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Abstract 
In this paper, we give a criterion of the absolutely Cesàro bounded weighted 
backward shift in spirit of the comparison method. Our approach is to con-

struct the proper product of weight functions b
na w∏  by the fraction of two 

monomials of the indexes, then we apply proper scaling to give Cesàro bound- 
edness. In particular, we present a new example of non Cesàro bounded 
weighted backward shift on p� .  
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1. Introduction 

Let X be a complex Banach space and ( )B X  be the Banach algebra of all linear 
bounded operators on X. Given ( )T B X∈ , the Cesàro mean of T is the family 
of operators ( ){ } ( )T n

M n B X
∈

⊂


 which is defined by 

( )
0

1:
1

n
j

T
j

M n x T x
n =

=
+ ∑

 

for x X∈ . The operator ( )T B X∈  is called Cesàro bounded if ( ){ }T n
M n

∈
 

is bounded in ( )B X . That is ( )supn TM n < ∞ . The operator ( )T B X∈  is 
called absolutely Cesàro bounded if there is 0C >  such that 

0

1sup , .
1

n
j

n j
T x C x x X

n∈ =

≤ ∀ ∈
+ ∑

  

It is clear that absolutely Cesàro bounded operators are Cesàro bounded. The 
concept of Cesàro boundness is highly connected with the dynamic of linear op-
erators. It was firstly introduced by Hou and Luo in [1]. In their articles, they 
investigated that the unilateral weighted backward shift with weights  
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( )2: ,
2 1k

kw k
k

= ∈
−

  is absolutely Cesàro bounded. Then it attracts lots of atten-  

tions by several mathematicians. Interested readers can refer [2] for the theory of 
linear chaos and [1] [3] [4] for some results of Cesàro boundedness. It was 
proved in [5] that the unilateral weighted backward shift operator T with weights 

:
1k

kw
k

α
 =  − 

 on the ( )p�   (1 p≤ < ∞ ) is absolutely Cesàro bounded for  

10
p

α< < , and operator T with weights 
1

:
1

p

k
kw

k
 =  − 

 is not Cesàro bounded. 

[6] generalized this work to the fractional case, constructed a weighted shift op-
erator belonging to this class of operators, then they showed that the unilateral 
weighted backward shift operator T is absolutely ( ),C α  Cesàro bounded for  
0 1α< ≤ , and T is not ( ),C α  Cesàro bounded for any α . We can find more 
details about of the nth Cesàro mean of order α  of the powers of T [7] [8] [9] 
[10]. Specially, when 1α = , it is general Cesàro mean. The relation between 
( ),C α  Cesàro mean and ( ),C α  strongly (weakly) ergodicity was given [11]. 
Example 5 in [12] proved that the unilateral weighted backward shift not have 
distributional unbounded orbit. [13] discussed that a distributionally unbounded 
orbit of the operator is not absolutely Cesàro bounded. Distributionally chaotic of 

type 12
2

DC  is not absolutely Cesàro bounded. [14] gave some equivalent cha- 

racterizations of absolutely Cesàro bounded operators. In [13] [15], firstly they 
selected the sequence of weights v, then showed that the unilateral backward 
shift B on ( )p v�  (1 p≤ < ∞ ) is absolutely Cesàro bounded. 

If 1 p≤ < ∞ , denote by ( )p�   the space of p-th summable sequences. Let 
{ }: 1, 2,ne n = �  be the canonical basis of ( )p�  . Any vector ( )px∈ �   has  

the unique representation 
1

j j
j

x eα
∞

=

= ∑  where { }: 1,j jα = ⊂�  . Let  

( )1 2, ,w w w= �  be a weight sequence. We define the weighted backward shift ope-  
rator wB  on ( )p�   as 1 0wB e =  and 1:w k k kB e w e −=  for integer 1k > . That  

is for ( ) ( )1 2, , px α α= ∈� �  , ( ) ( )1 2 2 2 3 3, , , ,wB w wα α α α=� � . 

The boundedness of the weighted backward shifts is studied intensively for 
decades. Our motivation is to characterize the Cesàro bounded weighted back-
ward shift and give a practical method to distinguish the Cesàro bounded back-
ward shifts. Our results include those concrete examples in [1] [5] [6]. 

2. A Criterion Based on the Comparison Principle 

We first study the case when the weighted backward shift wB  is not Cesàro  
bounded. Our method is to estimate the products of the weights j

ni w∏  by the  

a fraction of two monomials of the indexes. In the sequel, to make the argument  
more compact, we set 1j

nn i a=
=∏  whenever j i< . 

Theorem 1. For 1 p≤ < ∞ , let w be a weight sequence and wB  the weighted  
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backward shift on ( )p�  . Suppose 
s pj

n t p
n i

jw
i=

∏   and the real pair ( ),t s  sa-

tisfies one of the following three conditions: 
(1) 1t >  and 1s > ; 
(2) 1t =  and 1s ≥ ; 
(3) 1t <  and t s< . 
Then wB  is not Cesàro bounded on ( )p�  . 

Proof. Let 
( )

1

1 1
1

1:
1

N

N np
n

y e
N

+

+
=

=
+

∑ , where N is an even integers. Therefore  

1 1N py + = . We compute directly that 
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= = = = +

− + ++ +
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= = = +

+ +
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= =

+ +

+
= = +

 
=  + +  

 
=  

+  

 − + +
 
 +  

 
− + + 

+  

≥

∑ ∑ ∑ ∏

∑ ∑ ∏

∑ ∑
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( )
( )

( )

2 1 1

1
1 2 1

2 1 1

1
1 2 1

1 2 , if 0;
1

1 1 3 1 , if 0.
21

pN N s p
p t

k j N

ps pN N

p t
k j N

N j s
k

N j s
kN

+ +

+
= = +

+ +

+
= = +

    − + >  
 +   


     − + ≤       +    

∑ ∑

∑ ∑
 

For short, we define 

( )
1 1 12

1 1 1
2 2

3, 2 and 1 .
2

N s
N Ns pt p

N Nk j j

NI k II N j III j
+

+ +
−

= = + = +

 = = − + = − + 
 

∑ ∑ ∑
 

If 1t > , 

( )
12

2
1 11

1 1 1 2 1d 1 1.
1 1 2

2
2

tN

t t tI x
tx tN

−
+

− −

 
  − = − ≥
 − − +  

  

∫ 

 

Meanwhile 1s >  implies 

1

1
2 11

2
1

1

1
2d .

1

s
pN

s s sN
p p p

j

N s
pII j x x N

s
p

+

+
++

=

 + + 
 = ≥ =

+
∑ ∫ 

 

Then 
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( )
1

1 , as .
1

p
s

p

I II N N
N

−
+

⋅
→ ∞ →∞

+


 
If 1t = , 

2
2

1

1 d log 2 .
2

N NI x
x

+  = + 
 ∫

 

Meanwhile 1s ≥  implies 
1s

pII N
+

 . Then 

( )
1

1 log , as .
1

p
s

p

I II N N N
N

−
+

⋅
→ ∞ →∞

+


 
If 1t <  and { }max ,0s t> , 

1

2 12
1

2 1
2d .

1

t

N
t t

N

I x x N
t

−

+ − −

 + − 
 =

−∫ 

 

Meanwhile we have 
1s

pII N
+

 . Then 

( ) 1 , as .
1

p
s t

p

I II N N
N

−
+

⋅
→ ∞ →∞

+
  

If 0t <  and 0t s< ≤ , 
2 12

1
d

N
t tI x x N

+ − −≥ ∫  . To estimate III, we have 

2
.

N
s p

j N
III j

=

= ∑
 

If ( ) 0t s p< ≠ − ≤ , 

( ) 11 1
1

2

2 1 2d .
1 1

s ps p s pN s p s p
N

N N
III x x N

s p s p

++ − −
+− −

≥ = = ⋅
+ +∫

 
Then 

( ) 1 , as .
1

p
s t

p

I III N N
N

−
+

⋅
→ ∞ →∞

+
  

If t s p< = − , 

1

2
d log log 2 log 2.

N
NIII x x N N−≥ = − =∫

 

Then 

( ) 1 , as .
1

p
t p

p

I III N N
N

− −
+

⋅
→ ∞ →∞

+


 
We use the same strategy to consider the absolutely Cesàro bounded weighted 

backward shift.  
Theorem 2. For 1 p≤ < ∞ , let w be a weight sequence and wB  be the wei- 

ghted backward shift on ( )p�  . Suppose 
s pj

m t p
m i

jw
i=

∏   and the real pair  

( ),t s  satisfies one of the following three conditions: 
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(1) 1t >  and 1s ≤ , 
(2) 1t =  and 1s < , 
(3) 1t <  and s t≤ . 
Then wB  is absolutely Cesàro bounded on ( )p�  . 

Proof. For every ( )px∈ �  , denote by 
1

j j
j

x eα
∞

=

= ∑  for some complex se-

quence { }jα . Let N be a positive integer, we have 

{ }

{ }

( ) ( )

( ) ( )

0 0 1 1

min , 1

0 1 1 01 1

min , 1 1

1 0 1 0

2

1 0 2 1 0

:

pjN Npn
w j m j npn n j n m j n p

N jj jN p pp p
j m j m

n j n j nm j n m j n

N j s sjNp p
j jt t

j n j n

s sN N Np p
j jt t

j N n j N n

B x w e

w w

j j
j n j n

j j
j n j n

α

α α

α α

α α

∞

−
= = = + = + −

−∞ ∞

= = + = == + − = + −

− −∞

= = = =

∞

= + = = + =

=

= =

=
− −

+ +
− −

∑ ∑ ∑ ∏

∑ ∑ ∑ ∑∏ ∏

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑



1 2 3.S S S= + +  
In either case, we have s t≤ . Whenever 2 1j N≥ +  and n N≤  it is clear that 

1
t

j
j n

 
≤ − 

 for 0t ≤  and 2
t

tj
j n

 
≤ − 

 for 0t > . Then we get 

( )

( ) { }

3
2 1 0

2 1 2 1

2 1

1 max 2 ,1 .

tNp s t
j

j N n

p pt
j j

j N j N

jS N
j n

N N

α

α α

∞
−

= + =

∞ ∞

= + = +

 
≤ + − 

≤ + ⋅ ⋅

∑ ∑

∑ ∑
 

If 1t >  and 1s ≤ , we estimate 1S  and 2S . For j N≤  we have 

( ) ( )1

11
0 1

11 d .
1

s sj j js t s t
t t

n n

j jj n j x x t N
t jj n

−
− −

−
= =

 
= ≤ + = − −−  

∑ ∑ ∫ 
 

And for [ ]1,2j N N∈ + , 

( ) ( )
( )

1

0 0

1 2 .
s jN ss

t t
n n

j j N N
j n j n

−

= =

≤
− −

∑ ∑  
 

Hence 
2

1 2
1

N p
j

j
S S N α

=

+ ∑ . 

Suppose 1t =  and 1s < . To estimate 1S  and 2S , for j N≤  we have 
1

1
0 1

1 11 d log .
sj j js s s s

n n

j j j x j j j N
j n n x

−

= =

 = ≤ + = + −  
∑ ∑ ∫ 

 
And for [ ]1,2j N N∈ + , 

1

0 0

1 log .
s jN

s s

n n

j j j j N
j n j n

−

= =

≤
− −∑ ∑  

 

Hence 
2

1 2
=1

N p
j

j
S S N α+ ∑ . 

https://doi.org/10.4236/jamp.2021.91014


H. Gao 
 

 

DOI: 10.4236/jamp.2021.91014 202 Journal of Applied Mathematics and Physics 
 

Now we suppose 1t <  and s t≤ . For j N≤ , 

( ) ( )
11

1
0 1

1 d .
1

s tj j js t s t s
t

n n

j j tj n j x x j N
tj n

−−
− −

= =

−
= ≤ + =

−−
∑ ∑ ∫ 

 
For [ ]1,2j N N∈ + , we have 

( ) ( )
( )

1
1

0 0

1 2 .
s jN s ts

t t
n n

j j N N
j n j n

−
− +

= =

≤
− −

∑ ∑  
 

To complete the proof, we use all the inequalities above in each case, and use 
Jensen's inequality to get 

0 0

1 1 .
1 1

pN N p pn n
w w pp pn n

B x B x x
N N= =

  ≤ + + 
∑ ∑ 

 
That is wB  is absolutely Cesàro bounded. 
We summarize the theorems above and give the following corollary.  
Corollary 1. Suppose 1 p≤ < ∞ . Let w be a weight sequence such that  

s pj

m t p
m i

jw
i=

∏   for a real pair ( ),t s . The weighted backward shift wB  on  

( )p�   is absolutely Cesàro bounded if and only if the real pair ( ),t s  satisfies 
one of the following three conditions: 

(1) 1t >  and 1s ≤ , 
(2) 1t =  and 1s < , 
(3) 1t <  and s t≤ . 
To give a visualization, we have the following Figure 1 to show the corres-

pondence of the range of ( ) 2,t s ∈  with the absolute Cesàro boundedness. 

3. A Criterion around the Critical Point 

It is clear that our result include the cases in [5]. We call the point ( ) ( ), 1,1t s =  
in Figure 1 the critical point. In this section, we will give a criterion around the 
critical point. In the following conditions, we can treat log j  to be non zero, 
that is 1j ≠ . Because otherwise it is trivial or invalid. We consider the non 
Cesàro boundedness firstly. 

 

 
Figure 1. Except for the point (1,1), The red boundary line is Abso-
lutely Cesàro bounded (Ab. Cesaro). 
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Theorem 3. For 1 p≤ < ∞ , let w be a weight sequence and wB  the weighted 

backward shift on ( )p�  . Suppose 
1

log
log

ptj

n s
n i

j iw
i j=

 
⋅ 

 
∏   and the real pair  

( ),t s  satisfies one of the following three conditions: 

(1) 1t > −  and 1s t< + ; 
(2) 1t = −  and 0s ≤ ; 
(3) 1t < −  and 0s < . 
Then wB  is not Cesàro bounded on ( )p�  . 

Proof. Analogously to the proof of Theorem 1, let 
( )

1

1 1
1

1:
1

N

N np
n

y e
N

+

+
=

=
+

∑ , 

where N is a positive integer multiple of 4. 
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log 5 4 2
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s
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+
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  +   >
  − +  


   + − +

  ≤   + − + +   
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For short, we define 
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+
=
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3
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= +

− +
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Meanwhile 0s >  implies that 

( ) ( )

( )( )

3 1 34 11 14
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41
4

1 1 1 1

1 1

1 1 d
log 1 log 1

3 1
4 4 .

log1log 1 1
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Hence, 1t s+ >  implies 
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11 2

1 log , as .
1

p
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p
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+

⋅
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When 1t > − , we have 1

1 logtM N+ . If 0s ≤ , then 
3 1 34 11 14

3
41

4
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M j x x
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hence, 
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1
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p
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N
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+

⋅
→ ∞ →∞

+


 
which proves the case (1). 

If 1t = − , 

( )

2
4 3

4
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2

1 1 d
log log

log log 3 log log 2 log log .
4

N
N

k
M x

k k x x
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Meanwhile 0s ≤  implies 
1 1

3 log
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s p
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N

+

 . Hence, 

( )
( )1 3
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p

p s

NM M
NN +

⋅

+


 
diverges when N goes to the infinity. That is the case (2). 
If 1t < − , 

1 1
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Also 0s <  implies 
1 1

3 log

p

s p
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N

+

 . Hence, 
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( )
1 3

1 log , as .
1

p
s

p

M M
N N

N
−

+

⋅
→ ∞ →∞

+


 
That is the case (3). 
Theorem 4. For 1 p≤ < ∞ , let w be a weight sequence and wB  the weighted 

backward shift on ( )p�  . Suppose 
1

log
log

ptj

n s
n i

j iw
i j=

 
⋅ 

 
∏   and the real pair  

( ),t s  satisfies one of the following three conditions: 

(1) 1t > −  and 1s t≥ + ; 
(2) 1t = −  and 0s > ; 
(3) 1t < −  and 0s ≥ . 
Then wB  is absolutely Cesàro bounded on ( )p�  . In the condition, we treat 

all log j  to be positive. That is actually the case when 3j ≥ . There are excep-
tions in our arguments. But the only cases are when 1, 2j = . We can concen-
trate to the cases when j large enough, because the exact values of 1w  and 2w  
will not change the (absolute) Cesàro boundedness of the backward shift wB . 
From this point of view, we avoid to consider the trivial cases and abuse to treat 
all the log j  to be positive. 

Proof. Analogously to the proof of Theorem 2, for 
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To estimate 3S , we note that 2 1j N≥ + , n N≤ . Then 
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N j N
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In either case (1), (2) and (3), we have 1t s− ≤ − . If 0t > , 

1 log log .t s t sL N j N N N− −=    
If 0t ≤ , 
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log 1 log 1
log .
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s s

N N N N
L N N N

j N
−+ +

≤
+

  
 

Then, in either case (1), (2) and (3), we have 

https://doi.org/10.4236/jamp.2021.91014


H. Gao 
 

 

DOI: 10.4236/jamp.2021.91014 206 Journal of Applied Mathematics and Physics 
 

3
2 1

2 .
p p

j p
j N

S N N xα
∞

= +

⋅∑ 
 

We split (1) into two cases, that is when 1 0t− < ≤  or 0t > , to estimate 

1S  and 2S . If 1 0t− < ≤  and 1s t≥ + . To estimate 1S , we note that j N≤  and 
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If 0t >  and 1s t≥ + , we can estimate 1S  by the following computation 
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2
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           (1) 

Thus, in the case (1) we have 1
1

N p p
j p

j
S N N xα

=
∑  . 

The estimate for 2S  is similar. We note that 1j N≥ +  and 
2

2
1 2

log .
log

tjN p p
j s p

j N n

j nS N x
nj

α
= + =

 
≤  
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Now we consider the case (2), that is 1t = −  and 0s > . Since 

2
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1 1 1 d
log 2log 2 loglog log

log log log ,
log
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we have 

1
1

.
N p p

j p
j

S N N xα
=
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And similarly, 

2

2
1 2

1 .
loglog

jN p p
j s p

j N n

jS N x
n nj

α
= + =

 
≤  

 
∑ ∑ 

 
We have the last case (3) to consider. That is 1t < −  and 0s ≥ . Similarly to 

(1), we can obtain 1
p
pS N x  and 2

p
pS N x . 

In the end of the proof, by the Jensen's inequality again, we have wB  is abso-
lutely Cesàro bounded on ( )p�  . 

We summarize the above two theorem as a corollary.  
Corollary 2. Suppose 1 p≤ < ∞ . Let w be a weight sequence such that  

1
log
log

ptj

m s
m i

j iw
i j=

 
⋅ 

 
∏   for a real pair ( ),t s . The weighted backward shift wB   

https://doi.org/10.4236/jamp.2021.91014


H. Gao 
 

 

DOI: 10.4236/jamp.2021.91014 207 Journal of Applied Mathematics and Physics 
 

on ( )p�   is absolutely Cesàro bounded if and only if the real pair ( ),t s  satis-
fies one of the following three conditions: 

(1) 1t > −  and 1s t≥ + , 
(2) 1t = −  and 0s > , 
(3) 1t <  and 0s ≥ . 
We also give the following Figure 2 to show our result around the critical point. 

4. Examples 

According to our result, we can construct lots of absolutely Cesàro bounded 
weighted backward shift. 

Example 1. If 0 1s t< ≤ < , let 

( ) ( )
( )

( )
( )1

1 log 12 log 2
, , , , , , .

1 log1 log

s ps p

n t p t p

n n
w w w

n n

 + + + +   = =
 + + 

� � � �

 
The operator wB  is absolutely Cesàro bounded on ( )p�  . It follows from  

logi i i+ ≥  and loglim 1
j

j j
j→∞

+
=  and hence 

( )
( )

( )
1

1 log 1
log

log

s
sj j

p s t
n t t

n i n i

j j jw n n
ii i

−

= = +

+ + +  = +
+

∏ ∏ 
 

for any j i≥ ∈ . 
Example 2. If 0 1s t< < < , let 
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, , , , , , .
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� � � �

 
The operator wB  is absolutely Cesàro bounded on ( )p�  . It follows from  

( )log 1i i i+   and ( ) 2log 1
t s

sj j
−

+   and hence 
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1 2

1
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n t t
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+
−

−

= = +
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Figure 2. Except for the point (−1,0), the red boundary line is Absolutely Cesàro 
bounded (Ab. Cesaro). 
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for any j i≥ ∈ . 
Example 3. If 0t ≥ , let 

( ) ( )

( )

1

1 1 1

1 log, , , 0, , , .
log 1

t
p p

m t p
p

m mw w w
m

m
+

 
+ 

= = ⋅ 
 + 

� � � �

 
The operator wB  is absolutely Cesàro bounded on ( )p�   by Theorem 4. 

One can conduct the following computation that 

( )

( )

111

1 1 1 1
1

1 log 1 2 log .
log 2 log

log 1 log

t
tpj j ppp

m t t
m i k ip p p

j i j iw
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i j k
+ +

= = +
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= ⋅ ⋅ ≤ ⋅ ⋅  

   +
∏ ∏

 
We will also find a new example of non Cesàro bounded backward shift as 

follows.  
Example 4. If t∈ , let 

( )
( )

1

1
1 log, , , 0, , , .

log 1

pt

m t

m mw w w
mm

  + = = ⋅   +  
� � � �

 
The operator wB  is not Cesàro bounded on ( )p�   by Theorem 3. 

5. Conclusion 

In this paper, we proved Cesàro boundedness by constructing the proper prod-
uct of weight functions b

na w∏  by the fraction of two monomials of the indexes. 
The method of proof is to obtain the characterization of absolutely Cesàro boun- 
ded and non Cesàro bounded by proper scaling and Jensen’s inequality. we give 
some examples after our results. 
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