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Abstract 
In this paper, we study the error estimates for direct discontinuous Galerkin 
methods based on the upwind-biased fluxes. We use a newly global projection 
to obtain the optimal error estimates. The numerical experiments imply that 

2L  norms error estimates can reach to order 1k +  by using time discretiza-
tion methods. 
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1. Introduction 

The discontinuous Galerkin (DG) method was first proposed by Reed and Hill 
[1] to solve the neutron problems in 1973. With the development of DG, the di-
rect discontinuous Galerkin (DDG) method [2] was proposed by Liu to solve the 
second order partial differential equations. The main idea of DDG is to direct 
force solve the higher order equation so as to avoid the reduction of the equa-
tion.  

For the error analysis of DDG, we first got the linear result of the error esti-
mates can reach to order k in [3]. In [4], a series of special precision analyses 
were made for the numerical solution by using Fourier transform. The error es-
timates obtained by Liu can reach to order 1k +  for the linear and nonlinear 
convection diffusion equations by using the DDG method in [5]. In 2016, Cao 
[6] discussed the superconvergence of DDG method and obtained that the pro-
jection superconvergence at some points can achieve order 2k + . 
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In this article, we use first order numerical fluxes to the diffusion term and use 
the upwind-biased fluxes to the convective term. The upwind-biased fluxes was first 
proposed by Meng and Shu, they proved that the optimal error estimates of the li-
near hyperbolic conservation equations can obtain order 1k +  in semi-discrete 
and fully-discrete scheme in 2016 [7]. Meng extended the upwind-biased fluxes to 
the generalized alternating fluxes in [8].  

The main content of this paper: In Section 2, we introduce the semi-discrete 
scheme of second-order partial differential equation and solve the error esti-
mates problems by using the upwind-biased fluxes and first order numerical 
fluxes. In Section 3, we use the third-order RK time discretization methods for 
completing numerical experiments and obtain that the error estimates can reach 
order 1k + . 

2. The Method of DDG 

This paper considers the following convection diffusion equation 

0

, ( , ) [0, 2 ] (0, ],
( ,0) ( ), .
t x xxu u u x t T

u x u x x R
π+ = ∈ ×

= ∈
                  (1) 

For the convenience, we take the periodic boundary condition (0, ) (2 , )u t u tπ=  
into discussion.  

2.1. The Meshes of DDG 

Let us denote the computational interval [0, 2 ]I π= , consisting of cells 

1/2 1/2( , )j j jI x x− += , where 3/2 2/2 1/10 2Nx x x π+= < < < = . 
We define 1/2 1/2( ) / 2j j jx x x− += +  and 1/2 1/2j jh x x+ −= − , and then use 1/2jx−

+  
and 1/2jx+

+  to denote the left and right limits at the discontinuity point. In what 
follows, we define [ ]x x x+ −= −  and { } ( ) / 2x x x+ −= + . The following piece-
wise polynomials space is chosen as the finite element space 

2{ ( ) : ( ), 1, , },
j

k k
h h I jV V v L I v P I j N≡ = ∈ ∈ = ∣  

where ( )k
jP I  denotes the polynomials of degree up to 0k ≥  defined on cell 

jI . 

2.2. Function Spaces and Norms 

Define the broken Sobolev spaces as 
, 2 ,( ) { ( ) : ( ), 1, , }

j

l p l p
h I jW I u L I u W I j N= ∈ ∈ = ∣  

The norms of the broken Sobolev spaces with 2,p = ∞  are given by: 

,2

1
2 2

( ) ( ) ( )
1

( )l l l
jj j

N

W I H I H I
j

u u u
=

= = ∑  and , ,( ) ( )1
max

j j
l lW I W Ij N

u u∞ ∞
≤ ≤

= . 

In the case 0l = , we have ( )2 0( ) jj IL I Hu u= . 

2.3. The Semi-Discrete DDG Scheme 

The DDG scheme is defined as follows: find both hu  and hv  in k
hV , by inte-
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gration by parts and need some interface corrections, the Equations (1) can be 
written as 

( )   ( ) ( )

( ) ( ) ( ) [ ]( ) [ ]( )

11 1
22 2

1
1 12
2 2

0

1 1 0,
2 2

( ,0) ,

j j

j

j j

h h h h h h h h h ht x xI I jj j

h h h h h x h xx x xIj
j j

h h hI I

u v dx u v u v u v dx u v

u v u v dx u v u v

u x v dx u v dx

++ −

− +

−
+ −

+ − − −

+ + + + =

=

∫ ∫

∫

∫ ∫

   (2) 

Summing j we have 

( ) ( ) ( ) ( )( )
 )( )[ ] ) [ ]( )

1 1

1/21
0.

j j j

N N

h h h h h ht x x xI I I
j j

N

h h h h hx x jj

u v dx u v dx u v dx

u u v v u

= =

+=

+ − +

+ − + + =

∑ ∑∫ ∫ ∫

∑
        (3) 

Here hu  is the upwind-biased fluxes as:  (1 )h h h hu u u uθ θ θ− += = + − , where 
1
2

θ > . 

Following [2] we take 

 { } [ ]0
1( ) [ ] ( ) ( )h x h h x h xxu u u h u

h
β

β= + + ,  { }( ) ( )h x h xv v= . 

We define two operators 

 { }( ) 1
1 1 2

( , ) ( ) ( ) ( ) [ ] [ ] ( ) ,
j

N N

h h h x h x h x h h h xI jj j
A u v u v dx u v u v

+= =

= + +∑ ∑∫       (4) 



1
1 1 2

( , ) ( ) ( [ ]) .
N N

h h h h x h h jj j
F u v u v dx u v

+= =

= +∑ ∑               (5) 

So the Equation (3) can be written as 

( ) , ( , ) ( , ), .k
h t h h h h h h hu v A u v F u v v V+ = ∀ ∈              (6) 

We define energy norm and introduce a quantity 

22 20
1

1 1 2

[ ] , ,
j

N N
k

x hE I jj j
v v dx v v V

h
β

+= =

= + ∈∑ ∑∫              (7) 

( )
( )

1

2
1

1 1 2
[ 1,1] 1

(1) 2 (1)
sup ,

( )kv P

v v

f v d
ξβ

β
ξ ξ−∈ − −

− ∂
Γ =               (8) 

where ( )2 /jx x hξ = −  and 
( )

[ ]

u

uu
u

f u du
f udu

u

+

+−

−=∫ . 

According to [3] there exists (0,1)γ ∈  such that 
2( ,, ) , k

hEA v v v v Vγ≥ ∀ ∈                    (9) 

and ( )0 1β β> Γ . 
Lemma 1 For a quadratic entropy flux, it holds that 

( , ) 0.h hF u u ≤                         (10) 
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Proof 
A quadratic entropy flux satisfies [9] 

( )( ) ( )
( )ˆ ˆ, ( ) , [ ] 0,

[ ]

u
u u
u

f u du
f u u f u du f u u u

u

+

+ −

−
+ − + −

 
 − = − ≤ 
 
 

∫
∫      (11) 

Firstly we figure out that ( )
1/21 1

( )[) ](
j

N N
u

uh h x hI j
h

j
h

j
u u u uf d udx

+

−
+= =

= −∑ ∑∫ . Then 

using Equation (11) we get 
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u

F u u u u f

u
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+

−
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=
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2.4. The Stability of DDG 

Theorem 1 Consider the semi-discrete of DDG, it satisfies the following proper-
ties: 

1) Conservation of mass: 0
1

( , ) ( ) , 0
j

N

hI I
j

u t x dx u x dx t
=

= ∀ >∑∫ ∫ . 

2) There exists (0,1)γ ∈  such that 
2 22 0h h E

d u u
dt

γ≤ − ≤                     (12) 

3) The scheme is 2L  stable: 2 2
0 , 0h I

u u dx t≤ ∀ >∫ . 
Proof 

1) Taking 1hv =  into Equation (6) we have 
1

0
j

N

hI
j

d u dx
dt =

=∑∫ . Combining 

with Equation (2) with 1hv =  leads to the mass conservation. 

2) Taking h hv u=  into Equation (6), we obtain 
21 ( , ) ( , ).

2 h h h h h
d u A u u F u u
dt

+ =  

According Equation (9) and combining with Lemma 1 together prove the Eq-
uation (12). 

3) It follows from Equations (12) and (2) that  
2 2 2 2

0
1 1

( ,0) ( ,0)
j j

N N

h h hI I
j j

u u x u x dx u dx
= =

≤ = ≤∑ ∑∫ ∫ . 

2.5. The Global Projections 

For the DDG method using the upwind-biased fluxes, we need to construct a 
globally projection P. For 1( )u H I∈ , the projection P is defined as 

( )
 

2( ) 0, , 1, , ,

ˆ( ) ,
{ } { },

j

k
jI

x x

Pu u vdx v P I j N

Pu u u u
Pu u

−− = ∀ ∈ = …

− = −
=

∫
           (13) 
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with 1
2

θ > . 

We quote the lemma as follows [5] 

Lemma 2 For 1
2

θ >  and ( )0 1β β> Γ , the projection P holds that 

1/2 1,
h

ku Pu h u Pu h u Pu Ch +
∞ Γ

− + − + − ≤             (14) 

where C is independent of h and depends on 0 1, ,θ β β . 

2.6. The Error Estimates of DDG 

Theorem 1 Assume that u are the exact solutions, we take the upwind-baised 
fluxes and the finite element space k

hV , there hold the following error estimates 

2
1

( )
,k

h L Iu u Ch +− ≤                        (15) 

where C is independent of h and depends on 0 1, ,θ β β .  
Proof 
Firstly we set 

, ,he Pu u Pu u= − = −  

Since both the exact and numerical solutions satisfy the weak solution form, 
we have 

( ) ( ), ( , ) ( , ) , ( , ) ( , ).t te e A e e F e e e A e F e+ − = + −             (16) 

For the left side we use ( , ) 0F e e ≤  to obtain 

( ) 1 22
0

1, ( , ) ( , )
2

.t E

de e A e e F e e e dx e
dt

γ+ − ≥ +∫             (17) 

And for the right side using the definition of projection we have 

 { }( )
 { }( )

1
1 1 2

1
1 1 2

( , ) [ ] [ ]

          [ ] [ ] ,

j

j

N N

x x x xI jj j

N N

xxx xI jj j
e

A e e dx e e

dx e e

+= =

+= =

= + +

= − + −

∑ ∑∫

∑ ∑∫

   

  
           (18) 

Thus, we get 

1
1 1 2

( , ) ( [ ]) .
N N

x jj j
F e e dx e

+= =

= +∑ ∑                     (19) 

Summing ( , )A e  and ( , )F e  to obtain 

 { }( ) 1
1 1 2

( , ) ( , )= ) ( )[ ]( [ ] ,
j

xx

N N

x x xI jj j
A e F e e dx e ee

+= =

− − + + − −∑ ∑∫         (20) 

According Equation (13) the highest order is 2k − . We have 0
j

xI x xe d =∫  . 
And by the properties of projection we obtain  

 ( ) 0, { } { } { } 0x x xPu u Pu u= − = = − =  . 

So the right side of Equation (16) can be written as 

( )
2

22 2 21, ( , ) ( , )
2 2 2j j j

t t EI I I
e A e F e dx e dx dx eα γ

γ
+ − ≤ + + +∫ ∫ ∫     .  (21) 
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Combining Equation (17), Equation (21) and Lemma 2, we have 
22 2 2 2 .

j j

k
EI I

d e dx e e dx Ch
dt

γ ++ ≤ +∫ ∫                 (22) 

Finally by using the Gronwall inequality, we obtain Theorem 1. 

3. Numerical Experiments 

We present numerical experiments to validate the error estimates of DDG me-
thod based on upwind-biased fluxes. We adopt kP  elements on the uniform 
mesh, with 10,20,40,80N = . In order to reduce time errors, we use the third 
order Runge-Kutta method and compute until 1T = . 

For time discretization, we use TVD type third-order Runge-Kutta method 
[10]  

( ) ( )
( ) ( ) ( )( )

( ) ( )( )

1

2 1 1

2 2
1

, ,

3 1 , ,
4 4
1 2 , 0.5 .
3 3

n n

n

n
n

u u tR u t

u u u tR u t t

u u u tR u t t+

= + ∆

 = + + ∆ + ∆ 

 = + + ∆ + ∆ 

 

Consider the equation 

0( ,0) ( ) sin .
,t x xxu u u

u x u x x
+ =

= =
 

The exact solution of the equation is ( , ) sin( )tu x t e x t−= − .  
Table 1 shows that the error estimates of the convection diffusion equation by 

using the DDG method and the upwind-biased fluxes can reach to the order 
1k + , With the coefficients θ  changes, the results change together, so we can 

choose the best error results. 
 
Table 1. The 2L  error estimates until 1T = . 

0k =  0.5θ =  0.8θ =  1θ =  1.5θ =  

N error order error order error order error order 
10 1.16E−01 - 1.24E−01 - 1.32E−01 - 1.61E−01 - 
20 5.58E−02 1.05 5.90E−02 1.07 6.29E−02 1.07 7.74E−02 1.05 
40 2.75E−02 1.02 2.88E−02 1.04 3.06E−02 1.04 3.79E−02 1.03 
80 1.36E−02 1.01 1.42E−02 1.02 1.51E−02 1.02 1.87E−02 1.02 

1k =  0.5θ =  0.8θ =  1θ =  1.5θ =  

N error order error order error order error order 
10 2.29E−02 - 1.93E−02 - 2.25E−02 - 2.72E−02 - 
20 6.23E−03 1.86 5.93E−03 1.70 6.56E−03 1.78 7.41E−03 1.88 
40 1.72E−03 1.86 1.60E−03 1.89 1.69E−03 1.96 1.83E−03 2.02 
80 4.74E−04 1.86 4.36E−04 1.88 4.54E−04 1.90 4.85E−04 1.92 

2k =  0.5θ =  0.8θ =  1θ =  1.5θ =  

N error order error order error order error order 
10 3.07E−03 - 2.83E−03 - 2.72E−03 - 2.52E−03 - 
20 3.77E−04 3.02 3.63E−04 2.96 3.55E−04 2.94 3.38E−04 2.90 
40 4.51E−05 3.06 4.42E−05 3.04 4.37E−04 3.02 4.24E−04 2.99 
80 4.55E−06 3.31 4.49E−06 3.30 4.56E−06 3.26 4.48E−06 3.24 
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4. Conclusion 

Based on the idea of DDG method and the upwind-biased fluxes, this paper 
proves the stability of numerical solutions and the error estimates of convection 
diffusion equation can reach to the order 1k + . Numerical experiments show 
that the scheme is stability and the error estimates is accurate. 
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