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Abstract 
In this paper, based on the Lie symmetry method, the symmetry group of a 
hyperbolic Monge-Ampère equation is obtained first, then the one-dimensional 
optimal system of the obtained symmetries is given, and finally the group- 
invariant solutions are investigated. 
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1. Introduction 

In the 19th century, in order to study differential equations, Lie proposed Lie 
group theory. Due to the relatively abstract Lie group theory, it was not widely 
used until the 1970s. It was not until Bluman Cole wrote an intuitive and un-
derstandable book [1] in 1974 that Lie group theory became widely used to study 
and solve nonlinear partial differential equations [2] [3] [4] [5]. The basic idea of 
Lie group method is to simplify or solve partial differential equations by con-
structing group invariances as the basis of function transformation. 

Gao and Zhang studied a new class of dissipative hyperbolic geometric flows. 
By applying the Lie group method, the optimal system is obtained, and then the 
equation is similarly reduced and the exact solution is obtained [6]. They pri-
marily study Lie symmetry analysis and exact solutions for the coupled integra-
ble no dispersion equations, and gave the exact solution in the form of power se-
ries [7]. Then, by applying the classical symmetry method, Gao obtained the 
group invariant solution, the optimal system and the exact solution of the evolu-
tion equation of a hyperbolic curve flow [8]. Gao also discussed the normal 
hyperbolic mean curvature flow with dissipation, and obtained the symmetric 
optimal system and exact solutions by applying Lie symmetry method [9]. Ding 
and Wang considered symmetry group and invariant solutions of one dimen-
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sional hyperbolic inverse mean curvature flow [10]. 
In [11], during studying the life-span of classical solutions of hyperbolic in-

verse mean curvature flow, Wang deduced a hyperbolic equation with Riemann 
invariance that can be reduced to a hyperbolic Monge-Ampère equation, namely 

( )22 21 .tt xx xt xu u u u− = − +                       (1.1) 

In this paper, firstly, we investigate the symmetry group of Equation (1.1). 
Secondly, we discuss a one-dimensional optimal system of the obtained symme-
tries. Thirdly, we obtain group-invariant solutions. Finally, we draw conclusions. 

2. Symmetry Group 

Suppose the one-parameter group of infinitesimal transformations ( ), ,x t u  is 
given by 

( ) ( )
( ) ( )
( ) ( )

* 2

* 2

* 2

, , ,

, , ,

, , ,

x x x t u o

t t x t u o

u u x t u o

εξ ε

εη ε

ετ ε

= + +

= + +

= + +

                   (2.1) 

in which ε  is a group parameter. 
Let the symmetric group of Equation (1.1) be generated by the vector field in 

the following form: 

( ) ( ) ( ), , , , , , .x t u x t u x t u
x t u

ξ η τ∂ ∂ ∂
= + +

∂ ∂ ∂
V            (2.2) 

The first and second-order prolongation of V are respectively: 

( ) ( )1 ,x t

x t

pr
x t u u u

ξ η τ τ τ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂
V  

( ) ( ) ( ) ( )2 1 .xx xt tt

xx xt tt

pr pr
u u u

τ τ τ∂ ∂ ∂
= + + +

∂ ∂ ∂
V V  

The necessary and sufficient condition for Equation (1.1) to remain un-
changed under an infinitesimal transformation is that the vector field should sa-
tisfy the invariance conditions of Lie symmetry: 

( ) ( )( )2

0
0,pr

∆=
∆ =V                    (2.3) 

in which ( )22 21tt xx xt xu u u u∆ = − + + , namely 

( )24 1 2 0,x x tt xx x
x xx tt xt

tu u u u uτ τ τ τ+ + + − =           (2.4) 

in which 

( )
( )
( )
( )

,

,

,

,

x
x x t xx xt

xx
xx x t xxx xxt

tt
tt x t xtt ttt

xt
xt x t xxt xtt

D u u u u

D u u u u

D u u u u

D u u u u

τ τ ξ η ξ η

τ τ ξ η ξ η

τ τ ξ η ξ η

τ τ ξ η ξ η

 = − − + +


= − − + +


= − − + +
 = − − + +

           (2.5) 

in which xD  is total differential to x, ,xx ttD D  are respectively double total 
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differential to x, t, xtD  is the total differential with respect to t and then with 
respect to x. By substituting (2.5) into Equation (2.4), the decision equations of 
the original equation can be solved as follows 

0,
0,

, , 0,
0,

t u x

tt uu xx

u x x u tt

ut xt xu

η η η
ξ ξ ξ
τ ξ τ ξ τ
ξ ξ ξ

= = =
 = = =
 = = − =
 = = =

 

the above equations can be solved as follows: 

1 2 3 4

5

1 3 6 7

,
,

,

c x c t c u c
c
c u c x c t c

ξ
η
τ

= + + +
 =
 = − + +

                    (2.6) 

in which 1 2 3 4 5 6 7, , , , , ,c c c c c c c  are all real constants. Substitute (2.6) into (2.2). 
Hence the associated seven generators for the one-parameter Lie group of infi-
nitesimal transformations are 

1

2

3

4

5

6

7

,

,

,

,

,

,

.

V
x

V
t

V
u

V t
x

V t
u

V x u
x u

V u x
x u

∂ = ∂
∂ = ∂

 ∂ =
 ∂
 ∂

=
∂

 ∂
= ∂

∂ ∂ = + ∂ ∂
∂ ∂ = − ∂ ∂

                      (2.7) 

The corresponding one-parameter transformation groups are: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

4

5

6

7

: , , , , ,
: , , , , ,
: , , , , ,
: , , , , ,
: , , , , ,

: , , e , , e ,

: , , sin cos , , sin cos .

G x t u x t u
G x t u x t u
G x t u x t u
G x t u t x t u
G x t u x t t u

G x t u x t u

G x t u u x t x u

ε ε

ε
ε
ε

ε
ε

ε ε ε ε

 → +
 → +
 → +
 → +
 → +


→


→ + − +

 

3. Optimal System 

Definition 3.1: If a set { } n
vα α∈

 of r-dimensional subalgebras satisfies the 
following conditions: 

1) Any r-dimensional subalgebras are equivalent to some element in set { }vα ; 
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2) If 1 2β β≠ , then 
1

vβ  is not equivalent to 
2

vβ , then set { } n
vα α∈

 is known 
as the r-dimensional optimal system. 

Theorem 3.1: Generators in (2.7) generate an optimal system S: 

{
}

1 2 3 4 5 6 7 7 2 7 6 7 2 6

6 2 2 4 2 5 5 1 4 3

, , , , , , , , , ,

, , , , .

± ± ± ±

± ± ± ± ±

V V V V V V V V V V V V V V

V V V V V V V V V V
 

Proof: By formula ,i j i j j i  = − V V VV V V , we get table of Lie brackets (Table 
1).  

Let’s say any vector 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 ,l V l V l V l V l V l V l V= + + + + + +V             (3.1) 

in order to set up the linear transformation of ( )1 2 3 4 5 6 7, , , , , ,l l l l l l l=l , let’s say 

, 1, 2,3, 4,5,6,7,
k

k
i ij j lc l i= ∂ =E                   (3.2) 

in which k
ijc  comes from , k

i j ij kc X  = V V . According to (3.2) and table of Lie 
brackets, 1 2 3 4 5 6 7, , , , , ,E E E E E E E  can be written in 

1 3

1 3

1 3

1 4 5

3 4 5

1 3 4 5

1 3 4 5

1 6 7

2 4 5

3 7 6

4 2 6 7

5 2 7 6

6 1 3 4 5

7 3 1 5 4

,

,

,

,

,

,

,

l l

l l

l l

l l l

l l l

l l l l

l l l l

l l

l l

l l

l l l

l l l

l l l l

l l l l

= ∂ − ∂


= ∂ + ∂
 = ∂ + ∂
 = − ∂ + ∂ − ∂
 = − ∂ + ∂ + ∂
 = − ∂ − ∂ − ∂ − ∂

 = − ∂ + ∂ − ∂ + ∂

E

E

E

E

E

E

E

 

for 1 2 3 4 5 6 7, , , , , ,E E E E E E E , Lie equation with parameter 1 2 3 4 5 6 7, , , , , ,a a a a a a a  
and initial conditions 

0
, 1, 2,3, 4,5,6,7

ia
l i

=
= =l  are as follows 





 



   





 



   





 



   



3 5 6 71 2 4
6 7

1 1 1 1 1 1 1

3 5 6 71 2 4
4 5

2 2 2 2 2 2 2

3 5 6 71 2 4
7 6

3 3 3 3 3 3 3

1

d d d dd d d
, 0, , 0, 0, 0, 0,

d d d d d d d

d d d dd d d
, 0, , 0, 0, 0, 0,

d d d d d d d

d d d dd d d
, 0, , 0, 0, 0, 0,

d d d d d d d

d
d

a a a a a a a

a a a a a a a

a a a a a a a

= = = − = = = =

= = = = = = =

= = = = = = =

l l l ll l ll l

l l l ll l ll l

l l l ll l ll l

l


  







 

  











 





 











 

3 5 6 72 4
2 6 7

4 4 4 4 4 4 4

3 5 6 71 2 4
2 7 6

5 5 5 5 5 5 5

3 5 6 71 2 4
1 3 4 5

6 6 6 6 6 6 6

d d d dd d
, 0, 0, , , 0, 0,
d d d d d d

d d d dd d d
0, 0, , , , 0, 0,

d d d d d d d

d d d dd d d
, 0, , , , 0,

d d d d d d d

a a a a a a a

a a a a a a a

a a a a a a a

= − = = = = − = =

= = = − = = = =

= − = = − = − = − = =

l l l ll ll l l

l l l ll l ll l l

l l l ll l ll l l l





 











 

3 5 6 71 2 4
3 1 5 4

7 7 7 7 7 7 7

0,

d d d dd d d
, 0, , , , 0, 0.

d d d d d d da a a a a a a























= − = = = − = = =


l l l ll l ll l l l

 

The solution of the above equation consists of the following transformation 
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Table 1. Lie brackets. 

,i j  V V  1V  2V  3V  4V  5V  6V  7V  

1V  0 0 0 0 0 1V  3−V  

2V  0 0 0 1V  3V  0 0 

3V  0 0 0 0 0 3V  1V  

4V  0 1−V  0 0 0 4V  5−V  

5V  0 3−V  0 0 0 5V  4V  

6V  1−V  0 3−V  4−V  5−V  0 0 

7V  3V  0 1−V  5V  4−V  0 0 

 

      

      

      

   

1 1 1 1 6 2 2 3 3 1 7 4 4 5 5 6 6 7 7

2 1 1 2 4 2 2 3 3 2 5 4 4 5 5 6 6 7 7

3 1 1 3 7 2 2 3 3 3 6 4 4 5 5 6 6 7 7

4 1 1 4 2 2 2 3 3 4 4 4

: , , , , , , ,

: , , , , , , ,

: , , , , , , ,

: , , ,

T l a l l l a l l l l l

T l a l l l a l l l l l

T l a l l l a l l l l l

T l a l l l l a l

= + = = − = = = =

= + = = + = = = =

= + = = + = = = =

= − = = = +

l l l l l l l

l l l l l l l

l l l l l l l

l l l l   

      

      

  



6 6 6 6

6 5 5 4 7 6 6 7 7

5 1 1 2 2 3 3 5 2 4 4 5 7 5 5 5 6 6 6 7 7

6 1 1 2 2 3 3 4 4 5 5 6 6 7 7

7 1 1 7 3 7 2 2 3 1 7 3 7

4 4

, , , ,

: , , , , , , ,

: e , , e , e , e , , ,

: cos sin , , sin cos ,

co

a a a a

l a l l l

T l l l a l l a l l a l l l

T l l l l l l l

T l a l a l l a l a

l

− − − −

= − = =

= = = − = + = + = =

= = = = = = =

= − = = +

=

l l l

l l l l l l l

l l l l l l l

l l l

l   

7 5 7 5 4 7 5 7 6 6 7 7s sin , sin cos , , .a l a l a l a l l














 − = + = = l l l

 

To set up an optimal system, we need to simplify the vector 

( )1 2 3 4 5 6 7, , , , , , ,l l l l l l l=l                      (3.3) 

construct the simplest representation of (3.3) by using transforms 1 7~T T . 

Case 1. When 7 0l ≠ , Let ( ) ( ) ( ) ( )3 51 4
1 1 3 3 4 4 5 5

7 7 7 7

, , ,
l ll la T a T a T a T
l l l l

= = − = = − , 

make    

3 1 5 40, 0, 0, 0l l l l= = = = , so (3.3) ( )2 6 70, ,0,0,0, ,l l l⇔ , as a result, we 
obtain the following representative: 

7 7 2 7 6 7 2 6~ , , , .± ± ± ±V V V V V V V V V  

Case 2. When 7 60, 0l l= ≠ , Let ( ) ( ) ( )31 4
1 1 4 4 3 3

6 6 6

, ,
ll la T a T a T

l l l
= − = − = − , 

( )5
5 5

6

l
a T

l
= − , make    

31 4 50, 0, 0, 0l l l l= = = = , so (3.3) ( )2 60, ,0,0,0, ,0l l⇔ , as a 

result, we obtain the following representative: 

6 6 2~ , .±V V V V  

Case 3. When 7 6 20, 0l l l= = ≠ , Let ( ) ( )31
4 4 5 5

2 2

,
lla T a T

l l
= = , make  

 

1 30, 0l l= = , so (3.3) ( )2 4 50, ,0, , ,0,0l l l⇔ , as a result, we obtain the following 
representative: 

2 2 4 2 5~ , , .± ±V V V V V V  
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Case 4. When 7 6 2 50, 0l l l l= = = ≠ , Let ( )3
2 2

5

l
a T

l
= − , make 3 0l = , so (3.3)

( )1 4 5,0,0, , ,0,0l l l⇔ . 

(4.1) When 4 0l ≠ , Let ( ) ( )51
2 2 7 7

4 4

, arctan
lla T a T

l l
 

= − = − 
 

, make  

 

1 50, 0l l= = , so (3.3) ( )40,0,0, ,0,0,0l⇔ ; as a result, we obtain the following 
representative: 

4~V V . 

(4.2) When 4 0l = , (3.3) ( )1 5,0,0,0, ,0,0l l⇔ , we obtain the following rep-
resentative:  

5 5 1~ , .±V V V V  

Case 5. When 7 6 2 5 40, 0l l l l l= = = = ≠ , (3.3) ( )1 3 4,0, , ,0,0,0l l l⇔ , Let  

( )1
2 2

4

la T
l

= − , make 1 0l = , so (3.3) ( )3 40,0, , ,0,0,0l l⇔ , as a result, we obtain 

the following representative: 

4 4 3~ , .±V V V V  

Case 6. When 7 6 2 5 4 30, 0l l l l l l= = = = = ≠ , (3.3) ( )1 3,0, ,0,0,0,0l l⇔ , Let 

1
7 7

3

arctan ( )
la T
l

 
=  

 
, make 1 0l = , so (3.3) ( )30,0, ,0,0,0,0l⇔ , as a result, we 

obtain the following representative: 

3~ .V V  

Case 7. When 7 6 2 5 4 3 10, 0l l l l l l l= = = = = = ≠ , (3.3) ( )1,0,0,0,0,0,0l⇔ , 
we obtain the following representative: 

1~V V . 

To sum up, optimal system is 

{
}

1 2 3 4 5 6 7 7 2 7 6 7 2 6

6 2 2 4 2 5 5 1 4 3

, , , , , , , , , ,

, , , , .

± ± ± ±

± ± ± ± ±

V V V V V V V V V V V V V V

V V V V V V V V V V
 

4. Group-Invariant Solutions 

In this section, using the optimal system, the reduced equations and exact solu-
tions are analyzed for Equation (1.1). 

4.1. V V x u
x u
∂ ∂

= = +
∂ ∂6  

The corresponding characteristic equations are 

d d d ,
0

x t u
x u
= =  

the invariances are 

, ut
x

 

https://doi.org/10.4236/jamp.2020.812220


F. Gao 
 

 

DOI: 10.4236/jamp.2020.812220 2977 Journal of Applied Mathematics and Physics 
 

the invariant solutions is 

( ) ,u xf t=  

then Equation (1.1) can be reduced as 
2 2 42 1 0.f f f′ − − − =                     (4.1) 

By solving the above equation, we can get: 

( ) ( )
( )

( )
( )

0 tan 0 tan
, .

1 0 tan 1 0 tan
f t f t

f t u x
f t f t
± ±

= =
 

 

When we take ( )0 1f = , we have 

1
1 tan ,
1 tan

tu x
t

+
=

−
 

and 

2
1 tan .
1 tan

tu x
t

−
=

+
 

Figure 1 and Figure 2 depict solutions 1u  and 2u . 
 

 

Figure 1. 1
1 tan
1 tan

tu x
t

+
=

−
. 

 

 

Figure 2. 2
1 tan
1 tan

tu x
t

−
=

+
. 
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4.2. 7V V u x
x u
∂ ∂

= = −
∂ ∂

 

The corresponding characteristic equations are 

d d d ,
0

x t u
u x
= =

−
 

the invariances are 
2 2, ,t x u+  

the invariant solution is given by 

( ) 2 ,u f t x= −  

then Equation (1.1) can be reduced as 

( ) ( )2 2 2 2 4 2 6 43 6 2 6 8 4 12 4 0.f x f x f f x f x x x f′ ′′− + − − + + − + =    (4.2) 

4.3. V V V u x
x t u
∂ ∂ ∂

= + = + −
∂ ∂ ∂7 2  

The corresponding characteristic equations are 

d d d ,
1

x t u
u x
= =

−
 

the invariance is 
2 2 ,z x u= +  

the invariant solution is given by 

( ) ,u xt f z= − +  

then Equation (1.1) can be reduced as 

( ) ( )4 22 2 2 0.xf t xf t′ ′− + − =                  (4.3) 

4.4. V V V x u
x t u
∂ ∂ ∂

= + = + +
∂ ∂ ∂6 2  

The corresponding characteristic equations are 

d d d ,
1

x t u
x u
= =  

the invariance is 

e ,tz x −=  

the invariant solution is given by 

( ) ,u xf z=  

then Equation (1.1) can be reduced as 

( )3 2 2 2 3 2 3 3 2 4 26 e 4 e 4 4 e 2 0.t t tx f f x f f xf f x ff xff f f′ ′′ ′ ′ ′ ′− + + + + + + =   (4.4) 
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4.5. V V V t
x t
∂ ∂

= + = +
∂ ∂2 4  

The corresponding characteristic equations are 

d d d ,
1 0

x t u
t
= =  

the invariance is 
22 ,z x t= −  

the invariant solution is given by 

( ) ,u g z=  

then Equation (1.1) can be reduced as 
2 48 16 8 1 0.g g g g′ ′ ′ ′′+ − + =                   (4.5) 

5. Conclusion 

This paper includes four parts: the first part is the introduction, which introduc-
es the background knowledge of the hyperbolic Monge-Ampère equation and 
Lie symmetry; in the second part, symmetry group is given; in the third part, optimal 
system of the symmetry is discussed; in the fourth part, we obtain group-invariant 
solutions. 
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