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Abstract 
We investigate the effect of strategy-homogeneity on the prisoner’s dilem-
ma game in a square lattice. Strategy-homogeneity means that the popula-
tion contains at least one connected group in which individuals maintain 
the same strategy at each iteration and may update according to updating rule 
at next iteration. The simulation results show that the introduction of strate-
gy-homogeneity increases the cooperation in the evolutionary stable state. For 
any value of temptation to defect, the density of cooperators in equilibrium state 
increases firstly and then decreases as the level of strategy-homogeneity increases 
constantly, and there exists an appropriate level of strategy-homogeneity, max-
imizing the density of cooperators. The results may be favorable for compre-
hending cooperative behaviors in societies composed of connected groups 
with coherent strategy. 
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1. Introduction 

Cooperative behaviors appear widely from biology to social systems [1]-[10]. 
However, cooperation means sacrificing personal interest for the collective ben-
efits when a defector obtains more from his cooperative opponent than a coope-
rator does. Therefore, it is vital to investigate why individuals choose to coope-
rate with others. The classical game theory is firstly proposed by Nash [11], 
forming a research paradigm framework based on classical game. In this theory, 
all of players are assumed to be of perfect rationality [11], indicating that they 
always make the best decisions. In practice, people are bounded rational in 
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realistic world [12] [13] as a result of being influenced by others. In view of this, 
evolutionary game theory [14] [15] is put forward, aiming at studying about the 
evolutionary process of cooperation within a population on social dilemma [16] 
[17]. In evolutionary game theory, payoff is represented by fitness, and strategies 
are changing over iteration constantly until equilibrium state is reached. Subse-
quently, Axelrod and Hamilton [18] investigate the evolutional course of coop-
eration by considering repeated prisoner dilemma. Nowak and May combine 
spatial structure with evolutional classical game [19] [20] creatively, generating 
the networked evolutionary game. Above all, network evolutionary game pro-
vides a powerful framework for the research of the cooperation. 

It is a matter of fact that societies, in almost every age and region, always con-
tain at least one connected group in which individuals maintain the same strat-
egy at each iteration and may update according to updating rule at next itera-
tion. This is the strategy-homogeneity we will investigate in this paper. This idea 
comes from the following related pieces of literature, namely, Ref. [21] [22], 
studying strategy-assortativity previously, but the strategy-assortativity referred 
by them is used to describe people’s general trend to interact with those who act 
like them, leading to the formation of relations. More specifically, in Ref. [21], 
an individual selects his partner from the assortative pool with a fixed probabili-
ty that represents strategy-assortativity or from the random pool with the cor-
responding probability. In Ref. [22], the strategy-assortativity reflected by the 
fixed probability decides what kind of investors’ partner in the game. 

The strategy-homogeneity is equivalent to the initial strategy distribution, but 
the literature focused on the impact of initial strategy distribution on the evolu-
tion of cooperation for social dilemmas has so far given little attention to the in-
fluence of the level of strategy-homogeneity in the network. A part of the exist-
ing literature on initial strategy distribution is shown in the following. Szabó and 
Fáth unveil the fact that the result of evolutionary games is closely related to ini-
tial conditions [23]. For instance, in Ref. [24], the authors investigate not only 
the effect of different initial distribution of defectors on cooperators under the 
premise of same initial frequency of defectors but also the influence of dynamic 
initial frequency of defectors on cooperators under the same initial distribution 
of defectors. They found that the situation where defectors are located on low-
est-degree vertices initially can display more robust cooperation than other situ-
ations. Then, the initial configuration that all S × S individuals are defectors ex-
cept for an s × s (s = 1, 3, 5, …, 15 and 30) cluster of cooperators in the center of 
the lattice is investigated, and their simulations confirm that the probability of 
invasion is essentially independent of the initial number of cooperators provided 
that they form at least a 3 × 3 cluster [25]. By assuming a small fraction of zeal-
ous cooperators, Masuda shows that a large fraction of cooperation emerges in 
evolutionary dynamics of social dilemma games [26]. Other related studies on 
initial configurations can be seen in literature [27] [28] [29] [30]. 

In general, it is worthy of special consideration to investigate the effect of 
strategy-homogeneity on individual’s behaviors. Therefore, this paper will focus 
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on the effect of strategy-homogeneity on the prisoner’s dilemma game in a 
square lattice. 

The structure of the paper is as follows. Section 2 elaborates the strate-
gy-homogeneity and corresponding strategy update rule. Section 3 shows the 
simulation results. Section 4 concludes. 

2. Strategy-Homogeneity and Corresponding Strategy  
Update Rule 

Strategy-homogeneity means that the population contains at least one connected 
group in which individuals maintain the same strategy at each iteration and may 
update according to updating rule at next iteration. For example, various con-
nected groups are shown in bold black in Figure 1. We use strategy-homogeneity 
p, namely, the level of strategy-homogeneity, as an index to form different con-
nected groups here. In addition, the strategy-homogenous edge is defined as this 
kind of edge through which individuals keep same strategy at each iteration and 
may update according to updating rule at next iteration. 

Before the idea of strategy-homogeneity is realized, we need know how to se-
lect strategy-homogenous edge according to strategy-homogeneity p and divide 
all agents into various groups. Firstly, given the strategy-homogeneity p, we will 
compare a random number generated for each edge with p, and the corresponding 
edge is then selected if the random number is less than p. Strategy-homogeneity p 
is about the proportion of strategy-homogenous edges. Secondly, nodes in-
volved by connected strategy-homogenous edges constitute a group. Moreo-
ver, a single node that is not involved by any strategy-homogenous edge con-
stitutes a group itself. So, the population is divided into various connected 
subgraphs in which the number of individuals may be 2, 3 and so on. Taking the 
strategy-homogenous edge XZ depicted in Figure 1 for example, the nodes X 
and Z constitute one connected group, while the single node such as Y consti-
tutes another group. 

 

 
Figure 1. Graphic presentation and brief description about strate-
gy-homogeneity in a square lattice are provided. The level of strate-
gy-homogeneity is set to 0.05 and various groups are shown in this figure. 
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Individuals acquire their accumulated payoffs from games with their nearest 
neighbors. For a group, suppose the node X obtains maximum payoff P(X) 
within this group, and the node Y randomly selected from all neighbors of this 
group gains payoff P(Y). All individuals in this group maintain consistent strat-
egy at each iteration, thus X and all individuals in this group will adopt the 
strategy of Y through Fermi updating rule with probability as follows: 

( )
( ) ( )( )

1
1 exp

W Y X
P X P Y κ

→ =
 + − 

 

κ  characterizes the noise effects, including fluctuations in payoffs, individual 
trials and errors in decision. We set 0.1κ = . 

All individuals in any one group should be assigned the consistent strategy in-
itially. It should be noted that there are no strategy-homogenous edges in the 
population when p = 0. And p value is in the range of [0, 0.45]. If p value is too 
big, it is more likely that all individuals are either cooperators or defectors. In 
next section, we present the simulation results in square lattice and get clear on 
the effect of strategy-homogeneity on the evolutionary cooperative behavior. 

3. Simulation Results in Square Lattice 

The model we use in this paper is a two-player non-cooperative game called the 
Prisoner’s Dilemma (PDG), firstly described in [31]. The PDG is considered a 
vital model for studying the emergence of cooperation among selfish individuals 
[14] [32] [33]. In the traditional PDG, the reward for mutual cooperation is R, 
the punishment for mutual defection is P, and the mixed strategies give the coo-
perator S and the defector T respectively. The dilemma holds the inequation 
T R P S> > >  and constraint 2T S R+ < . Without loss of generality, we con-
sider 1R = , T b= , 0P S= = , and b ranges in (1, 2], as proposed by Nowak 
and May in [19] [20]. 

Simulation results are obtained from Monte Carlo simulation in square lattice 
with a system size of 100 × 100 through varying b and p. Strategies of groups 
mentioned in the model are randomly selected from cooperation and defection 
with the probability 0.5 initially. Players update their strategies synchronously 
during each iteration. To overcome the influence of randomness, the end results 
are averaged with 40 independent simulation each of which contains 10,000 ite-
rations. Each data in the equilibrium state is gained through averaging the last 
1000 steps. 

Figure 2(a) presents the density of cooperators as a function of iteration for 
different probability p values range in [0, 0.45]. In general, the density of coope-
rators increases first and then decreases in equilibrium state as p increases con-
stantly. In detail, in equilibrium state, the density of cooperators keeps increas-
ing when p increases from 0 to 0.35, and the density of cooperators then keeps 
decreasing when p increases from 0.35 to 0.45. Namely, the density of coopera-
tors gets its maximum at p = 0.35. It is consistent with the literature of the classic 
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prisoner’s dilemma game in [34] [35] for the result of p = 0, and the introduc-
tion of p increases the cooperation in the evolutionary stable state. Here, for p ≥ 
0.2, the proportion of cooperators in equilibrium state is higher than the initial 
state. It means that there is an increase in the number of cooperators, leading to 
a stable state in which cooperators dominate. 

Considering the effect of p on cooperation under more b values, we explore 
cooperative level in dependence on the temptation to defect b for various p val-
ues, as shown in Figure 2(b). For a fixed p, the density of cooperators is a de-
creasing function of b. It is worth noting that with the increase of b, especially 
when b = 1.8, all cooperators for all p values are annihilated. It is certain that 
cooperative level for p = 0 is the lowest than other p values. Both the trend of 
cooperative level for various b in equilibrium state and b value making coopera-
tion vanish are same with the result of [35] in the circumstance of p = 0. We can 
see clearly that there is an optimal p value for any b value. Particularly, for b = 
1.1, the density of cooperators in equilibrium state increases first and then de-
creases as p increases, which is in accordance with Figure 2(a). 

Next, we will explain results in Figure 2(a) from different perspectives. The 
density of cooperators being learnt in each round is of great significance because 
all individuals only change their strategy through learning. Frankly, cooperative 
behavior will be prosperous when the density of cooperators being learnt is high. 
Seen from Figure 3, in equilibrium state, the density of cooperators and the 
density of cooperators being learnt have the same trend, namely, a trend of in-
creasing first and then decreasing as p increases constantly. When p ≥ 0.2, the 
leading role of the cooperators in equilibrium state is due to the dominant den-
sity of cooperators being learnt in the final iteration. 

 

 
(a)                                       (b) 

Figure 2. (a) describes evolutional density of cooperation for fixed b = 1.1 and different p 
values range in [0, 0.45] where interval is 0.05. The density of cooperators refers to the 
proportion of the number of individuals who adopt cooperation to the total number of 
individuals, with the value between [0, 1]. (b) describes equilibrium cooperative level as a 
function of temptation to defect b with different p values range in [0, 0.45] where interval 
is 0.05, and the temptation to defect b varies from 1.0025 to 1.8. 
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(a)                                       (b) 

Figure 3. (a) and (b) describe evolutional density of cooperators being learnt and 
evolutional density of defectors being learnt respectively in square lattice for same setup 
as Figure 2(a). 

 
We understand the effect of strategy-homogeneity p on the persistent of co-

operative behavior through snapshots of strategic distribution in equilibrium 
state, as shown in Figure 4. Figure 4(d) shows that a small fraction of coopera-
tors can prevail through forming clusters. When strategy-homogeneity p in-
creases, both the size of clusters and the number of cooperators in Figure 4(h) 
and Figure 4(l) are bigger than Figure 4(d) at the end of evolution. 

Figure 5 shows the equilibrium average payoff of cooperators and defectors 
respectively for different p. We have known that defectors dominant in equili-
brium state for p = 0.1, but cooperators earn more average payoff than defectors 
under this p value. We infer that the payoff of cooperators may be related to the 
formation of cooperative clusters. The payoff of defectors increases with the in-
crease of their cooperative neighbors when p increases from 0.1 to 0.3. As p con-
tinues to increase to 0.35, defectors are hard to invade bigger cooperative clus-
ters, and less cooperators appear in the neighbors of defectors, hence there is a 
descending trend in defector’s payoff. In circumstance of p = 0 and p = 0.05, the 
payoff of all individuals is 0 because there is no cooperator in the population. 

Furthermore, as Figure 6 displays, we will use strategic perturbation rate 
during the process of iteration to measure whether strategies of all individuals 
remain unchanged or only small perturbations. In Figure 6, strategic perturba-
tion rate is not zero from beginning to end for three p values. Although strategic 
perturbation rate decreases with the increase of p, the range of fluctuation of 
strategic perturbation rate is indeed increasing. The larger p is, the greater the 
fluctuation of the number of changes in all individual strategies during whole 
iteration. In other words, take p = 0.45 for example, the number of individuals 
who change strategies varies greatly, which may lead to the failure of equilibrium 
state and the failure of convergence for cooperative density. It is reasonable that 
this paper only considers the effect of p in the range of [0, 0.45] on the density of 
cooperators. 
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(a) t = 1              (b) t = 3             (c) t = 18           (d) t = 10,000 

 
(e) t = 1             (f) t = 2             (g) t = 10            (h) t = 9999 

 
(i) t = 1              (j) t = 2             (k) t = 5055          (l) t = 10,000 

Figure 4. The first row, second row and third row represent snapshots of typical 
distributions for cooperators (red) and defectors (blue) of p = 0.1, p = 0.35 and p = 0.45 
respectively at different time step t in square lattice. The temptation to defect b = 1.1. 

 

 
Figure 5. The equilibrium average payoff of cooperators and 
defectors are shown respectively as a function of the level of 
strategy-homogeneity p ranges in [0, 0.45] where interval is 0.05. 
Similarly, we set b = 1.1. 
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(a) 

 
(b) 

 
(c) 

Figure 6. (a), (b) and (c) represent strategic perturbation rate of evolutionary process for 
p = 0.1, p = 0.35 and p = 0.45 respectively. Strategic perturbation rate at time step t is the 
ratio of total number of variation in all individual’s strategies in the process of iteration 
from t to t + 1 and the total number of all individuals in square lattice. We set b = 1.1. 

 
Considering the effect of p on cooperation under more κ values, we explore 

cooperative level in dependence on selection pressure κ for various p values, as 
shown in Figure 7. On the one hand, for any κ value, with the increase of p, the 
change trend of cooperative level in equilibrium state is consistent. On the other 
hand, compared with p = 0 and p = 0.05, cooperative level in equilibrium state 
under other p values are improved at different degree. For example, the coopera-
tive level of p = 0.15 is higher than that of p = 0 and p = 0.05, the cooperative level 
of p = 0.2 is also higher than that of p = 0 and p = 0.05, but the degree of increase 
is different. In general, the change of κ will not affect the previous conclusion. 
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Figure 7. Equilibrium cooperative level as a function of 
selection pressure κ with different p values range in [0, 0.45] 
where interval is 0.05. The temptation to defect b is 1.1. 

4. Conclusion 

The strategy-homogeneity in this paper means that the population contains at 
least one connected group in which individuals maintain the same strategy at 
each iteration and may update according to updating rule at next iteration. 
The strategy-homogeneity p is used to control the proportion of strate-
gy-homogenous edges initially, thus affecting the evolution of strategies. We find 
that the introduction of strategy-homogeneity increases the cooperation in the 
evolutionary stable state. For any value of temptation to defect, the density of 
cooperators in equilibrium state increases firstly and then decreases as the level 
of strategy-homogeneity increases constantly, and there exists an appropriate 
level of strategy-homogeneity, maximizing the density of cooperators. The re-
sults may be favorable for comprehending cooperative behaviors in societies 
composed of connected groups with coherent strategy. 
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