1 1→r rµ , move on to the real and imaginary 

parts of the wave function by representing u iv= +ψ , then Equation (31) can 
be rewritten as: 

 

 
(a) 

 
(b) 

Figure 5. (a) Comparison of the approximate distribution 1, , 1, ,iw i N=   and 

exact ( )0W x ; (b) Comparison of the approximate distribution 2, , 1, ,iw i N=   

and exact ( )1W x . 
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1 2

1 2

1 1 ,
2

1 1 ,
2

t

t

u v v

v u u

 = − ∆ − −

 = ∆ +
 −

r r

r r

µ

µ

                     (32) 

where 1 2∆ = ∆ + ∆ , single Laplace operator for a pair of quantum particles. 
Let’s define N points with coordinates ( )1, 2,, , 1, ,i i ir i N= =r r  . The selected 

points have six coordinates, the first three of which characterize the first quan-
tum particle, and the second three, the second quantum particle. 

Following the previous sections in the development of a numerical algorithm, 
we replace the Laplace operators in the system of Equation (32) with expressions: 

, ,1,
N

i j i jj j iu g u
= ≠

∆ → −∑ , ,i j i ju u u= − ; , ,1,
N

i j i jj j iv g v
= ≠

∆ → −∑ , ,i j i jv v v= − . Af-

ter these substitutions, the system of Equation (32) will be rewritten as a system 
of linear ordinary differential equations of the form: 

, ,1,
1, 2,

, ,1,
1, 2,

1 ,
2

1 ,
2

N i
t i j i jj j i

i i

N i
t i j i jj j i

i i

v
u g v

u
v g u

= ≠

= ≠

 = − −

 = − +
 −

∑

∑

r r

r r





µ

µ

               (33) 

where 1, ,i N=  . 
To complete the algorithm for calculating the hydrogen atom according to the 

scheme (33), it is necessary to construct a matrix , , , 1, ,i jg i j N=  . Considering 
the examples of the construction of this matrix in (9), (10), (21), we choose the 
following type of matrix: 

22
1

,
e , ;

0, ;

i jr r h

i j
h i jg
i j

− −− ≠= 
=

ρρ                     (34) 

where , 1, ,i j N=  ; 1 2,ρ ρ , some non-negative constants, h, the step of the 
equivalent uniform grid, which we define below.  

Taking into account the definition of ( )1, 2,, , 1, ,i i ir i N= =r r  , we write the 

module in (34) and return to the original 1r  by replacing 1 1
1

→r r
µ

, then we 

get: 

( ) ( )2 22
1, 1, 2, 2,

1
2

1,
e , ;

0, .

i j i jh
i j

h i jg
i j

− − + −
−


 ≠= 
 =

r r r r
ρ

µρ               (35) 

In order for the two terms of the radicand in (35) to be the same in order of 
magnitude, we require the following representations for the positions of the first 
and second quantum particles: 

( )1, 1 1, 2, 2 2,2 , 2i i i iL L L L= + − + = − +r a r aµ ξ ξ ,           (36) 

where 1, ,i N=  ; 1 2,a a , some constant vectors, which we will interpret later 
as the scattering centers of possible positions of proton and electron. We assume 
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that the vectors 1, 2,,i iξ ξ  in (36) have independent uniformly random coordi-
nate values from the interval [0, 1]. As the selection of step of the equivalent 
uniform grid, we assume that the cube ( )32L  is divided into N subcubes,  

of volume h3, then 1 3

2Lh
N

= . 

The representation (36), in which independent uniformly random variables 

1, 2,, , 1, ,i i i N= ξ ξ  appear, means that the considered method of numerical so-
lution of the Schrodinger equation becomes stochastic and can be referred to the 
class of Monte-Carlo methods. In what sense will become clear from further 
constructions. 

Taking into account the considerations set out in (34)-(36), after the inverse 

replacement of 1 1
1

→r r
µ

, the system of Equation (33) can be rewritten as: 

, ,1,
1, 2,

, ,1,
1, 2,

1 ,
2

1 ,
2

N i
t i j i jj j i

i i

N i
t i j i jj j i

i i

v
u g v

u
v g u

= ≠

= ≠

 = − −

 = − +
 −

∑

∑

r r

r r





                (37) 

where 1, ,i N=  . 
The transition from Equation (33) to Equation (37) made it possible to natu-

rally take into account the different mass of quantum particles, as well as to de-
termine their scattering centers, while, as it will be clear further, the procedure 
described is universal and applicable to systems with many particles. 

Since the system of Equation (37) is linear, we find the eigenvalues of the ma-
trix of the right side, which act as the energy levels of the hydrogen atom. As 
noted in the previous section, the matrix of the right-hand side of a system of 
equations similar to (37) has 2N purely imaginary eigenvalues, which are de-
noted as 1, , Ni i± Ω ± Ω . 

Taking into account the discrete nature of the energy spectrum of a hydrogen 
atom, which, as is known, is characterized by the dependence  

2

1 , 1, 2,
2nE n

n
= − =  , we compare it with the spectrum of negative imaginary 

parts of eigenvalues 1, , N−Ω −Ω  matrices of the right side of the system of 
Equations (35)-(37). 

Figure 6(a) shows a sample comparison of a pair of spectra, when it was 
thought that ( ) ( )4

1 2 1 22, 10 , 0.075, 1, 0,0,0 , 0,0,0L N= = = = = =a aρ ρ . When 
selecting the parameters, we sought to ensure that most of the spectrum of the 
matrix of the right part of the system (35)-(37) was negative. 

According to Figure 6(a) the spectrum of the design scheme is significantly 
different from the exact on the edges. Thus, the value 1−Ω  is significantly dif-
ferent from the exact value 0.5. In addition, part of the spectrum is often in the 
positive region, which corresponds not to the hydrogen atom, but to a pair of 
individual quantum particles, a proton and an electron. This, in general, is natu-
ral, since space in our numerical model appears in discrete form. In consequence 
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of this circumstance, the spectra of the continuous and discrete models at the 
edges do not necessarily coincide. 

Consider the solutions of the system of Equation (37), the expressions for 
which are given in (28). In the formula (28) Ω and c, eigenvalue and eigenvector 

of the matrix ( ) ( )2
1
2 iQ g g diag U= − + , ( )2 ,1,

N
i jj j ig diag g

= ≠
= ∑ ,  

1, 2,

1
i

i i

U = −
−r r

. Since the matrix Q has dimensions N N× , there are generally 

N eigenvalues 1, , NΩ Ω  and vectors 1, , Nc c . 
 

 
(a) 

 
(b) 

Figure 6. (a) Comparison of the spectrum of the studied numerical scheme 
(35)-(37) and the exact energy distribution; (b) The dependence of the distri-
bution of the number of localization points in the space of a hydrogen atom on 
the energy. 
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Assuming that the eigenvectors are normalized by one, we can find the proba-
bility of localization of , 1, ,iw i N=   of the hydrogen atom in one of the points 

( )1, 2,, , 1, ,i i ir i N= =r r  . To do this, you need to normalize the length of the 
vector (28) by one, what is provided by elementary transformation: 

2 2
1 2y y C CΩ Ω→ + , resulting in 2 2 1y cΩ = = , where ... , the norm of the 

vector. Thus, for any of the eigenvalues of (28), 
i

yΩ , the probability jw  of the 
localization of the hydrogen atom at the point jr  coincides with the square of 
the coordinate of the eigenvector, ic  i.e. 2

, , , 1, ,j i jw c i j N= =  . 
For a specific example, for each of the N eigenvalues we calculate the number 

of points , 1, ,kn k N=  , in which the hydrogen atom is noticeably localized. As 
a criterion of noticeable localization, we will choose a certain probability thre-
shold thp . In this case, you can write the following formula to calculate the dis-
tribution of the number of localization points: 

( )( )1
N k

k i thin w p
=

= >∑ θ ,                     (38) 

where 1, ,k N=  ; ( )k
iw , the probability of finding a hydrogen atom at the i-th 

point of space for the k-th eigenvalue, ( )...θ , a Boolean function that returns 
one when the inequality is true and, conversely, zero when the inequality is not 
satisfied. 

Taking into account the criterion (38) Figure 6(b) shows an example of cal-
culating the distribution of the number of localization points of the solution in 
the space of each of N eigenvalues (28) is given. The following calculation para-
meter values were selected:  

4
1 2

152, 10 , 0.075, 1, 0.0015thL N p
N

= = = = = =ρ ρ . 

In Figure 6(b), attention is drawn to the first and last numbers of its own so-
lutions, which are localized within several or even one point of space. Localiza-
tion at one point in space means that in this scheme of calculation at the hydro-
gen atom at low (high) energy levels there has one, far away, nearest neighbor. 
Note that in the equivalent uniform finite-difference scheme, each point in the 
six-dimensional space has 12 nearest neighbors. Since the grid in our calcula-
tions consists of a set of random points, the number of nearest neighbors of each 
point with probability close to one is reduced to one. In this circumstance, the 
role of stochastics is shown, which is included in the calculation scheme accord-
ing to the algorithm (36) in connection with the random determination of the 
spatial positions of the proton and electron subparticles. 

Taking into account the large variability of the number of localization points 
of the hydrogen atom depending on the energy (Figure 6(b)), we will conduct a 
series of calculations (M times), in each of them, new positions of proton and 
electron particles are randomly selected by formulas (36) and a proper solution 
with a given energy E is found. In total, this way, M pieces eigensolutions  

( ) , 1, ,y MΩ = 

α

α α , will be found, whose eigenvalues selected from the set  

1, , NΩ Ω , are close to the energy value E, i.e. , 1, ,E MΩ ≅ = α α . 
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Figure 7 shows typical examples of localization of the subparticles of a hy-
drogen atom, the probability of being in which was divided into three categories. 
The first category includes places where the probability of staying exceeds the 
threshold thp , they are marked with markers in the form of black dots and blue 
stars. The second and third categories include places, the probabilities of being  

in which belong to the ranges 1 ,
3 th thp p 

  
 and 1 1,

9 3th thp p 
  

 respectively,  

these positions are indicated by markers in the form of a circle and rhombs. 
Markers in the form of stars indicate the position of the proton, and in the form 
of points, circles and rhombuses, the position of the electron. Other parameters 
of the computational experiment were chosen as follows:  

3
1 2

54, 50, 10 , 0.075, 1, 0.005thL M N p
N

= = = = = = =ρ ρ . 

In Figure 7(a), it is clear that the hydrogen atom itself is rather compact when 
E = –0.5. The locations of the electron (markers in the form of dots, circles and 
rhombuses) surround the proton, which is positioned in the center (marker in 
the form of a blue star) of the electron cluster. After increasing the energy of the 
hydrogen atom to the value of E = –0.25, the region of electron accumulation 
sites increases markedly (Figure 7(b)). Finally, when the energy is even closer to 
zero, E = –0.1, the cloud of electron clusters in Figure 7(c) noticeably moves 
away from the positions of the proton and fills the entire cube reserved for cal-
culations. 

Consider the dynamics of mixed states, i.e. the dynamics of some linear com-
bination of pure solutions (28). To do this, we numerically solve a system of dif-
ferential Equations (35)-(37), whereas the initial state vector we choose a ran-
dom vector, 0y , normalized by one and prepared according to the algorithm: 

( )T
0 1 22 , , 2 Ny L L L L= − + − +ξ ξ , 0 0 0y y y→ , 1 2, , Nξ ξ , uniformly ran-

dom numbers from the segment [0, 1]. For mixed solutions, the energy of the 
hydrogen atom is not determined, but it is possible to find the spectrum of 
energy values. The mixed solution acts as a mixture of pure solutions with ener-
gies from the available spectrum. 

 

 
(a) 
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(b) 

 
(c) 

Figure 7. (a) Multiple places of localization of a hydrogen atom when E = –0.5; 
(b) Multiple places of localization of a hydrogen atom when E = –0.25; (c) 
Multiple places of localization of a hydrogen atom when E = –0.1.  

 
Define kinetic spectra, Eke, potential, Epe, and total, Ete, energy by the formulas: 

( )

( ) ( )

,1,

1

,1,

1 1 ,
2 2

sort ,

1 1 ,
2 2

N
ke i jj j i

pe ii N

N
te i j ij j i

E eig diag g g

E U

E eig diag g g diag U

= ≠

≤ ≤

= ≠

 = −  
=

 = − +  

∑

∑

         (39) 

where 
1, 2,

1
i

i i

U = −
−r r

, potential energy, ( )eig … , a procedure that returns a 

set of eigenvalues of a matrix ranked in ascending order, sort operation of sort-
ing a set of values in ascending order. 

Figure 8 on the left shows an example of the graphs of the spectra of all three 
energies (kinetic, potential, and total). The following set of parameters was se-
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lected: 2
1 22, 2 10 , 0.075, 1L N= = × = =ρ ρ . The graphs show that the kinetic 

energy spectrum Eke is positive everywhere, the potential energy spectrum Epe on 
the contrary, is negative everywhere. 

The right graph in Figure 8 shows the trajectories of the middle positions of 
the proton (indicated by a marker in the form of a star) and an electron (indi-
cated by a marker in the form of a dot), while smaller markers describe the be-
ginning of the trajectory, and larger ones, the end of the trajectory. The average 
positions 1R , 2R  proton and electron were calculated accordingly by analogy 
with the formula (16), i.e. 

( ) ( )1 1,1
N

i iit w t
=

= ∑R r , ( ) ( )2 2,1
N

i iit w t
=

= ∑R r ,             (40) 

where ( ) ( ) ( )2 2 , 1, ,i i iw t u t v t i N= + =  , and the functions , , 1, ,i iu v i N=   are 
obtained by solving the system of Equation (37) on a time interval [0.2 × 102]. 
Note that the average trajectories of the proton and electron were found and 
displayed on the right graph Figure 8 in M = 102 computational experiments. 
When switching from one experiment to another according to the algorithm 
(36), the positions of the proton and electron were randomly changed. 

From the right graph in Figure 8 it can be seen that the trajectories of the av-
erage position of the electron as a lighter particle have noticeably higher ampli-
tude lines compared to the average trajectories of the proton. 

6. Hydrogen Molecule Ion 

As part of our calculation scheme, we will study the system of three quantum 
particles, the ion of a hydrogen molecule. Given the notation of Equation (31), 
we introduce the second proton as the third particle, then the Schrodinger equa-
tion can be rewritten for the hydrogen molecule ion after dimensionalization as: 

1 2 3
1 3 1 2 3 2

1 1 1 1
2 2 2ti

 
= − ∆ − ∆ − ∆ + − −  − − − r r r r r r

µ µψ ψ ψ ψ ψ ,    (41) 

 

 

Figure 8. Kinetic, potential and total energy spectra (left graph); dynamics of the average 
positions of the proton and electron (right graph). 
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where ( )1 2 3, , ,t= r r rψ ψ , and µ, the ratio of the mass of the electron to the mass 
of the proton. The expression in brackets in (41) describes all possible Coulomb 
contributions to the three-particle system. 

In Equation (41), we will make the change of variables: 1 1→r rµ ,  

3 3→r rµ , then after switching to the real and imaginary parts of the wave 
function u iv= +ψ , we get 

1 3 1 2 3 2

1 3 1 2 3 2

1 1 1 1 ,
2

1 1 1 1 ,
2

t

t

u v v

v u u

  
  = − ∆ + − −
  − − −  


 
  = ∆ − − −
 − − − 

r r r r r r

r r r r r r

µ µ µ

µ µ µ

         (42) 

where 1 2 3∆ = ∆ + ∆ + ∆  is the joint Laplace operator for molecular hydrogen 
ion. 

Acting according to the procedure of derivation of Equations (35)-(37), re-
place in (42) the joint Laplace operator by the corresponding sum, perform the 

inverse replacement of variables 1 1
1

→r r
µ

, 3 3
1

→r r
µ

, then we obtain 

, ,1,
1, 3, 1, 2, 3, 2,

, ,1,
1, 3, 1, 2, 3, 2,

1 1 1 1 ,
2

1 1 1 1 ,
2

N
i i j i j ij j i

i i i i i i

N
i i j i j ij j i

i i i i i i

u g v v

v g u u

= ≠

= ≠

  
  = + − −

 − − −  


 
 = − − − −  − − −  

∑

∑

r r r r r r

r r r r r r





     (43) 

( ) ( ) ( )2 2 22
1, 1, 2, 2, 3, 3,

1 1
2

1,
e , ;

0, ;

i j i j i jh
i j

h i jg
i j

− − + − + −
−


 ≠= 
 =

r r r r r r
ρ

µ µρ           (44) 

where , 1, ,i j N=  . 
In (43), (44) it is assumed that N points are introduced in a nine-dimensional 

space with radius vectors ( )1, 2, 3,, , , 1, ,i i i ir i N= =r r r  . In order for the terms 
under the root in (44) to be of the same order, just as in the case of (36), we put 

( )

( )

1, 1 1,

2, 2 2,

3, 3 3,

2 ,

2 ,

2 ,

i i

i i

i i

L L

L L

L L

= + − +

= − +

= + − +

r a

r a

r a

µ

µ

ξ

ξ

ξ

                     (45) 

where 1, ,i N=  ; 1 2 3, ,a a a , some constant vectors that are naturally inter-
preted as the scattering centers of the positions of two protons and an electron. 
Vectors 1, 2, 3,, ,i i iξ ξ ξ  in (45) are assumed to have independent uniformly ran-
dom coordinate values from the segment [0, 1].  

It is known [9] that in the ion of a hydrogen molecule a single-electron 
coupling has an energy of 62 kcal/mol, in the CGS system, it is equal to 4.243 × 
10–12 erg and, after passing to the dimensionless value in our problem, will be 
0.0989. Let searched and sorted in ascending order all the eigenvalues  
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1, , NΩ Ω  of the matrix ( ) ( )2
1
2 iQ g g diag U= − + , ( )2 ,1,

N
i jj j ig diag g

= ≠
= ∑ , 

1, 3, 1, 2, 3, 2,

1 1 1
i

i i i i i i

U = − −
− − −r r r r r r

. Let’s choose among the set of eigenvalues  

the value, Ωα , which is closest to the energy of the single-electron coupling in 
the ion of the hydrogen molecule, i.e. the value of 0.0989. In addition to the ei-
genvalue Ωα , we find the eigenvector cα  of the matrix Q, which is normalized 
by one. Carrying out this procedure M times, we find the set  
{ }, , 1, ,c MΩ = α α α , wherein 0.0989, 1, , MΩ ≅ − = α α . In the previous sec-
tion, it was already noted that the element square of the eigenvector acts as the 
probability of the particle’s presence in the selected set of spatial points. 

The approximate structure of the ion of the hydrogen molecule is known [10], 
the protons are spaced at a distance of 1.06 Å, which corresponds to two Bohr 
radii, i.e. two units in a dimensionless form, with the center of scattering of elec-
tronic subparticles located exactly in the middle between the protons. This 
structural information was sufficient to build an algorithm for generating the 
entire set of points 1, , Nr r  according to the procedure (45), when it is consi-
dered that, for example, ( ) ( ) ( )1 2 31,0,0 , 0,0,0 , 1,0,0= − = =a a a . 

Figure 9 shows: an example of calculating the kinetic energy, potential and 
total energies (left graph) of an ion of a hydrogen molecule, as well as the most 
likely locations of protons and electron localization of the hydrogen molecule 
ion (right diagram), when the binding energy is equal to 0.0989E ≅ − . All three 
energies are shown in the left Figure 9, calculated according to the formulas (39). 
Other parameter values were selected as follows:  

 

 

Figure 9. Kinetic, potential and total energy spectra (left graph); the most likely localization of protons and electrons hy-
drogen molecule ion (right graph). 
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2 3
1 23, 10 , 10 , 0.5, 1L M N= = = = =ρ ρ . 

On the right graph Figure 9 places of proton and electron localization were 
marked by markers in the form of rhombuses, pentagrams and points, circle, 
rhombic, respectively. The probabilities of the electron being in the appropriate 
places were divided into three categories: 1) thp>  (markers in the form of  

black dots); 2) 1 ,
3 th thp p 

  
 (markers circles); 3) 1 1,

9 3th thp p 
  

 (markers rhom-

bus), where 25 0.025thp
N

= = . 

The study of the localization of the components of the ion of the hydrogen 
molecule suggests the following. First, both the proton experiences a “shiver”. 
Second, the electron “surrounds” both protons. 

For control, the kinetic, potential and total energy spectra were found in the 
absence of variability in the positions of subparticles in space. Instead of formu-
las (45), it was assumed that 1, 1 2, 2 3, 3, , , 1, ,i i i i N= = = =r a r a r a  . In this case, it 
was found that the spectra of the kinetic and total energies have two different 
values. So when 3

1 23, 10 , 0.5, 1L N= = = =ρ ρ  it turned out that  

{ }0,694.4444keE = , 
1 3 1 2 3 2

1 1 1 3
2peE = − − = −

− − −a a a a a a
,  

3 ,692.9444
2teE  = − 

 
. Thus, when quantum particles are not divided into 

subparticles and are classically concentrated at separate points, they are in two 
states: 1) the kinetic energy of the particles is zero, potential and total energy is 
negative; 2) the kinetic and total energy is positive, i.e. the ion of the hydrogen 
molecule as a whole does not exist. 

7. Hydrogen Molecule 

Consider in our computational approach a hydrogen molecule, which consists of 
four quantum particles.  

We note Equations (36), (45), which for the hydrogen atom and the ion of a 
hydrogen molecule provided the possibility of statistical generation of positions 
in the space of quantum subparticles. In these formulas, there are scattering 
centers of subparticles of each of the quantum particles 1 2, ,a a  , which were 
chosen on the basis of existing considerations of symmetry and knowledge of the 
average distances between the quantum particles. In this regard, we consider the 
distance between protons to be known, which is the distance 2b = 0.7412 Å [9] 
or in the dimensionless form 2b = 1.4014. Considering the obvious symmetry of 
the hydrogen molecule with respect to the line passing through the pair of pro-
tons, we assume that the electron scattering centers are concentrated in the mid-
dle of a straight line connecting the centers of protons. 

We introduce designations for the scattering centers of two protons 1 4,a a  
and two electrons 2 3,a a , then we can write: ( )1 ,0,0b= −a , ( )2 0,0,0=a , 

( )3 0,0,0=a , ( )4 ,0,0b=a . Note that the diameter of the hydrogen molecule is 

2H 0.259 nmd =  [11] or in the dimensionless form 
2H 4.9d = , which is slightly 
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less than the length of the edge of the cube 2L = 6, which contained the ion of 
the hydrogen molecule in previous calculations. 

For the purposes of numerical modeling, it remains to estimate the energy of 
the hydrogen molecule. Let us turn to the reference book [12], which presents 
the dissociation energy of a hydrogen molecule, equal to 103.267 kcal/mol. In 
our dimensionless quantities it will be 0.1647 units of energy. We believe that 
before the formation of the hydrogen molecule, hydrogen atoms were in the 
ground state with energy equals –0.5. In this case, we can assume that the energy 
of the hydrogen molecule will be 2 0.5 0.1647 1.1647E = − × − = − . 

We introduce N points in twelve-dimensional space with radius vectors 
( )1, 2, 3, 4,, , , , 1, ,i i i i ir i N= =r r r r  , which determine the positions of hydrogen mo-

lecule subparticles. Taking into account (45), we write the algorithm for gene-
rating a set of vectors , 1, ,ir i N=  , namely 

( )

( )

1, 1 1,

2, 2 2,

3, 3 3,

4, 4 4,

2 ,

2 ,
2 ,

2 ,

i i

i i

i i

i i

L L

L L
L L

L L

= + − +

= + − +

= + − +

= + − +

r a

r a
r a

r a

µ

µ

ξ

ξ

ξ

ξ

                   (46) 

where 1, ,i N=  ; vectors 1, 2, 3, 4,, , ,i i i iξ ξ ξ ξ  have independent uniformly ran-
dom coordinate values from the segment [0, 1]. 

Define the matrix ( ) ( )2
1
2 iQ g g diag U= − + , ( )2 ,1,

N
i jj j ig diag g

= ≠
= ∑ ,  

1, 4, 2, 3, 1, 2, 1, 3, 4, 1, 4, 2,

1 1 1 1 1 1
i

i i i i i i i i i i i i

U = + − − − −
− − − − − −r r r r r r r r r r r r

, describing 

the interaction potential of protons and electrons in a hydrogen molecule. To 
find the pure states it is necessary to find the eigenvalues 1, , NΩ Ω  of the ma-
trix Q and the corresponding eigenvectors. We will carry out this procedure in 
two stages. In the beginning, we assume that the kinetic energy is absent. This 
can be ensured either with 1 0=ρ , or with 2 → ∞ρ . In the second stage, we 
choose the values of 1 2,ρ ρ  such that the kinetic and potential energies are 
connected within the framework of the well-known virial theorem. 

Among the set of eigenvalues, choose Ωα , the value of which is closest to the 
binding energy of the hydrogen molecule, i.e. the magnitude –1.1647. In addi-
tion to the eigenvalue Ωα , we find the eigenvector cα  of the matrix Q, which 
is normalized by one. Conducting this procedure M times we find the set 
{ }, , 1, ,c MΩ = α α α , wherein 1.1647, 1, , MΩ ≅ − = α α . The element-wise 
square of the eigenvector acts as the probability of the presence of a particle in a 
selected set of spatial points.  

For Figure 10 shows the result of the calculation of the spatial structure of the 
hydrogen molecule with account (46), as well as the algorithm, which is tested 
on the example of calculating the ion of the hydrogen molecule, provided that 
the kinetic energy, defined in (39), is absent. On the left graph Figure 10 shows 
the potential energy of the hydrogen molecule, peE . 

https://doi.org/10.4236/jamp.2021.92024


K. E. Plokhotnikov 
 

 

DOI: 10.4236/jamp.2021.92024 353 Journal of Applied Mathematics and Physics 
 

 

Figure 10. Potential energy of the hydrogen molecule (left graph); localization of the middle positions of protons and electrons in 
space (graph in the middle) and in the projection on the plane (x, y) (right graph). 
 

On the middle and right graphs the results of the search for a set of eigenva-
lues and eigenvectors { }, , 1, ,c MΩ = α α α  such that  

31.1647, 1, , 5 10MΩ ≅ − = = ×α α  are shown. The element squares of eigen-
values allowed us to find the places of localization of the average positions of the 
quantum particles of the hydrogen molecule. Other parameter values were se-
lected as follows: 33, 10L N= = .  

The middle and right graphs of Figure 10 show the average positions of pro-
tons (markers in the form of pentagrams and hexagrams) and electrons (mark-
ers in the form of points and asterisks) of the hydrogen molecule in space (x, y, z) 
and in the form of a projection on the coordinate plane (x, y). The average posi-
tions of quantum particles were calculated using formulas similar to (40), i.e. 

( ) 2
, , ,1

N
k k i iit c

=
= ∑R rα α , where 1, 2,3, 4k = , numbers of quantum particles of a 

hydrogen molecule, and 1, , M= α .  
According to the middle and right graphs Figure 10 it turns out that a cloud 

of electron subparticles “envelops” both protons, and it is clear that the electron 
subparticles form something in the form of a three-dimensional figure of rota-
tion. 

Note that in terms of calculations, the search for eigenvalues and vectors of 

the matrix ( )1
2 iQ diag U=  is a trivial problem, since the matrix Q in this case  

is diagonal. The task of finding the eigenvalues and vectors of the matrix Q be-
comes noticeably more expensive from the computational point of view in the 
second case, when the kinetic energy of the protons and electrons of the hydro-
gen molecule is different from zero. In this case, when determining the matrix g, 
the coefficients 1 2,ρ ρ  must be chosen appropriately. 

To select the appropriate values of the coefficients 1 2,ρ ρ  we use the virial 
theorem known in both classical and quantum mechanics. Applied to our case, 
the theorem states that the average value of the kinetic energy is equal to minus 
half of the potential energy for a given value of 1.1647E = −  of the energy of 
the hydrogen molecule. 

Figure 11 shows the results of a computational experiment for the second 
case, when the kinetic, potential, and total energies of the hydrogen molecule are 
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taken into account. Other parameter values were selected as follows:  

3
1 2

33, 10 , 1500, 0.003, 0.07L N M
N

= = = = = =ρ ρ . 

On the left graph Figure 11 it is clearly seen that the kinetic energy of the hy-
drogen molecule is available and it is comparable with the potential energy, and 
the virial theorem is fulfilled.  

Analysis and comparison of Figure 10, Figure 11 shows that electrons 
(markers in the form of points and asterisks) of the hydrogen molecule condense 
in the vicinity of a somewhat elongated figure of rotation. If in Figure 10 this 
figure is only a little like a dumbbell, then in Figure 11 it is quite clearly visible. 
Note that the figure of rotation in the form of a dumbbell acts as a standard im-
age of a covalent chemical bond. 

Note that the topology of the average positions of electrons for the first case 
(Figure 10) and the second (Figure 11) are noticeably different, although in 
Figure 10 it is possible to identify the presence of a dumbbell prototype. This 
means that, to study the general case, when there are both kinetic and potential 
energies in the molecule, the first case can be used as heuristic calculations when 
the kinetic energy is considered to be zero. In the latter case, in terms of the 
amount of computation, the algorithm is greatly simplified. 

8. Water Molecule 

Consider a water molecule as the next example demonstrating the use of the 
proposed numerical algorithm for solving the Schrodinger equation. There are 
13 quantum particles in a water molecule: an oxygen atom, two protons and ten 
electrons.  

It is known that the angle between the lines directed from the oxygen atom to 
the protons in the water molecule is approximately 104.45˚. In addition, the 
length of these lines is equal to the value 0.9584 Å.  

We estimate the dissociation energy 
2H OE  of the water molecule on 13 inde-

pendent quantum particles. It is obvious that 
2H O H O H O H2E E E E − −= + + , where 

H O,E E , energy of hydrogen and oxygen atoms formation; H O HE − − , energy of 
water molecule formation. Taking into account section 5, we believe that hydro-
gen atoms have dimensionless energy equal to –0.5, i.e. H 0.5E = − . To estimate 
the energy of the oxygen atom OE  it is necessary to refer to the experimental 
data on the energy of the first, second, etc. ionization. It is found [13] that the 
whole set of ionization energies of the oxygen atom is the following values (in 
eV): 13.6; 35.1; 54.9; 77.4; 113.9; 138.9; 739.1; 871.1. Summing the last eight val-
ues and moving to the dimensionless form, we find O 75.0826E = − . Finally, 
216.87 kcal/mol, is required to break both covalent bonds in a water molecule 
[12], which in dimensionless form will be H O H 0.3459E − − = − . It is obvious that 
the main contribution to the water molecule gives the energy of formation of the 
oxygen atom. As a result, by elementary calculation we find the energy of com-
plete dissociation of the water molecule, i.e. 

2H O 77.4285E = − .  
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Figure 11. Kinetic, potential and total energy of the hydrogen molecule (left graph); places of localization of the average positions 
of protons and electrons in space (middle graph) and in the projection on the plane (x, y) (right graph). 

 
We enumerate the quantum particles as follows: oxygen atom (#1); protons 

(#2, 3); electron (#4), associated with proton #2; electron (#5), associated with 
proton #3; the remaining 8 electrons (#6-#13) are associated with the oxygen 
atom. 

According to the chosen numbering, we introduce a set of 1 13, ,µ µ  ratios 
of the electron mass to each of the 13 masses of quantum particles of the water 
molecule. In this case, we get: 

5 4
1 2 3 4 133.4039 10 ; 5.4462 10 ; 1− −= × = = × = = =µ µ µ µ µ .       (47) 

We also introduce a set of charges 1 13, ,q q  of each of the 13 particles of a 
water molecule in dimensionless form, then 

1 2 3 4 138, 1, 1q q q q q= = = = = = − .                 (48) 

Taking into account the spatial position of the particles of the hydrogen mo-
lecule, we determine their scattering centers 1 13, ,a a . Figure 12(a) shows the 
positioning in the (x, y) plane of the scattering centers of the oxygen atom and 
the pair of protons. The electron scattering centers #4, #5 are connected with the 
centers of scattering of protons, and the centers of scattering of electrons #6-#13 
with the scattering center of the oxygen atom. As a result, we have: 

( ) ( ) ( )( ) ( )1 2 30,0,0 ; cos , sin ,0 ; ,0,0b b b= = − π − π − =a a aγ γ ; 

( ) ( )( ) ( )4 5cos , sin ,0 ; ,0,0b b b= − π − π − =a aγ γ ; 

( )6 13 0,0,0= = =a a , 

where 104.45= γ , the angle between the lines going from the oxygen atom to 
the protons; b = 0.9584 Å = 1.8117, the distance between the oxygen atom and 
the proton. 

We introduce N points in 39-dimensional space with radius vectors  
( )1, 13,, , , 1, ,i i ir i N= =r r  , which determine the positions of water molecule 

subparticles. Considering (46), we write the algorithm for generating a set of vec-
tors , 1, ,ir i N=  , namely 
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, .2k i k k k iL= +r a σ µ η ,                    (49) 

where 1, ,13k =  ; 1, ,i N=  ; σ, some auxiliary non-negative numeric para-
meter; coordinates of vectors , , 1, ,13; 1, ,k i k i N= = η  have independent 
random values obeying the normal law with mean 0 and standard deviation 1. 

Note that according to (49) the random selection of the k-th radius vector ob-
eys the normal law with the mean ka  and standard deviation 2 kLσ µ . The 
choice of the normal distribution instead of the uniform one, as it was in the 
previous section, is connected with the economy of computing resources, the 
deficit of which was connected with the provision in the calculations of the low 
energy value of the complete dissociation of the water molecule, equal to 

2H O 77.4285E = − .  
At the first stage, we find the average positions of all quantum particles of the 

water molecule in M = 103 statistical experiments when the kinetic energy is ab-
sent. During each statistical experiment, the positions of all thirteen quantum 
particles are generated according to the algorithm (49). Figure 12(b) shows a 
typical sample of the potential energy spectrum, peE , of a water molecule. 

 

 
(a) 

 
(b) 

Figure 12. (a) Positioning the scattering sites of the oxygen atom and 
two protons; (b) Potential energy of water molecule. 
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Potential energy profile in Figure 12(b) is obtained after sorting the set po-

tentials 13
, 1,

, ,

, 1, ,j k
i j k j k

j i k i

q q
U i N

= <
= =

−
∑

r r
  by ascending order. In addition, 

the eigenvectors 1, , Nc c  of the matrix ( )iQ diag U= , were found, which al-
lowed to calculate the average positions of all quantum particles of the water 
molecule. Figure 13 shows the results of the computational experiment. 

Figure 13(a) shows the localization of the middle positions of the oxygen 
atom (a marker in the form of a circle), protons (a marker in the form of a pen-
tagram) and electrons (markers in the form of points and asterisks) of the water 
molecule in the space (x, y, z) and in the projection on the plane (x, y). The posi-
tioning of individual electrons in the vicinity of oxygen and protons is clearly 
visible. The same can be seen in Figure 13(b), where the average positions of the 
electrons are connected by lines. 

 

 
(a) 

 
(b) 

Figure 13. (a) Places of localization of the average positions of quantum particles of a water molecule in space (x, y, z) (left 
graph) and in the projection on the plane (x, y) (right graph); (b) Localization of the middle positions of the electrons of 
the water molecule connected by lines. 
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Note that shown in Figure 13 the three-dimensional design of the water mo-
lecule corresponds to the concepts of the covalent bond of the oxygen atom with 
hydrogen atoms. In connection with the manipulation of the electron scattering 
centers 4 13, ,a a , it seems possible to construct other structures for positioning 
oxygen and hydrogen atoms into a single molecule. 

Let us proceed to the general case, when the presence of kinetic energy is tak-
en into account. We take into account its consideration with the virial theorem, 
i.e. it is believed that the kinetic energy is equal to minus half of the potential. 
Let us find the spectrum of the kinetic, potential and total energies, as well as the 
average positions of the oxygen atom, protons and electrons in M statistical tests 
by playing the positions of quantum particles of a water molecule according to the 
algorithm (49). To do this, following (44), we define the matrix g by the formula: 

( )2132
, ,1

1
2

1,
e , ;

0, .

k i k jk
kh

i j
h i jg
i j

=− −
−

∑
 ≠= 
 =

r r
ρ

µρ                (50) 

Let all eigenvalues 1, , NΩ Ω  of the matrix ( ) ( )2
1
2 iQ g g diag U= − + , 

( )2 ,1,
N

i jj j ig diag g
= ≠

= ∑  be found and ordered by ascending order. Among the  

set of eigenvalues, choose Ωα , the value of which is closest to the binding ener-
gy of the water molecule, i.e. the magnitude –77.4285. In addition to the eigenvalue 
Ωα  we find the eigenvector cα  of the matrix Q, which is normalized by one. 
Conducting this procedure M times we find the set  
{ }, , 1, ,c MΩ = α α α , wherein 77.4285, 1, , MΩ ≅ − = α α .  

The left graph of Figure 14 shows the typical profiles of the kinetic, potential 
and total energies of the water molecule. The graph shows that the desired value 
of the energy of the complete dissociation of the water molecule is included in 
the energy spectrum represented by the curve teE .  

Taking into account (48)-(50), the middle and right graphs in Figure 14 show 
the results of a typical calculation of the average positions of all 13 quantum par-
ticles of a water molecule. The large circle of blue indicates an oxygen atom, the 
pentagrams indicate the positions of a pair of protons, the black dots indicate the 
positions of electrons. Other values of the calculation parameters are as follows:  

3 3
1 2

603, 10 , 10 , 0.06, 0.01, 0.1L N M
N

= = = = = = =ρ ρ σ . 

The middle graph in Figure 14 shows the three-dimensional image of the wa-
ter molecule in the form of the averaged positions of oxygen, a pair of protons 
and a halo of electron positions. The right graph in Figure 14 shows the projec-
tion of the positions of all quantum particles on the plane (x, y). The increased 
concentration of electron positioning sites in the vicinity of the oxygen atom is 
clearly visible. Note that the locations of the oxygen atom and protons expe-
rience fluctuations with different amplitudes, remaining in approximately the 
same position relative to each other.  
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Figure 14. Energy spectra (left); three-dimensional (center) and two-dimensional image (right, projection on the (x, y) plane) 
positions of the oxygen atom (marker: blue circle), pairs of protons (marker: pentagram) and electrons (marker: point). 

9. Benzene Molecule 

Consider the application of the algorithm of numerical solution of the Schro-
dinger equation to the benzene molecule. In the benzene molecule, whose chemi-
cal formula is C6H6, 54 quantum particles: 6 carbon atoms, 6 protons and 42 elec-
trons. 

Using the example of a benzene molecule we will consider a new feature of the 
algorithm under study, it is associated with the matrix g, the typical form of 
which is given in (50). The mentioned feature has already manifested itself in the 
study of hydrogen and water molecules, where, due to the conditions of the viri-
al theorem, it was necessary to significantly reduce the value of the coefficient 

2ρ . The specified coefficient was chosen to be 0.07 and 0.01 for hydrogen and 
water molecules, respectively. 

Let the algorithm for generating a set of radius vectors  

( )1, 54,, , , 1, ,i i ir i N= =r r  , which determine the positions of the quantum par-
ticles of the benzene molecule, be similar to the algorithm of the water molecule 
(49), and the matrix g is constructed by analogy with the matrix (50). Substitute 
(49) in (50), then we get applied to the benzene molecule: 

( ) ( ) ( )2 2 2542
, , , , , , , , , , , ,1

2
2

1,
e , ;

0, .

x k i x k j y k i y k j z k i z k jk
L
h

i j
h i jg
i j

=
 − − + − + − −  

∑
 ≠= 
 =

σ ρ
η η η η η η

ρ    (51) 

where subindexes x, y, z denote projections of vectors  

, , 1, ,54; 1, ,k i k i N= = η  on the corresponding coordinate axes. Note that in 
(51) under the sign of the sum there are 54 × 3 = 162 terms, each of which 
represents the realization of the same random variable ( )2

, , , ,∗ ∗ ∗ ∗ ∗ ∗Φ = −η η . Since 
the number of terms in the sum of random numbers is quite large, we can use 
the central limit theorem of probability theory. 

Find the mathematical expectation MΦ and the variance DΦ of a random va-
riable Φ. Given that all values of , ,∗ ∗ ∗η  are independent and have the standard 
normal distribution N(0, 1), it is easy to find 2M Φ = , 12DΦ = . We define the  
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sample mean 1

1 n
n kkn =

Φ = Φ∑ , then, according to the central limit theorem, we 

can write ( )2
0,1

12
n nM

n n N
D

Φ − Φ Φ −
= →

Φ
 by distribution, when n → ∞ . 

Let η be some random variable obeying the normal law N(0, 1), then, accord-

ing to the central limit theorem, we can write 122 2,n n
n

Φ = + → → ∞η , where  

convergence is understood as convergence in probability. The last passage to the 
limit in expression (51) allows the sum to be approximately replaced by the con-
stant 162 × 2, in this case it is assumed that n = 162. This is where the new fea-
ture of the algorithm under consideration lies, and the above-mentioned substi-
tution will be the more accurate the larger the number of quantum particles in a 
molecule. We rewrite the expression for the matrix g taking into account this 
feature, then 

,

, ;
0, ;i j

i j
g

i j
≠

=  =

ε
                       (52) 

where 
236

2
1 e

L
hh

−−=
σρ

ε ρ . 
Taking into account (52) the eigenvalue problem for the matrix 

( )2
1
2

Q g g= − , ( )2 ,1,
N

i jj j ig diag g
= ≠

= ∑  can be solved analytically. In this case, 

the kinetic energy spectrum will have two non-negative values, 1 2,Ω Ω , one of 
which is zero. The corresponding characteristic equation has the form: 

1

0
2

NN −
 Ω Ω − = 
 

ε , whence it follows that 1 20,
2
N

Ω = Ω =
ε

, and the second 

eigenvalue has a degeneracy of order N – 1. 
Note that the above-discussed feature of the matrix g remains in the case 

when the random variables of type ( )2
, , , ,∗ ∗ ∗ ∗ ∗ ∗Φ = −η η  they are subject to dif-

ferent distributions. Due to the well-known generalized Chebyshev’s theorem, 
only their independence, the existence of averages and the limitation of va-
riances in the aggregate are required. In this case, convergence in probability is 
provided by the convergence to the mean of the mathematical expectations of 
random variables. 

Figure 15(a) shows a block diagram of a benzene molecule in the form of a 
ring, which is well known in chemistry. Figure 15(a) shows the characteristic 
dimensions of the ring in nanometers (nm) and in dimensionless units (d.u.). 

Let us calculate the energy of complete dissociation of the benzene ring, 
6 6C HE . 

So, the ionization energies of a carbon atom are (MJ/mol) [12]: 1.09; 2.35; 4.62; 
6.22; 37.83; 47.28. Summing up, we find C 99.39 Mj mol 37.8669 d.uE = − = − . 
The ionization energy of the hydrogen atom will be H 0.5 d.uE = − . Finally, the 
energy of the benzene ring [14] is 1323 kcal mol 2.1089 d.uE = − = − . As a re-
sult, we find the total dissociation energy of the benzene ring:  

6 6 CC H H6 6 232.3103 d.uE E EE = −= + +  . 
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(a) 

 
(b) 

Figure 15. (a) Appearance of the benzene ring; (b) Kinetic, poten-
tial and total energy of the benzene molecule. 

 
Taking into account (49), we write the algorithm for generating the set of 

vectors , 1, ,ir i N=  , namely 

, ,2k i k k k iL= +r a σ µ η ,                   (53) 

where 1, ,54; 1, ,k i N= =  ; , 1, ,54k k =a  , the centers of the scattering of 
the quantum particles of the benzene molecule. The coordinates of the vectors 

, , 1, ,54; 1, ,k i k i N= = η  in (53) are assumed to have independent random 
values with zero expectation and finite variance. 

Taking into account (53), we consider several schemes for choosing the elec-
tron scattering centers of the benzene molecule. This circumstance is caused by 
the fact that several schemes of delocalization of electrons of double bond in 
benzene molecule are considered in chemistry. 

Note that to provide the virial theorem, it is sufficient to put that  
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6 6C H 232.3103 d.u
2ke te
NE E E= = − = − =

ε
. Where it follows that 6 6C H2E

N
= −ε . 

Scheme No.1. In the beginning, we consider the case when the electron scat-
tering centers coincide with the corresponding scattering centers of carbon and 
proton atoms. Figure 15(b) shows an example of a typical calculation of the 
graphs of the kinetic, potential and total energies of the benzene molecule. Fig-
ure 16 shows the localization of the average positions of all quantum particles of 
the benzene molecule in M = 500 statistical experiments. The left graph shows 
positioning in space, and the right graph shows positioning in a plane. Carbon 
atoms, protons and electrons are indicated by markers in the form of penta-
grams, large dots and small dots, respectively. 

Scheme No.2. The valence electrons of carbon and hydrogen are paired in 
two. Since only 6 × 4 + 6 × 1 = 30 valence electrons, 15 pairs of bonds can be de-
termined. These bonds are related to C–C, C=C and C–H bonds in the amount 
of 3, 3 and 6, respectively. The centers of scattering of electron pairs will be 
placed in the centers of the lines defining the bonds C–C, C=C and C–H. Among 
the carbon bonds, there are three single C–C and three double C=C. The scat-
tering centers of non-valent electrons (12 pieces) are associated with the scatter-
ing centers of the corresponding carbon atoms. 

Figure 17 shows the result of calculating the localization sites of the average 
positions of all the quantum particles of the benzene molecule according to the 
scheme No. 2 for localizing the scattering centers of 30 electrons. Arrows in 
Figure 17 indicate double bonds C=C, which differ from single C–C with a 
slightly higher density of markers in the form of points that indicate the average 
positions of electrons. Markers in the form of pentagrams and large dots indicate 
the locations of carbon atoms and protons, respectively. Other parameters of 
calculation took the following values:  

6 6C H3 2
7, 10 , 500, 0.4646, 0.0185

E
L N M

N
= = = = − = =ε σ . 

In scheme No.3 we consider the case when the electrons of double carbon 
bonds are delocalized.  

Scheme No. 3. The electrons of hydrogen, four electrons from each of the 
carbon atoms are uniformly randomly distributed over the benzene ring. When 
positioning 30 valence electrons, it is considered that in each statistical experi-
ment the electron scattering centers are uniformly randomly positioned over a 
length of 6 × 2.6465 + 6 × 2.0605 d.u. total benzene ring (Figure 15(a)), where 
2.6465 d.u., distance between a pair of carbon atoms, 2.0605 d.u., the distance 
between carbon and hydrogen. 

Figure 18 shows a typical result of the calculation of the average localization 
sites of quantum particles of benzene in the space (x, y, z) and in the projection 
on the plane (x, y). The calculation parameters were chosen as follows:  

6 6C H3 2
7, 10 , 500, 0.4646, 0.025

E
L N M

N
= = = = − = =ε σ .  
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Using the example of the scheme No.3, we construct a mixed solution of the 
Schrodinger equation describing the dynamics of the average trajectories of 30 
valence electrons of the benzene molecule. 

 

 

Figure 16. Scheme No.1. Locations of average positions of quantum particles of a molecule benzene in space (graph on the left) 
and in projection on a plane (graph on the right). 

 

 

Figure 17. Scheme No.2. Locations of average positions of quantum particles of a molecule benzene in space (graph on the left) 
and in projection on a plane (graph on the right). 
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Figure 18. Scheme No.3. Locations of average positions of quantum particles of benzene molecule in space (graph on the left) and 
in projection on the plane (graph on the right). 

 

Let’s make a matrix 
0

0
Q

G
Q

=
−

 and solve numerically on a time interval  

[0, 5] a system of linear differential Equation (12) starting from a random initial 
vector 0y  having a unit norm. An analogue of the procedure for constructing 
the average trajectory of each of the valence electrons is described in section 5 on 
the example of constructing the average trajectories of the proton and electron of 
the hydrogen atom. We repeat the indicated procedure for constructing a tra-
jectory M = 50 times, each time changing the positions of the quantum particles 
of the benzene molecule according to algorithm (53). Other calculation parame-
ters were reduced to the values: 7, 25, 0.4646, 0.025L N= = = =ε σ . The result 
is shown in Figure 19. 

Figure 19(a) shows the appearance of the average trajectories of motion of 30 
valence electrons within the entire benzene molecule, while the trajectories of 
electrons are separated from each other by random colors in various statistical 
experiments. Due to the high frequency of oscillations, the trajectories merge 
into a single unit, while the characteristic geometric structure of the benzene 
molecule is clearly visible. On Figure 19(a) a fragment of the benzene molecule 
is indicated, which is enlarged and shown in Figure 19(b). On the enlarged 
fragment of the molecule, separate trajectories are visible. Markers in the form of 
black dots (small and large) in both Figure 19 indicate the beginning and end of 
individual trajectories. 

The comparison between the patterns of positioning of electrons in Figures 
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16-19 shows that they are significantly different. According to scheme No.3, the 
scattering centers of valence electrons of the benzene molecule are uniformly 
randomly distributed along the benzene ring, including hydride bonds, while the 
variability corridor in the perpendicular direction is regulated by the parameter 
σ. In this scheme electrons of double and single bonds of carbon atoms are de-
localized. 

 

 
(a) 

 
(b) 

Figure 19. (a) Average trajectories of 30 valence electrons of the benzene molecule 
in 50 calculations; (b) Enlarged fragment of the set of average trajectories of the mo-
tion of valence electrons in the benzene molecule. 
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Let us present in a generalized form the considered numerical algorithm for 
solving the Schrodinger equation in terms of constructing the pure states of a 
molecule with the number of quantum particles greater than several tens. 

Let the molecule consist of n quantum particles and its energy is EΣ . We 
consider that quantum particles of a molecule are characterized by ratios of elec-
tron mass to mass of atoms, including electrons, 1, , nµ µ  and charges  

1, , nq q , respectively. 
1) We introduce a set of N radius vectors ( )1, ,, , , 1, ,i i n ir i N= =r r   in a 

space of dimension 3n, describing the initial data for determining the positions 
of quantum particles, which will then change according to point 4) of this algo-
rithm. 

2) Create the matrix ( )1 1
2 2N N iQ Ne o diag U= − +ε ε , where 

2E
N

Σ= −ε  is a  

non-negative parameter ensuring the fulfillment of the virial theorem for the 
molecule, Ne  is the N × N unit matrix, No  is a special N × N matrix, all ele-
ments of which are units, ( )idiag U  is a diagonal matrix, on the diagonal of 
which are the potential energy values of the molecule at the points , 1, ,ir i N=  . 
The potential energy is calculated by the formula:  

, 1;
, ,

, 1, ,N j k
i j k j k

j i k i

q q
U i N

= <
= =

−
∑

r r
 . 

3) Find eigenvalues 1, , NΩ Ω  and eigenvectors 1, , Nc c  of the matrix Q. 
Choose among a set of eigenvalues that of them, EΣΩ ≅α , which is closest to 
the total energy of the molecule. Assuming that the eigenvectors are normalized 
by one, we find the localization of , , 1, ,k k n=R α  average positions of quan-
tum particles included in the molecule by the formula: 2

, , ,1
N

k k i ii c
=

= ∑R rα α . 
4) The procedure in items 1)-3) is repeated M times, assuming that the radius 

vectors ( )1, ,, , , 1, ,i i n ir i N= =r r   are selected each time according to the scheme 
of the form: , ,2 , 1, , ; 1, ,k i k k k iL k n i N= + = =r a  σ µ η , where , 1, ,k k n=a   
the so-called scattering centers of quantum particles, which in general can vary 
from one statistical test to another; σ is some non-negative fitting coefficient; L is 
the characteristic size of the task or, otherwise, the size of the three-dimensional 
box, [ ]3,L L− , in which the molecule is placed; , , 1, , ; 1, ,k i k n i N= = η  are 
vectors of random variables whose coordinates have zero expectation and dis-
persion of the order of unity. 

5) We construct the final graphs of the average positions  

, , 1, , ; 1, ,k k n M= =R  α α  of quantum particles of the molecule in three di-
mensional physical space. 

10. Metallic Hydrogen 

As the final stage of testing the proposed scheme of numerical solution of the 
Schrodinger equation, we consider the so-called “metallic hydrogen”. It is be-
lieved [15] that metallic hydrogen can be obtained under high pressure. In this 
case, electrons are separated from specific protons and become free, and hydro-

https://doi.org/10.4236/jamp.2021.92024


K. E. Plokhotnikov 
 

 

DOI: 10.4236/jamp.2021.92024 367 Journal of Applied Mathematics and Physics 
 

gen acquires the properties of metal, in particular, becomes a conductor of elec-
tric current. In astrophysics [16], metallic hydrogen is mentioned in connection 
with the giant planets (Jupiter, etc.), where, due to high gravity, conditions are 
formed for the formation of metallic hydrogen. 

Consider a molecule consisting of n hydrogen atoms. Let us estimate the total 
energy mhE  of the molecule, when it is considered that there is a phase called 
metallic hydrogen. The energy of the molecule can be collected by summing the 
internal energy of n hydrogen atoms equal to –0.5n (d.u.), plus the binding 
energy of the metal hydrogen molecule, bondE , which is not known to us. 

For certainty, we assume that the proton scattering centers are concentrated 
in the nodes of a simple cubic lattice fragment, with a characteristic distance 
between the nearest nodes b. In this case, it is considered that the number of 
quantum particles can be represented as a product of two on the cube of some 
natural number. At each step of the statistical experiment, each electron scatter-
ing center is uniformly randomly connected to one of the proton scattering cen-
ters, then the electrons become delocalized and indistinguishable.  

Thus, at a pressure of 108 bar, the density of metallic hydrogen [16] is 5.90 
g/cm3, where you can find the average distance between protons equal to b = 
0.6569 Å = 1.2413 d.u. Recall that the distance between a pair of protons in a 
hydrogen molecule is considered to be equal to b' = 0.7416 Å = 1.4014 d.u. 

To estimate the binding energy bondE  we assume that it is equal to the 
change in the potential energy ( ) ( )p p pU U b U b′∆ = −  when n protons are 
closer together, where ( )pU b  is the Coulomb interaction potential of protons 
placed in the nodes of the cubic lattice, whose step takes the value b. As a result, 
we will write down 0.5 0.5mh bond pE n E n U= − + = − + ∆ . The energy  

bond pE U= ∆  defines the assumed part of the total energy, which is characteris-
tic for the phase of metallic hydrogen. Considering this energy as negative, we 
believe that hydrogen atoms are more closely related to each other in metallic 
hydrogen.  

We apply the calculation algorithm formulated at the end of the previous sec-
tion M = 500 times and construct the final graphs of the average positions of the 
quantum particles of metallic hydrogen. A typical example of the final calcula-
tions is shown in Figure 20. Other parameter values were selected as follows: 

3 34, 10 , 5 125, 322.8112,
2

260.3112, 0.6456, 0.02.

mh

mh
bond

L N n E
E

E
N

= = = = = −

= − = − = =ε σ
 

As in the previous examples, the parameter ε was chosen on the basis of the 
conditions of the virial theorem. 

Figure 20 shows the characteristic results of the calculation of a small-sized 
metallic hydrogen molecule. It should be noted that due to the enormous value 
of the modulus of the binding energy bondE , the electrons are noticeably locked 
in the vicinity of protons, and the value of the parameter σ is chosen to be rather 
small. The reality status of metallic hydrogen constructed in this example is  
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Figure 20. Kinetic, potential and total energy (graph on the left); locations of the average positions of protons 
(markers in the form of large points) and electrons (markers in the form of small points) of the metal hydrogen 
molecule on the right graph. 

 
questionable, because the specific binding energy per hydrogen atom is  

322.8112 2.5825
125

mhE
n

= − = − , which is considerably less than the minimum of 

the binding energy of the hydrogen atom is –0.5. 

11. Conclusion 

The paper presents a numerical method for solving the Schrodinger equation for 
a molecule with an arbitrary set of quantum particles. This method combines the 
finite-difference and Monte-Carlo approaches, which allowed to remove the 
problem of multidimensionality of the Schrodinger equation. The resulting me-
thod was effective and economical and, to a certain extent, not improved, i.e. op-
timal. The method is presented and simultaneously outlined on the example of 
solving a number of problems, namely, a linear one-dimensional oscillator, a 
hydrogen atom, an ion and a molecule of hydrogen, water, benzene, and metallic 
hydrogen. The method itself is formalized as an algorithm for the numerical so-
lution of the Schrodinger equation for a molecule with an arbitrary number of 
quantum particles. The method can be a useful addition to other methods of 
calculation of molecular systems in physics and chemistry. 
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