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Abstract 
Laminar two-dimensional unsteady mixed-convection boundary-layer flow of 
a viscous incompressible fluid past asymmetric wedge with variable surface 
temperature embedded in a porous medium saturated with a nanofluid has 
been studied. The employed mathematical model for the nanofluid takes into 
account the effects of Brownian motion and thermophoresis. The velocity in 
the potential flow is assumed to vary arbitrary with time. The non-Darcy ef-
fects including convective, boundary and inertial effects will be included in 
the analysis. The unsteadiness is due to the time-dependent free stream veloc-
ity. The governing boundary layer equations along with the boundary condi-
tions are converted into dimensionless form by a non-similar transformation, 
and then resulting system of coupled non-linear partial differential equations 
are solved by perturbation solutions for small dimensionless time until the 
second order. Numerical solutions of the governing equations are obtained 
employing the implicit finite-difference scheme in combination with the qua-
si-linearization technique. To validating the method used, we compared our 
results with previous results in earlier papers on special cases of the problem 
and are found to be in agreement. Effects of various parameters on velocity, 
temperature and nanoparticle volume fraction profiles are graphically pre-
sented. 
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1. Introduction 

The study of mixed convection flow finds applications in several industrial and 
technical processes such as nuclear reactors cooled during emergency shutdown, 
solar central receivers exposed to winds, electronic devices cooled by fans, heat 
exchanges placed in a low-velocity environment, etc. The mixed convection flows 
become important when the buoyancy forces due to the temperature difference 
between the wall and the free stream becomes large. 

The study and analysis of heat and mass transfer in porous media has been the 
subject of many investigations due to their frequent occurrence in industrial and 
technological applications. Examples of some applications include geothermal 
reservoirs, drying of porous solids, thermal insulations and many others. Smith 
[1] initiated the study of the unsteady incompressible forced convection boun-
dary-layer flow past a semi-infinite wedge impulsively set into motion. This prob-
lem subsequently solved numerically by Nanbu [2] using the method proposed 
by Hall [3] and then that modified by Harris et al. [4]. This method solves the 
untransformed equations directly using an iterative procedure and by implicit fi-
nite difference method, which is well documented and widely used by Keller and 
Cebeci [5] and also by Hossain [6] [7] and Hossain et al. [8] for unsteady boun-
dary layers. Watkins [9] has solved this problem numerically following a second 
order; he has also studied the unsteady heat transfer aspects of the semi-infinite 
wedge started impulsively from rest to include solutions of the energy equation. 
A new set of scaled coordinates introduced by Williams and Rhyne [10]. 

There is a large body of literature on unsteady, mixed convection, boundary- 
layer flows past bodies of different geometries. Ibrahim et al. [11] studied the 
problem of unsteady magneto hydrodynamic (MHD) micropolar fluid flow and 
heat transfer over a vertical porous plate through a porous medium in the pres-
ence of thermal and mass diffusion with constant heat source. The unsteady free 
convection flow in the stagnation-point region of a rotating sphere embedded in 
a porous medium has analyzed by Hassanien et al. [12]. Ibrahim [13] has inves-
tigated the problem of unsteady mixed conviction flow in the stagnation region 
of a three dimensional body embedded in a porous medium. Al-Harbi and Has-
sanien [14] have studied the problem of unsteady mixed convection flow in the 
stagnation region of a heated vertical plate embedded in a variable porosity me-
dium with thermal dispersion effects. Also, Al-Harbi [15] has analyzed the 
problem of unsteady mixed convection flow on a rotating cone embedded in a 
porous medium saturated with a rotating fluid. Unsteady magneto hydrodynamic 
mixed convection flow of an electrically conducting nanofluid in a stagnation 
region of a rotating sphere is studied numerically through Sameh and Rashed 
[16]. 

The interested reader can find an excellent collection of papers on unsteady 
convective flow problems over heated bodies embedded in a fluid-saturated por-
ous medium in the book by Pop and Ingham [17] and in the book by Nield and 
Bejan [18]. 
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Nanofluids with enhanced thermal characteristics have widely been examined 
to improve the heat transfer performance of many engineering applications [19]. 
Most researchers argue that the addition of nanoparticles with relatively higher 
thermal conductivity to the base fluid results in an increase of the thermal per-
formance of the resultant nanofluid [20] [21] [22] [23]. 

According to Yacob et al. [24], nanofluids are produced by dispersing the na-
nometer-scale solid particles into base liquids with low thermal conductivity such 
as water and ethylene glycol. Nanoparticles are usually made of metal, metal oxide, 
carbide, nitride and even immiscible nano-scale liquid droplets. Gorla et al. [25] 
presented a boundary layer analysis for the mixed convection past a vertical wedge 
in a porous medium saturated with a nanofluid. Hamad et al. [26] introduced a 
one parameter group to represent similarity reductions for the problem of mag-
netic field effects on free-convective nanofluid flow past a semi-infinite vertical 
flat plate following a nanofluid model proposed by Buongiorno [27]. Hamad 
[28] obtained the analytical solutions for convective flow and heat transfer of a 
viscous incompressible nanofluid past a semi-infinite vertical stretching sheet in 
the presence of magnetic field. Khan and Pop [29] obtained similar solutions de-
pending on Prandtl number, Lewis number, Brownian motion number and ther-
mophoresis number on the steady boundary layer flow, heat and mass over a 
stretching surface in its plane. Further, Abu-Nada and Chamkha [30] have pre-
sented the natural convection heat transfer characteristics in a differentially heated 
enclosure filled with a CuO-EG-water nanofluid for different variable thermal 
conductivity and variable viscosity models. For more information, see also Das 
et al. [31], and Kakaç and Pramuanjaroenkij [32]. Muthtamilselvan et al. [33] 
claimed that it is difficult to have a precise idea on how nanoparticle enhances 
the heat transfer characteristics of nanofluids. More recently, Hady et al. [34] stu-
died a nonsimilar solution of steady forced convection boundary layer flow and 
heat transfer of a nanofluid past a stretching horizontal late sing one-phase model. 
On the other hand, the same authors [35] extended the problem of Cheng-Min- 
kowycz problem for natural convective boundary-layer flow in a porous medium 
saturated by a nanofluid to study the effect of the porosity of the plate. In addi-
tion, Hady et al. [36] studied the problem of the flow and heat transfer characte-
ristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence 
of thermal radiation and variable wall temperature. James et al. [37] have studied 
the effects of variable viscosity of nanofluid flow over a permeable wedge em-
bedded in saturated non-Darcy porous medium with chemical reaction and ther-
mal radiation. In existence of concerning magnetic field, heat together with mass 
transfer features on mixed convective copper-water nanofluid flow through in-
clined plate is investigated in surrounding porous medium together with viscous 
dissipation through Nasir et al. [38]. Chamkha et al. [39] introduced a mathe-
matical model to accentuated the mixed bioconvective flow on a vertical wedge 
in a Darcy porous medium filled with a nanofluid containing both nanoparticles 
and gyrotactic microorganisms. 

The aim of the present paper is to study the unsteady mixed convection flow 
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along a symmetric wedge embedded in a porous medium saturated with a na-
nofluid in the presence of first and second orders resistances, which to the best 
of our knowledge have not been investigated yet. Motivation to study mixed 
convection in porous media comes from the need to characterize the convective 
transport processes around deep geological repository for the disposal of high- 
level nuclear waste, e.g. spent fuel rods from nuclear reactors (see Lai [40]). 

The effect of the presence of the buoyancy forces and the isotropic solid ma-
trix on the unsteady mixed convection flow along a symmetric wedge embedded 
in a porous medium saturated with a nanofluid are considered. In addition, the 
Brownian motion and the thermophoresis effects are considered. The unsteadi-
ness in the flow field is caused by impulsively creating motion in the free stream 
and at the same time suddenly raising the surface temperature above its surround-
ings. The partial differential equations governing the flow and the heat transfer 
solved numerically using some different numerical methods as the finite differ-
ence scheme by Pereyra [41]. Particular cases of the present results compared 
with those of Scshadri et al. [42]. 

2. Governing Equations 

Let us consider an unsteady mixed convection boundary layer flow of an in-
compressible fluid past along a symmetric wedge with variable surface tempera-
ture embedded in a porous medium saturated with a nanofluid as shown in Fig-
ure 1. The inviscid flow over the wedge develops instantaneously and its velocity 
is given by 

( ) for 1
m

e
xu x U m
L∞

 = ≤ 
 

                   (1) 

where L is a characteristic length and m is pressure gradient related in the in-
cluded angle πβ  by ( )2m β β= − . It is clear that for negative values of m the 
solution becomes singular at 0x = . While for m positive the solution can be 
defined for all values of x . It is assumed that the variable surface temperature 
of the wedge is ( wT T∞> ) where T∞  is the ambient temperature of the fluid and  

 

 
Figure 1. Physical model and coordinate system. 
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T  is the temperature of the fluid. Under the above-mentioned assumptions, the 
boundary layer equations governing the flow can be expressed as follows:- 

0,u v
x y
∂ ∂

+ =
∂ ∂

                         (2) 

( ) ( )

( ) ( ) ( )( )

2

1 2

2
2 2

2

d
d

1

e
e e e

T f p f f

u u uu v
t x y

u uu u u u u
x Ky K

T T g

υε ευ

ϕ β ρ ρ ρ ϕ ϕ ρ∞ ∞ ∞

∂ ∂ ∂
+ +

∂ ∂ ∂

∂ Γ
= + + − + −

∂

 + − − − − − 

        (3) 

22

2
T

m B
DT T T T T Tu v D

t x y y y T yy
ϕα τ

∞

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
 + + = + +  ∂ ∂ ∂ ∂ ∂ ∂∂    

,       (4) 

2 2

2 2
T

B
D Tu v D

t x y Ty y
ϕ ϕ ϕ ϕ

∞

 ∂ ∂ ∂ ∂ ∂
+ + = +  ∂ ∂ ∂ ∂ ∂ 

,             (5) 

where u  and v  are the velocity components in is x  and y  coordinate, re-
spectively. T  is the temperature, ϕ  is the nanoparticle volume fraction, g is 
the acceleration due to gravity, fρ  is the density of the base fluid and ν  and 

Tβ  are the viscosity and thermal conductivity of the fluid. While, pρ  is the 
density of the nanoparticles, ( ) fcρ  is the heat capacity of the fluid and ( ) pcρ  
is the effective heat capacity of the nanoparticle material. ( )m m fk cα ρ=  is the 
thermal diffusivity, ( ) ( )p fc cτ ρ ρ=  is the ratio of the effective heat capacity 
of the nanoparticle material to the heat capacity of the fluid and mk  is the effec-
tive thermal conductivity of the porous medium. K, ε  and Γ  are the permea-
bility, the porosity of the porous medium and the empirical constant in the second- 
order resistance. The coefficients that appear in Equations ((4), (5)) are the Brow-
nian diffusion coefficient BD , and the thermophoretic diffusion coefficient TD . 

The boundary conditions for the present problem are 

( ) ( )

( ) ( )

( )

2 1

2 1

0, 0, ,

, at 0,

, , as .

m

w r

m

w r

e

xu v T T x T T T
L

xx y
L

u u x T T y

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

−

∞ ∞

−

∞ ∞

∞ ∞

 = = = = + −  
 

 = = + − = 
 

= → → →∞

          (6) 

We introduce non dimensional dependent and independent variables accord-
ing to, 

1 2 1 2, , , , ,

, , .

e
L L e

r r

ux y u vx y Re u v Re u
L L U U U

U T Tt t T
L T T

ϕ ϕ
ϕ

ϕ ϕ

∞ ∞ ∞

∞ ∞ ∞

∞ ∞

= = = = =

− −
= = =

− −

      (7) 

The velocity over the wedge is now given by ( ) m
eu x x=  for 1m ≤ . 

The governing Equations (2)-(5) can be written as 
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0u v
x y
∂ ∂

+ =
∂ ∂

,                         (8) 

( ) ( ) ( )
2
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ϕ  ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + +  ∂ ∂ ∂ ∂ ∂ ∂∂  

,       (10) 

2 2

2 2

1 1 oT

oB

N Tu v
t x y Sc Sc Ny y
ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂
+ + = +
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,            (11) 

where 2
LDa K L=  is the Darcy number, 2

L LGr Reλ =  is the mixed convection 

parameter, LRe U L ν∞=  is the Reynolds number, ( ) 3 2
L rGr g T T Lβ ν∞= −  is 

the Grashof number, 
( )( )

( )( )1
p f r

r
f r

N
T T

ρ ρ ϕ ϕ

ρ ϕ
∞

∞ ∞

− −
=

− −
 is the nanofluid buoyancy ratio 

parameter, ( )T
oT r

DN T T
T

τ
ν ∞

∞

 
= − 

 
 is the thermophores is parameter,  

( )oB B rN Dτ ϕ ϕ
ν ∞= −  is the Brownian motion parameter, mPr α ν=  is the Pran- 

dtl number and BSc Bν=  is the Schmidt number. 

For 0t ≥  and 1m ≤  the boundary conditions then may be written as: 

( )

2 1 2 10, 0, , at 0,

, 0, 0 as

m m

m
e

u v T x x y
u u x x T y

ϕ

ϕ

− −= = = = =

= = → → →∞
           (12) 

The number of independent variables in the governing Equations (8)-(11) can 
be reduced from three to two by applying the following transformations as 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 11 2 1 22

2 1 2 1 1

2 , 2 , ,

, , , , 1 e , ,

m m

m m m

x y x f

T x x x tτ

η ξ ψ ξ η ξ

θ η ξ ϕ φ η ξ ξ τ

− +

− − −

−

−

= =

= = = − =
     (13) 

where η  is a non-dimensional similarity variable and ψ  is the stream func-
tion, which is defined in the usual way, namely u yψ= ∂ ∂  and v yψ= −∂ ∂ . 

Substituting the transformations (13) into Equations (9)-(11), we obtained the 
following transformed equations for the momentum and thermal boundary layer 
equations: 

( ) ( ) ( )( ) ( )
( ) ( )( )

( ) ( ) ( )

( ) ( )

2

1 1 1 1 ln 1

2 1 1

2 1 1 ln 1

2 1 2 ,

x x

r

f f m m ff

f m f

f fm f f

f N
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ξ ξ ξ
ξ ξ

ξ ξ λξ θ φ
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′′′ ′′ ′′+ − + + − − − −  
 ′ ′+ − + + ∆ − 

′ ∂ ∂′ ′′= − − − − ∂ ∂ 
′∂

+ − − −
∂

      (14) 

https://doi.org/10.4236/jamp.2021.91008


K. M. Abualnaja et al. 
 

 

DOI: 10.4236/jamp.2021.91008 107 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( )( ) ( )
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2 2 1

2 1 1 ln 1

2 1 B T

m m f
Pr

m f

fm f

N N

θ η ξ θ ξ ξ ξ θ

ξθ

θξ ξ ξ θ
ξ ξ

θξ ξ θ φ θ
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m f
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φ φξ ξ ξ φ ξ ξ θ
ξ ξ ξ

′′ ′ ′+ − + + − − − −  
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where 1 1 1 m
x LDa Re xγ − − −=  is the local permeability parameter, x Fx∆ =  is the 

inertia coefficient parameter (see Chamkha [23]). The modified thermophoresis 
and Brownian motion parameters are defined as: 

( ) ( )

( ) ( )

2 1 2 1

2 1 2 1

,m mT T
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     (17) 

The boundary conditions to be satisfied by the Equations (14)-(16) are 

( ) ( ) ( ) ( )
( ) ( ) ( )
0, 0, 0, 0, 1, 0, 1,

, 1, , 0, , 0,

f f

f

ξ ξ θ ξ φ ξ

ξ θ ξ φ ξ

′= = = =

′ ∞ = ∞ = ∞ =
          (18) 

In the above equations, prime denotes differentiation of the functions with 
respect to η  only. 

Now to find the numerical solutions we can get the easiest form by using the 
transformations 1 e τξ −= −  from Equations (14)-(16) applicable for 0 τ≤ ≤ ∞ . 
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 (21) 
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The boundary conditions to be satisfied by the above equations are 

( ) ( ) ( ) ( )
( ) ( ) ( )
0, 0, 0, 0, 1, 0, 1,

, 1, , 0, , 0.

f f

f

τ τ θ τ φ τ

τ θ τ θ τ

′= = = =

′ ∞ = ∞ = ∞ =
           (22) 

In practical applications, two quantities of physical interest are to be deter-
mined, such as, surface shear stress and the rate of heat and mass transfer at the 
surface. These may obtained in terms of the skin friction coefficient (wall shear 
stress) fC , local Nusselt number xNu  and the local Sherwood number xSh , 
which are defined by: 

( )2
0 0

0

, ,f x
wf e y y

x
w y

u x TC Nu
y T T yU x

xSh
y

µ
ρ

ϕ
ϕ ϕ

∞= =

∞ =

  ∂ ∂
= =   ∂ − ∂   

 ∂
=  − ∂ 

         (23) 

By introducing the non-dimensional variables (7) and the transformation (13), 
the skin friction coefficient, fC , the local Nusselt number, xNu  and the local 
Sherwood number, xSh  can now defined by: 

( ) ( )

( ) ( )
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f x

x x

x x

C Re f

Nu Re

Sh Re

τ

τ

τ

τ

θ τ

φ τ

−

−

−

−−

−
− −

  ′′= − 

  ′= − − 
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              (24) 

Perturbation solutions method for small time 1τ   
For small τ  Equations (19)-(21) become 
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         (27) 

and the corresponding boundary conditions (22) become 

( ) ( ) ( ) ( )
( ) ( ) ( )
0, 0, 0, 0, 1, 0, 1,

, 1, , 0, , 0

f f

f

τ τ θ τ φ τ

τ θ τ φ τ

′= = = =

′ ∞ = ∞ = ∞ =
           (28) 

The resulting system of Equations (25)-(27), along with boundary conditions 
(28) is solved using the perturbation technique. Now, the non-dimensional stream 
function and the temperature functions can be written as: 
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( ) ( ) ( ) ( )2
0 1 2,f f f fη τ η τ η τ η= + + +              (29) 

( ) ( ) ( ) ( )2
0 1 2,θ η τ θ η τθ η τ θ η= + + +               (30) 

( ) ( ) ( ) ( )2
0 1 2,φ η τ φ η τφ η τ φ η= + + +               (31) 

Substituting Equations (29)-(31) into Equations (25)-(27) and equating the var-
ious coefficients of power of τ  to zero (here we collect terms up to the second 
power of ( )2O τ , we can get the following sets of ordinary differential equations: 

Zero order: 

0 0 0f fη′′′ ′′+ =                         (32) 

2
0 0 0 0 0
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N
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with the corresponding boundary conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 00 0 0, 0 0 1, 1, 0f f fθ φ θ φ′ ′= = = = ∞ = ∞ = ∞ =   (35) 

First order: 

( ) ( ) ( )2 2
1 1 1 0 0 0 0 0 0 02 2 1 2 2 ,x x rf f f m f f f f f Nη γ λ θ φ′′′ ′′ ′ ′ ′′ ′ ′′+ − = − − + + + ∆ − −   (36) 

( )2
1 1 1 1 1 1 0 0 0 0

1 2 2 2 2 1 ,B TN N mf m f
Pr

θ ηθ θ θ φ θ θ θ′′ ′ ′ ′ ′ ′ ′+ − + + = − + −      (37) 

( )1 1 1 1 0 0 0 0
1 2 2 2 2 1 ,T

B

N mf m f
Sc ScN
φ ηφ φ θ φ φ′′ ′ ′′ ′ ′+ − + = − + −         (38) 

with the corresponding boundary conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 10 0 0, 0 0 0, 0, 0f f fθ φ θ φ′ ′= = = = ∞ = ∞ = ∞ =    (39) 

Second order: 

( ) ( ) ( )
2 2 2

1 0 1 0 0 1 1 1 1 0 1

4

2 1 2 3 1 2 4r x x

f f f

m f f m f f mf f N f f f

η

λ θ φ γ

′′′ ′′ ′+ −

′′ ′ ′ ′′ ′ ′ ′= − + − − − − + + ∆  
  (40) 

( ) ( ) ( )

2
2 2 2 2 2 2

1 0 1 0 1 0 0 1

1 4

2 1 2 3 2 2 1

B TN N
Pr

m f m f m f m f

θ ηθ θ θ φ θ

θ θ θ θ

′′ ′ ′ ′ ′+ − + +

′ ′ ′ ′= − + − − + −  

       (41) 

( ) ( ) ( )

2 2 2 2

1 0 1 0 1 0 0 1

1 4

2 1 2 3 2 2 1

T

B

N
Sc ScN

m f m f m f m f

φ ηφ φ θ

φ φ φ φ

′′ ′ ′′+ − +

′ ′ ′ ′= − + − − + −  

       (42) 

With the corresponding boundary conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 20 0 0, 0 0, 0 0, 0, 0, 0f f fθ θ θ φ′ ′= = = = ∞ = ∞ = ∞ =  (43) 

where primes denote differentiation with respect to η . Knowing the values of  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 0 1 2 0 10 , 0 , 0 , 0 , 0 , 0 , 0 , 0f f f θ θ θ φ φ′′ ′′ ′′ ′ ′ ′ ′ ′  and ( )2 0φ′  from the solu-

tions of Equations (32)-(43), we get the values of the skin friction coefficient fC , 
local Nusselt number xNu  and the local Sherwood number xSh , from the fol-

https://doi.org/10.4236/jamp.2021.91008


K. M. Abualnaja et al. 
 

 

DOI: 10.4236/jamp.2021.91008 110 Journal of Applied Mathematics and Physics 
 

lowing expressions: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2
0

1 21 2

1 21 2

1 21 2

1 2

2
0 1 2

2
0 1 2

2 0 0 0 ,

2 0 0 0 ,

2 0 0 0 .

f x

x x

x x

C Re f f f

Nu Re

Sh Re

τ τ τ

τ θ τθ τ θ

τ φ τφ τ φ

−

−−

−−

′′ ′′ ′′= + +

′ ′ ′= − + +

′ ′ ′= + +

          (44) 

3. Results and Discussion 

The sets of ordinary differential Equations (32)-(34) are solved successively by 
giving appropriate initial guess values for ( ) ( ) ( )0 , 0 , 0 , 0,1,2i i if iθ φ′′ ′ ′ =  to match 
the values with the corresponding boundary conditions at  

( ) ( ) ( ), , , 0,1, 2i i if iθ φ′ ∞ ∞ ∞ = . The numerical values of the coefficients of skin 
friction, 1 2

f xC Re  and the Nusselt number 1 2
x xNu Re−  for smaller values of  

[ ]0,1τ ∈  obtained by perturbation method while 1.0Pr =  and 0.2m =  are 
shown in Table 1 in the absence of the effect of the buoyancy force ( 0λ = ), 
thermophoresis parameter ( 0TN = ) and Brownian motion parameter ( 0BN = ). 
These values compared with that of Hossain et al. [8] and Harris et al. [4]. The 
comparison shows excellent agreement between these two results. 

Numerical results presented for some representative values of the governing 
parameters govern this problem. In order to see the physical insight, the numer-
ical values of velocity ( )f η′ , temperature ( )θ η , and nanoparticle volume 
fraction ( )φ η  within the boundary layer computed for different parameters as 
unsteadiness parameter τ , mixed convection parameter λ , nanofluid buoyancy 
ratio parameter Nr, thermophoresis parameter NT, Brownian motion parameter 
NB, first resistant parameter γ , second resistant parameter ∆ , Prandtl number 
Pr and Schmidt number Sc. In addition, numerical results obtained to discuss 
the effects of the governing parameters on the skin friction coefficient, local 
Nussel number and local Shrewood number and displayed in tabular and graph-
ical forms. 

Figures 2-4 displayed the effects of nanonfluid parameters, thermophoresis 
parameter NT, Brownian motion parameter NB and buoyancy ratio parameter Nr. 
From these figures, it is observed that the velocity and the temperature profiles 

 
Table 1. Comparison of the present numerical results of 1 2

f xC Re  and 1 2
x xNu Re−  for dif-

ferent values of small time while Pr = 1.0 and m = 0.2. 

τ  
Harris et al. [4] Hossian et al. [11] Present result 

1 2
f xC Re  

1 2
x xNu Re−

 
1 2

f xC Re  
1 2

x xNu Re−

 
1 2

f xC Re  
1 2

x xNu Re−

 

0.01 5.65797 5.64360 5.66886 5.64525 5.65769 5.63468 

0.10 1.83491 1.78946 1.83693 1.76140 1.83312 1.75951 

0.20 1.33334 1.26902 1.33189 1.22357 1.33090 1.22543 

0.40 0.99341 0.90234 0.99548 0.83937 0.99038 0.83739 

1.0 0.72370 0.57925 0.72665 0.46370 0.72116 0.46104 
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Figure 2. Effect of thermophoresis parameter NT on velocity ( )f η′ , temperature ( )θ η  

and nanoparticle volume fraction ( )φ η  with 0.5, 1,r BN N m γ λ= = = = ∆ = =   
10Pr Sc= =  and 0.5τ = . 

 

 

Figure 3. Effect of Brownian motion parameter NB on velocity ( )f η′ , temperature  

( )θ η  and nanoparticle volume fraction ( )φ η  with  

0.5, 1, 10r TN N m Pr Scγ λ= = = = ∆ = = = =  and 0.5τ = . 
 

increase with an increase in both NT and NB. However, for the nanoparticle vo-
lume fraction profiles there is a crossing over point where the volume fraction 
profile decreases before that point and slightly increases after that (Figure 2 and 
Figure 3). Hence, the heat transfer enhancement is due to collision of high 
thermal energy with lower energy particles. From Figure 4, it is observed that 
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with the increase in the buoyancy ratio parameter Nr, the velocity profile de-
creases and both the temperature and volume fraction profiles slightly increase. 

The effects of the mixed convection parameter λ  on the non-dimensional 
velocity, temperature and nanoparticle volume fraction are illustrated in Figure 5.  

 

 

Figure 4. Effect of buoyancy ratio parameter Nr on velocity ( )f η′ , temperature ( )θ η  

and nanoparticle volume fraction ( )φ η  with  

0.5, 1, 10T BN N m Pr Scγ λ= = = = ∆ = = = =  and 0.5τ = . 
 

 

Figure 5. Effect of mixed convection parameter λ  on velocity ( )f η′ , temperature  

( )θ η  and nanoparticle volume fraction ( )φ η  with  

0.5, 10T B rN N N m Pr Scγ= = = = = ∆ = = =  and 0.5τ = . 
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From this figure, it is observed that the velocity increases as λ  increases, how-
ever; both the temperature and nanoparticle fraction profiles slightly decrease 
with increasing values of λ . 

Figure 6 & Figure 7 exhibit the effects of first resistant parameter γ  and 
second resistant parameter ∆  of the porous medium on velocity, temperature  

 

 
Figure 6. Effects of first resistant parameter γ  on velocity ( )f η′ , temperature ( )θ η  

and nanoparticle volume fraction ( )φ η  with  

0.5, 1, 10T B rN N N m Pr Scλ= = = = ∆ = = = =  and 0.5τ = . 

 

 
Figure 7. Effects of second resistant parameter ∆  on velocity ( )f η′ , temperature  

( )θ η  and nanoparticle volume fraction ( )φ η  with  

0.5, 1, 10T B rN N N m Pr Scγ λ= = = = = = = =  and 0.5τ = . 
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and nanoparticle volume fraction. An increase in γ  or ∆  leads to an increase 
in fluid velocity and a decrease on both temperature and nanoparticle volume 
fraction. This is due the fact that an increase in γ  or ∆  implies that there is a 
decrease in the resistance of the porous medium which tends to accelerate the 
fluid velocity in the boundary layer region. 

Figure 8 displays the effect of Prandtl number Pr on velocity, temperature 
and nanoparticle volume fraction profiles. It is evident from the figure that, as Pr 
increases, velocity profiles have a small increasing. On the other hand, for both 
temperature and nanoparticle volume fraction profiles, there special points 
called the “crossing over points” and the temperature and the volume fraction 
profiles have completely conflicting behavior before and after these points for 
which the profiles at a fixed value of η decreases before that point and increases 
after it. Prandtl number signifies the ratio of momentum diffusivity to thermal 
diffusivity. In heat transfer problems, the Prandtl number Pr controls the relative 
thickening of the momentum and thermal boundary layers. Hence, Prandtl 
number is small, heat diffuses quickly compared to the velocity (momentum), 
which means that for liquid metals, the thickness of the thermal boundary layer 
is much bigger than the momentum boundary layer. Fluids with lower Prandtl 
number have higher thermal conductivities (and thicker thermal boundary layer 
structures) so that heat can diffuse from the sheet faster than for higher Pr fluids 
(thinner boundary layer). So, Prandtl number can be used to increase the rate of 
cooling in conducting flows. 

Figure 9 depicts the effect of Schimdt number Sc on velocity, temperature and 
species concentration profiles. It is noticed that effect of increasing value of Sc is  

 

 

Figure 8. Effects of Prandtl number Pr on velocity ( )f η′ , temperature ( )θ η  and nano-

particle volume fraction ( )φ η  with 0.5, 1, 10T B rN N N m Scγ λ= = = = = ∆ = = =  and  

0.5τ = . 
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Figure 9. Effects of Schmidt number Sc on velocity ( )f η′ , temperature ( )θ η  and na-

noparticle volume fraction ( )φ η  with 0.5, 1, 10T B rN N N m Prγ λ= = = = = ∆ = = =  and 

0.5τ = . 
 

to decrease velocity, temperature and species concentration profiles. This is con-
sistent with the fact that, increase in Sc means decrease of molecular diffusivity 
those results in decease of concentration boundary layer. Hence species concen-
tration is higher for small values of Sc and lower for large value of Sc. 

Figures 10-17 are presented to illustrate the variations of the local rate of 
shear stress, the local rate of heat transfer and the local rate of mass transfer for 
different values of the governing parameters. 

Figure 10 display the effects of the thermophoresis parameter NT on the local 
skin friction coefficient fC , local Nusselt number xNu  and the local Sherwood 
number xSh . It can be seen that the thermophoresis parameter NT appears in 
the thermal and the concentration boundary layer equations. As we note that, it 
is coupled with the temperature function and plays a strong role in determining 
the diffusion of heat and nanoparticles concentration in the boundary layer. 
Thus, an increase in the value of the thermophoresis parameter NT leads to a de-
crease in the local Nusselt number and increases in both the local skin friction 
coefficient and the local Sherwood number. 

Figure 11 display the effects of the Brownian motion parameter NB on the lo-
cal skin friction coefficient, local Nusselt number and the local Sherwood num-
ber. In nanofluid systems, owing to the size of the nanoparticles, Brownian mo-
tion takes place, and this can enhance the heat transfer properties. This is due to 
the fact that the Brownian diffusion promotes heat conduction. The nanopar-
ticles increase the surface area for heat transfer. A nanofluid is a two-phase fluid 
where the nanoparticles move randomly and increase the energy exchange rates. 
However, the Brownian motion reduces nanoparticles diffusion. The increase in 
the local Sherwood number as NB changes is relatively small. Therefore, as indi-
cated before, increasing the value of the Brownian motion parameter NB causes  
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Figure 10. Effects of thermophoresis parameter NT on (a) skin fraction, (b) Nusselt number 
and (c) Sherwood number with 0.5, 1, 10r BN N m Pr Scγ= = = ∆ = = = =  and 1λ = . 
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Figure 11. Effects of Brownian motion parameter NB on (a) skin fraction, (b) Nusselt 
number and (c) Sherwood number with 0.5, 1, 10r TN N m Pr Scγ= = = ∆ = = = =  and 

1λ = . 
 

 

https://doi.org/10.4236/jamp.2021.91008


K. M. Abualnaja et al. 
 

 

DOI: 10.4236/jamp.2021.91008 118 Journal of Applied Mathematics and Physics 
 

 
Figure 12. Effects of buoyancy ratio parameter Nr on (a) skin fraction, (b) Nusselt num-
ber and (c) Sherwood number with 0.5, 1, 10T BN N m Pr Scγ= = = ∆ = = = =  and  

1λ = . 
 

 
Figure 13. Effect of mixed convection parameter λ  on (a) skin fraction, (b) Nusselt 
number and (c) Sherwood number with 0.5, 1, 10r T BN N N m Prγ= = = = ∆ = = =  and 

10Sc = . 
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Figure 14. Effects of first resistant parameter γ  on (a) skin fraction, (b) Nusselt number 
and (c) Sherwood number with 0.5, 1, 10r TN N m Pr Sc= = ∆ = = = =  and 1λ = . 

 
increases in the velocity and temperature profiles while its volume fraction pro-
file decreases. This yields reductions in both the local Nusselt number and the 
local Sherwood number and enhancement in the local skin-friction coefficient. 

The effects of the buoyancy ratio parameter Nr are illustrated in Figure 12. It 
is observed from this figure that an increase in the value of Nr tends to decrease 
all of the local skinfriction coefficient, the local Nusselt number and the local 
Sherwood number. 

The effects of mixed convection parameter λ  on skin friction coefficient, 
local Nusselt number and local Sherwood number are are shown in Figure 13. It 
is observed that as λ  increases all the skin friction coefficient, local Nusselt 
number and local Sherwood number increases. The physical reason is that the 
positive buoyancy force ( 0λ > ) implies favorable pressure gradient, and the 
fluid gets accelerated, which results in thinner momentum boundary layer. 
Consequently, the local skin friction is also increased at all times. 
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Figure 15. Effects of second resistant parameter ∆  on (a) skin fraction, (b) Nusselt 
number and (c) Sherwood number with 0.5, 1, 10r T BN N N m Pr Scγ= = = = = = =  and 

1λ = . 
 

The effects of both the first resistance parameter γ  and the second resistance 
parameter ∆  on the local skin-friction coefficient, the local Nusselt number 
and the local Sherwood number are illustrated in Figure 13 and Figure 14, re-
spectively. From these figures, it is observed that both γ  and ∆  have the 
same behavior. From these figures, we conclude that both the first and second 
resistances enhance all of the local rate of shear stress (the local skin-friction 
coefficient), the local rate of heat transfer (local Nusselt number) and the local 
rate of mass transfer (local Sherwood number). 

The effects of Prandtl number Pr and Schmidt number Sc on the behaviors of 
the local skin-friction coefficient, local Nusselt number and the local Sherwood 
number are illustrated on Figure 16 and Figure 17, respectively. It is observed 
from these figures that increasing the value of Pr or Sc produces increases in the 
local rate of shear stress and decreases in both of the heat transfer rate and the 
mass transfer rate. This is associated with the decreases in the nanoparticle boun-
dary layer as Sc increases as discussed earlier. 
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Figure 16. Effects of Prandtl number Pr on (a) skin fraction, (b) Nusselt number and (c) 
Sherwood number with 0.5, 1, 10r T BN N N m Scγ= = = = ∆ = = =  and 1λ = . 
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Figure 17. Effects of Schimdt number Sc on (a) skin fraction, (b) Nusselt number and (c) 
Sherwood number with 0.5, 1, 10r T BN N N m Prγ= = = = ∆ = = =  and 1λ = . 

 
Finally, from Figures 10-17, it is observed that as the unsteadiness parameter 

τ  increases the local rate of shear stress increases while, both of the local rate of 
heat transfer and the local rate of mass transfer decreases. 

4. Conclusions 

In the present work, the problem of unsteady mixed convection flow along a sym- 
metric wedge embedded in a porous medium saturated with a nanofluidis stu-
died theoretically. The resulting system of nonlinear partial differential equations 
is treated using the Sparrow-Quack-Boerner local non-similarity numerical method. 
The obtained system is solved numerically using an efficient numerical shooting 
technique with a fourth-fifth-order Runge-Kutta method scheme (MATLAB pac- 
kage). The solutions for the flow and the heat and mass transfer characteristics 
are evaluated numerically for various values of the governing parameters, name-
ly the unsteadiness parameter τ , mixed convection parameter λ , nanofluid buo- 
yancy ratio parameter Nr, thermophoresis parameter NT, Brownian motion pa-
rameter NB, first resistance parameter γ , second resistance parameter ∆ , Pran- 
dtl number Pr and the Schmidt number Sc. The following are brief summary 
conclusions drawn from the analysis: 

1) The thickness of the momentum boundary layer slightly decreases with an 
increase in the nanofluid buoyancy ratio parameter Nr. However, it increases 
with the increase of all other parameters. 

2) The thickness of the thermal boundary layer increases with an increase in 
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both of NT and NB parameters while it slightly increases with an increase in Nr 
parameter. 

3) The nanoparticle volume fraction boundary-layer thickness decreases ob-
viously with an increase in both NT and NB parameters and slightly increases 
with an increase in the Nr parameter. 

4) The buoyancy parameter λ  enhances obviously the momentum boundary- 
layer thickness and slightly reduce both of the thermal and the nanoparticle vo-
lume fraction boundary-layer thicknesses. 

5) Both the first and the second resistance parameters γ  and ∆  enhance the 
momentum boundary-layer thickness and reduce both of the thermal and the 
nanoparticle volume fraction boundary-layer thicknesses. 

6) The magnitude of the skin-friction coefficient ( )0f ′′  decreases with in-
creasing values of the nanofluid buoyancy ratio parameter Nr and increases with 
the increase of all other parameters. 

7) The local Nusselt number decreases with all the nanofluid parameters NT, 
NB and Nr. While, it decreases with increases in the Prandtl number Pr and the 
Schmidt number Sc. 

8) The local Sherwood number increases as the NT parameter increases. How-
ever, it decreases as either of NB, Nr, Pr or Sc increases. 

9) The unsteadiness parameter τ  and the resistance parameters γ  and ∆  
enhance the local skin-friction coefficient, local Nusselt number and the local Sher- 
wood number. 
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