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Abstract 
In this paper, we construct Chebyshev biorthogonal multiwavelets, and use 
this multiwavelets to approximate signals (functions). The convergence rate 
for signal approximation is derived. The fast signal decomposition and re-
construction algorithms are presented. The numerical examples validate the 
theoretical analysis.  
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1. Introduction 

Since 1988 the wavelet theory has been applied in several fields of science and 
industry, for instance, in signal processing, image processing, and numerical 
analysis [1]-[6]. However, the multiwavelets theory and application are less de-
veloped. For instance, some authors use Legendre wavelets or Chebyshev wave-
lets to solve the differential equations [7] [8] [9] [10]. But these wavelets do not 
have the property of vanishing moments, which is characteristic for wavelets. 
Actually, they are multiscaling functions of the Legendre multiwavelets [11] [12] 
or Chebyshev multiwavelets in the following. Besides, there are not fast decom-
position and reconstruction algorithm for approximating a function. Recently 
the biorthogonal Jacobi multiwavelet basis for the weighted space [ ]( )2 0,1Lω  is 
defined, and applied to solve a class of prototypical initial and boundary value 
problems of fractional differential equations of general order [13]. The complete 
approximating algorithm is not presented in this paper. 

The purpose of this paper is to define Chebyshev biorthogonal multiscaling 
functions and multiwavelet functions based on Chebyshev polynomials. Al-
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though Chebyshev polynomials can be considered a special case of Jacobi poly-

nomials ( ),
nP α β  with 1

2
α β= = − , they need to be treated independently since  

usually the condition ( )n α β− + + ∉  is imposed on Jacobi polynomials 
( ),

nP α β  [13]. We will also provide the approximation method for signals (func-
tions) by using the multiscaling functions and wavelets, which is essential to a 
complete decomposition algorithm. Using the same framework one may con-
struct other biorthogonal multiwavelets based on some orthogonal polynomials 
like Laguerre polynomials and Hermite polynomials, etc. 

The remainder of this paper is organized as follows: We construct Chebyshev 
biorthogonal multiwavelets in Section 2, and derive the convergence rate for the 
projection of a signal (function) on the subspace nV  of [ ]( )2 0,1Lω  and the 
computation formula in Section 3. Finally we give the numerical examples and 
conclusion remarks in Section 4. 

2. Chebyshev Biorthogonal Multiwavelets 

We will define Chebyshev multiscaling functions and multiwavelets, and obtain 
two approximations to the functions in the weighted space [ ]( )2 0,1Lω , which 
can be converted each other by the fast decomposition and reconstruction algo-
rithms.  

2.1. Chebyshev Multiscaling Functions  

Classical Chebyshev polynomials can be defined by the formula 

( ) ( )( )( ) [ ] ( )cos arccos , 1,1 0,1,2,nT x n x x n= ∈ − =            (1) 

They are orthogonal with respect to the weight function ( )
1

2 21 x
−

−  on the 
interval [ ]1,1− : 

( ) ( )( )
1

1 2 2
1

1 d 0, .i jT x T x x x i j
−

−
− = ≠∫                 (2) 

( )nT x  is a polynomial of order n, and is the one among all polynomials of 
order n with leading coefficient 12n−  which has the minimal error to zero 

( )
1 1

max 0nx
T x

− ≤ ≤
− . It has all its zeros in the interval [ ]1,1− : 

2 1cos , 1,2, , .
2k
kx k n

n
π

−
= =                    (3) 

We define Chebyshev multiscaling functions by 

( )
( ) ( ) [ ]

[ ]

,
1 12 1 , 0,1 ,

: 1
0, 0,1 ,

m mm T x x
x m

x

α β γ
ϕ − −

 − ∈= ≥
∉

         (4) 

where 

0 , , 1.
2n nγ γ= = ≥
π

π                       (5) 

then ( ){ }
1

m

m
xϕ

∞

=
 are orthonormal with respect to the weight function 
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( ) ( )
1
21x x xω

−
= −   : 

( ) ( ) ( )1

0
d .i j

ijx x x xϕ ϕ ω δ=∫                     (6) 

If we denote for 1m ≥  

2
2

01

2
: 2 ,

2

m i

m m j i
i

jm

m j m jmp
j jγ

− 
  

− +

=−

− −  
=   

  
∑              (7) 

then the polynomials ( )m xϕ  can be expressed by 

( )
1

0
.

m
m m i

i
i

x p xϕ
−

=

= ∑                         (8) 

Let 1r ≥  be an integer, then the first r multiscaling functions 1 2, , , rϕ ϕ ϕ  
form an orthonormal base of the function space 

{ }1 2
0 span , , , rV ϕ ϕ ϕ=                       (9) 

which is composed of all linear combination of the functions 1 2, , , rϕ ϕ ϕ . 
For an integer 0j ≥ , and for 0,1, , 2 1jk = − , we denote ( )m

jk xϕ  the di-
lates and translates of ( )m xϕ  

( ) ( ) ( )2
, : 2 2 1m j m j

j k x x k m rϕ ϕ= − ≤ ≤              (10) 

which is supported on the interval [ ],
1: , 0,1

2 2j k j j

k kI + = ⊂  
. We define the 

function space 

{ }1 2
, , , ,: span , , , ,r

j k j k j k j kV ϕ ϕ ϕ=                  (11) 

then 1 2
, , ,, , , r

j k j k j kϕ ϕ ϕ  form an orthonormal base of this space with respect to 
the inner product 

,, j k⋅ ⋅  which is defined by 

( ) ( ) ( )
,,, : 2 d .

j k

j
j k I

f g f x g x x k xω= −∫              (12) 

Furthermore, we define a function space 

,0 ,1 ,2 1
: jj j j j

V V V V
−

= ⊕ ⊕ ⊕                 (13) 

where ⊕  denotes the orthogonal direct sum, and an inner product , j⋅ ⋅  on 

jV  as following: 

2 1

,
0

, : , ,
j

k kj j k
k

f g f g
−

=

= ∑                   (14) 

where ,,k k j kf g V∈  and ( ) ( ) ( ) ( )
2 1 2 1

0 0
,

j j

k k
k k

f x f x g x g x
− −

= =

= =∑ ∑ , then the func-

tions ( ){ }, , 0,1, , 2 1; 1,2, ,m j
j k x k m rϕ = − =   form an orthonormal base of 

jV , and any ( ) jf x V∈  can be expressed as 

( ) ( ) ( ) ( )( )
2 1

, , , , , 1 , 1
0 1 10:2:2 2

.
j

j

r r
m m m m m m
j k j k j k j k j k j k

k m mk

f x c x c x c xϕ ϕ ϕ
−

+ +
= = == −

= = +∑ ∑ ∑ ∑   (15) 
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2.2. Chebyshev Multiwavelet Functions  

Since 0 1V V⊂ , we denote 0W  the orthonormal complement of 0V  in 1V , 

1 0 0V V W= ⊕ , then an orthonormal base 1 2, , , rψ ψ ψ  of 0W  can be con-
structed by the Gram-Schmidt process [1] [2]. These functions are called Che-
byshev multiwavelet functions, they have r vanishing moments: 

( ) ( )1

0
d 0, 0,1, , 1 1,2, , .m ix x x i r m rψ = = − =∫            (16) 

Let , 1,0 ,m i
m ig

ω
ϕ ϕ= , , 1,0 ,m i

m r ig
ω

ϕ ψ+ = , , 1,1,m i
r m ig

ω
ϕ ϕ+ = ,  

( ), 1,1, 1, ,m i
r m r ig i r

ω
ϕ ψ+ + = =  , then we have 

( ) ( ) ( )

( ) ( ) ( )
( )

1,0 , ,
1 1

1,1 , ,
1 1

,
1, 2, , .

,

r m
m i i

m i m r i
i i
r m

m i i
r m i r m r i

i i

x g x g x
m r

x g x g x

ϕ ϕ ψ

ϕ ϕ ψ

+
= =

+ + +
= =

= +
=

= +

∑ ∑

∑ ∑
       (17) 

Following the line of (10)-(14), we denote ( ),
m
j k xψ  the dilates and translates 

of ( )m xψ , the support of ,
m
j kψ  is ,j kI , and then we define the function spaces 

,j kW  and jW . It follows that the functions  
( ){ }, 0,1, , 2 1; 1,2, ,m j

jk x k m rψ = − =   form an orthonormal base of jW  
with respect to the inner product , j⋅ ⋅ . 

Equation (17) can be easily generalized to the equations for integers 1j ≥ : 

( )

, 1, /2 , 1, 2
1 1

, 1 , 1, /2 , 1, 2
1 1

0, 2, , 2 2; 1,2, ,

r m
m i i
jk m i j k m r i j k

i i
r m

m i i
j k r m i j k r m r i j k

i i

j

g g

g g

k m r

ϕ ϕ ψ

ϕ ϕ ψ

− + −
= =

+ + − + + −
= =

= +

= +

= − =

∑ ∑

∑ ∑

 

             (18) 

Conversely, we have the dilation equations 

( )

, , 1,2 , 1,2 1
1 1

, , 1,2 , 1,2 1
1 1

0,1, , 2 1; 1,2, ,

r r
i m m
j k i m j k i r m j k

m m
r r

i m m
j k r i m j k r i r m j k

m m

j

h h

h h

k i r

ϕ ϕ ϕ

ψ ϕ ϕ

+ + + +
= =

+ + + + + +
= =

= +

= +

= − =

∑ ∑

∑ ∑

 

             (19) 

The above two Equations (18)-(19) mean that 1 1j j jV V W− −= ⊕  for any 1j ≥ , 
and any function ( ) jf x V∈  as in (15) can also be expressed as 

( ) ( ) ( )( )
12 1

1, 1, 1, 1,
0 1

.
j r

i i i i
j k j k j k j k

k i
f x c x d xϕ ψ

− −

− − − −
= =

= +∑ ∑          (20) 

We have decomposition algorithm by (18) 

( )

( )
( )

1, , ,2 , ,2 1
1

1, , ,2 , ,2 1
1

10,1, , 2 1; 1,2, ,

r
i m m
j k m i j k r m i j k

m
r

i m m
j k m r i j k r m r i j k

m

j

c g c g c

d g c g c

k i r

− + +
=

− + + + +
=

−

= +

= +

= − =

∑

∑

 

               (21) 

and the reconstruction algorithm by (19) 
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( )

( )
( )

, 1, 2 , 1, 2
1

, 1 , 1, 2 , 1, 2
1

0, 2, , 2 2; 1,2, ,

r
m i i
jk i m j k r i m j k

i
r

m i i
j k i r m j k r i r m j k

i

j

c h c h d

c h c h d

k m r

− + −
=

+ + − + + −
=

= +

= +

= − =

∑

∑

 

              (22) 

From 1 1, 1j j jV V W j− −= ⊕ ≥ , we inductively obtain 

0 0 1 1.n nV V W W W −= ⊕ ⊕ ⊕ ⊕                   (23) 

For a function [ ]( )2 0,1f Lω∈ , its orthogonal projection r
nQ f  on nV  can be 

expanded in the orthonormal bases ( ){ }i
nk xϕ : 

( )( ) ( ) ( )
2 1 2 1

, , , ,,0 1 0 1
,

n nr r
r m m m m
n n k n k n k n kn kk m k m

Q f x c x f xϕ ϕ ϕ
− −

= = = =

= =∑ ∑ ∑ ∑       (24) 

By virtue of (23), it can also be expanded in the multiwavelet bases  

{ } { }( )
1

, 0,01
0

, 0,1, , 2 1, 1, ,
nri i j i i

j ki
j

k i rϕ ψ ψ ψ
−

=
=

= − = =  



: 

( )( ) ( ) ( )
1 2 1

0,0 , ,
1 0 0 1

.
jr n r

r i i i i
n j k j k

i j k i
Q f x c x d xϕ ψ

− −

= = = =

= +∑ ∑ ∑ ∑           (25) 

As in [13], a biorthogonal dual bases  

( ){ }, , 1,0, , 1; 0,1, , 2 1; 1, ,m j
j k x j n k m rψ = − − = − =

    (where 1, 0,0:m m
kψ ϕ− =  ) to 

the Chebyshev multiwavelet bases { } { }
1

,1
1

, 0,1, , 2 1, 1, ,
nri i j

j ki
j

k i rϕ ψ
−

=
=

= − =  



 

of nV  with respect to the inner product , n⋅ ⋅  can be defined. Therefore the 

expansion (25) can be reformulated as 

( )( ) ( ) ( )
1 2 1

0,0 , ,
1 1 0 1

, , .
jr n r

r i i i i
n j k j kn ni j k i

Q f x f x f xϕ ϕ ψ ψ
− −

= = = =

= +∑ ∑ ∑ ∑        (26) 

3. The Function Approximation Error in [ ]( )L2 0,1ω   

Let [ ]( )2 0,1Lω  be the weighted function space defined with inner product and 
norm 

( ) ( ) ( ) 11 2

0
, d , , .u v u x v x x x u u u

ω ω ω
ω= =∫           (27) 

For a function [ ]( )2 0,1f Lω∈ , a positive integer r, and 0,1,2,n =  , we de-
fine the orthogonal projection r

nQ f  of f (with respect to inner product , n⋅ ⋅  
as defined in (14)) onto nV  by the formula 

( )( ) ( ) ( )
2 1 2 1

, , , ,,0 1 0 1
,

n nr r
r m m m m
n n k n k n k n kn kk m k m

Q f x c x f xϕ ϕ ϕ
− −

= = = =

= =∑ ∑ ∑ ∑       (28) 

The projection r
nQ f  converges (in the mean) to f as n →∞ . If the function 

f is serval times differentiable, we can bound the error, as established by the fol-
lowing lemma.  

Theorem 3.1 Suppose that the function [ ]: 0,1f →   is r times differentia-
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ble, [ ]( )0,1rf C∈ . Then r
nQ f  approximates f with error bounded as follows: 

[ ]

( ) ( )
0,1

22 sup
4 !

rr rn
n r

x
Q f f f x

rω

−

∈
−

π
≤                 (29) 

Proof. We divide the interval [ ]0,1  into subintervals { },n kI , the restriction 
of r

nQ f  to one such subinterval ,n kI  is the polynomial of degree less than r 
that approximates f with minimal mean error. We then use the maximum error 
estimate for the polynomial which interpolates f at Chebyshev nodes of order r 
on ,n kI . We define ( ), 2 , 2 1n n

n kI k k− − = +   for 0,1, , 2 1nk = − , and obtain 

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

[ ]

( ) ( ) ( )

[ ]

( ) ( ) ( )

,

,

,

22 1

0

2 1 2

0

2 1 2

,
0

212 1

0,10

2 11 11
2 2

00,1

d

d

d

2 sup d
4 !

2 sup 1 d
4 !

n

n k

n

n k

n

n k

r r
n n

r
nI

k

r
n kI

k

rn
r

rI xk

rn
r

r
x

Q f f Q f x f x x x

Q f x f x x x

S f x f x x x

f x x x
r

f x x x x
r

ω
ω

ω

ω

ω

−

=

−

=

−−

∈=

− − −

∈

 − = − 

 = − 

 ≤ − 

 
≤  

 

 
≤ − 
 

∫

∑ ∫

∑ ∫

∑ ∫

∫

 

and by taking square roots we have the bound (29). Here ,
r
n kS f  denotes the 

polynomial of degree r, which agrees with f at the Chebyshev nodes of order r on 

,n kI , and we have used the well-known maximum error bound for Chebyshev 
interpolation (see [1]).   

The number of coefficients in the expressions (24) or (25) is 2n r , thus the 
above theorem predicts a convergence rate r for the approximation ( )r

nQ f x  if 
( )f x  is sufficiently smooth. Besides, this convergence rate can be achieved by 

using the polynomial ,
r
n kS f  from above proof. The Chebyshev nodes of order r 

for ( )1r xϕ +  on [0, 1] are (see (3)-(4))  

2 2 1cos , 1,2, , .
4i
ix i r

r
= =π

−
                   (30) 

Then the nodes on the interval ,n kI  are ( ) 2n
ix k+ . Plugging them into  

( ) ( ) ( )2
, , , ,

1 1
2 2

nr r
r m m m m n
n k n k n k n k

m m
S f x c x c x kϕ ϕ

= =

= = −∑ ∑  

leads to the linear system of equations  

( ) 2
,

1
2 , 1, 2, , .

2

nr
m m i

i n k n
m

x k
x c f i rϕ

−

=

+ = = 
 

∑               (31) 

Let ( )( )m
iA xϕ=  be the r r×  coefficient matrix, which is independent of k. 

Therefore, the cost for calculating all coefficients { },
m
n kc  of (28) is only ( )2nO r  

as n →∞ . Then the coefficients of multiwavelet expansion (25) are obtained 
from the decomposition algorithm (21). 
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Table 1. Numerical error results for Example 1.  

 3r =  5r =  

n [ ]( )2 0,1

r
n L

f Q f−  Cvge. 
rate [ ]( )2 0,1

r
n L

f Q f−  Cvge. 
rate 

0 1.892549 × 10−3  6.173219 × 10−6  

1 2.926195 × 10−4 2.69 2.017307 × 10−7 4.94 

2 3.661579 × 10−5 3.00 6.285671 × 10−9 5.00 

3 4.604027 × 10−6 2.99 1.953056 × 10−10 5.01 

4 5.704865 × 10−7 3.01 6.150537 × 10−12 4.99 

5 7.161416 × 10−8 2.99 1.905049 × 10−13 5.01 

 
Table 2. Numerical error results for Example 2.  

 2r =  3r =  

n [ ]( )2 0,1

r
n L

f Q f−  Cvge. 
rate [ ]( )2 0,1

r
n L

f Q f−  Cvge. 
rate 

0 5.117732 × 10−2  4.773745 × 10−3  

1 1.470808 × 10−2 1.80 1.027466 × 10−3 2.22 

2 4.010015 × 10−3 1.87 1.733843 × 10−4 2.57 

3 1.024519 × 10−3 1.90 3.119091 × 10−5 2.47 

4 2.749527 × 10−4 1.97 4.745002 × 10−6 2.72 

5 6.915563 × 10−5 1.99 9.036384 × 10−7 2.39 

4. Numerical Examples and Conclusion  

We present some numerical examples and give the conclusions in this last sec-
tion. 

Example 4.1 We take ( ) 1 cosf x x x= + + , which is a smooth function. For 
illustration we fix 3r =  or 5r = , and compute ( )r

nQ f x  for 0,1,2,3,4,5n = . 
The numerical results are summarized in Table 1. The convergence rate on this 
table is defined by the formula  

[ ]( )

[ ]( )

( )
2

2

1 0,1

0,1

Cvge. rate log log 2
r
n L

r
n L

f Q f

f Q f

−
 −
 =  − 
 

            (32) 

We see in the table clearly that Cvge. rates are close to 3.00 for 3r =  and 5.00 
for 5r = . This result is in accordance with the error estimates of Theorem 3.1 
since when the signal f(x) is smooth, Theorem 3.1 predicts a convergence rate of 

3r =  or 5r = .  
Example 4.2 We take ( )

5
2 2exf x x x= + − , fix 2r =  or 3r = , and compute 

( )r
nQ f x  for 0,1,2,3,4,5n = . The numerical results are summarized in Table 2, 

which is in accordance with the error estimates of Theorem 3.1 since the signal 
f(x) is only two times differentiable, the convergence rate is less than r if 2r > .  
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5. Concluding Remarks 

In this paper we defined Chebyshev biorthogonal multiwavelet basis for the 
weighted space [ ]( )2 0,1Lω , and showed how to use this basis to approximate 
functions. The algorithm is efficient, accurate and stable. Thus we set a founda-
tion for its further applications in numerical methods for partial differential eq-
uations. As well-known, when the multiwavelets are applied instead of multis-
caling functions (or wavelets as named in several papers), the resulting linear 
system of algebraic equations will have a bounded condition number ([14] [15]). 
Other applications may include signal processing and computational geometry. 
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