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Abstract 
In this paper, an upper bound of fractal dimension of the compact kernel sec-
tions for the dissipative non-autonomous Klein-Gordon-Schrödinger lattice 
system is obtained, by applying a criterion for estimating fractal dimension of 
a family of compact subsets of a separable Hilbert space. 
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1. Introduction 

In recent years, great progress had been made in the study of non-autonomous 
infinite dimensional dynamical systems. See, e.g., [1] [2] [3] [4] [5] and the ref-
erences therein. Lattice dynamical systems (Hereafter LDSs) are infinite dimen-
sional ordinary differential equations, which were widely and deeply investigated 
in the past decades due to its wide application in many fields such as laser sys-
tems, material science, electrical engineering, biology, chemical reaction theory 
and etc. See, e.g., [6]-[17] and so on. Nowadays, the study of non-autonomous 
LDSs appealed to more and more researchers, but there are few papers for 
non-autonomous LDSs until now. See e.g., [18]-[23] and etc. 

As to the dissipative autonomous Klein-Gordon-Schrödinger (Hereafter KGS) 
lattice systems, many authors have studied them. For example, Abdallah in [24], 
Abounouh, Goubet and Hakim in [25], Yin and Zhou et al. in [26] investigated 
the existence, regularity, upper semicontinuity, Kolmogorov entropy of global 
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attractor and so forth. Meanwhile, the following dissipative non-autonomous 
KGS lattice system 
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+ + + − + − =



 

Z R  (1.1) 

was investigated by many researchers either. Specifically, the existence of uni-
form exponential attractors for the dissipative non-autonomous KGS lattice sys-
tem (1.1) with quasi-periodic symbols is studied in weighted spaces of infinite 
sequences by Abdallah in [27], simultaneously, some main results that the solution 
semigroup associated with such a system is Lipschitz continuous, α-contraction 
and satisfies the squeezing property, are obtained under some premise. Huang et 
al. in [28] proved the existence of a compact uniform attractor and obtained an 
upper bound of the Kolmogorov entropy of the compact uniform attractor. In 
addition, an upper semicontinuity of the compact uniform attractor is estab-
lished as well. Zhao and Zhou in [29] proved the existence of compact kernel 
sections and obtained an upper bound of the Kolmogorov entropy of the com-
pact kernel sections, but they didn’t study the fractal dimension of the compact 
kernel sections. In Zhou and Han [30], some sufficient conditions for the exis-
tence of a uniform exponential attractor for a family of continuous processes on 
separable Hilbert spaces and the space of infinite sequences are presented at first, 
and then the existence of uniform exponential attractors for the dissipative 
non-autonomous KGS lattice system (1.1) and for the dissipative non-autonomous 
Zakharov lattice system driven by quasi-periodic external forces in the spaces of 
infinite sequences is studied. However, what’s more important, so far to our 
knowledge, this problem that the fractal dimension of the compact kernel sec-
tions was not studied in Zhao and Zhou [29] is still an open topic till today. In 
view of this point, this paper is to estimate the fractal dimension of the compact 
kernel sections for the dissipative non-autonomous KGS lattice system (1.1). For 
our purpose, we first mention that as we all know, if   is a compact set in a 
metric space such that the fractal dimension of   is less or equal to 2n  for 
some n∈N , then there exists an injective Lipschitz mapping : n→ RF  
such that its inverse is Hölder continuous. In the sequel of this paper, we will 
present a criterion for estimating the fractal dimension of a family of compact 
subsets of a separable Hilbert space and then apply this criterion to obtain an 
upper bound of the fractal dimension of the compact kernel sections associated 
with the dissipative non-autonomous KGS lattice system (1.1). 

The remaining of this paper is organized as below. We give the preliminaries 
in Section 2. In Sections 3, a criterion is used to estimate the fractal dimension of 
the compact kernel sections for the dissipative non-autonomous KGS lattice 
system, and an upper bound is obtained. Lastly, Section 4 presents the conclu-
sions. 

2. Preliminaries 

To begin, we introduce 
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where Z , R  and C  denote the integral, real and complex numbers, respec-
tively. 

Write 2H =   or 2l , and endow H with the inner product and norm as be-
low  

( ) ( ) ( ) ( )2, , , , , ,m m m mm m
m

x y x y x x x x x y y H
∈ ∈

∈

= = ∀ = = ∈∑ Z Z
Z

 

where my  is the conjugate of my . Clearly, H is a Hilbert space. 
Define linear operators A and B as follows  

( ) ( ) ( )1 1 12 , , .m m m m m mm m m
Ax x x x Bx x x x x H− + + ∈

= − − = − ∀ = ∈
Z

 

For any ,x y H∈ , define a bilinear form by means of  

( ) ( ) ( ), , , ,x y Bx By x y
γ

γ= +  

where γ  as in the dissipative non-autonomous KGS lattice system (1.1) pre-
sented above. This bilinear form is obviously an inner product in Hilbert space 
H. 

In the end, we express Hilbert spaces 2
γ , 2
  and 2l  as  

( )( ) ( )( ) ( )( )2 2 2 2 2 2, , , , , , , , , , , .l lγ γ γ
= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅     

Set 
2 2 2 ,H lγ γ= × × 

 

and equip it with the following norm and inner product 

( )2 , , ;HH H
γγ γϕ ϕ ϕ ϕ= ∀ ∈  
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and denote by ( )2,b  R  and ( )2,b l R  respectively the set of continuous and 
bounded functions from R  into 2

  and 2l . 
Definition 2.1. A two-parameter family of mappings ( ){ },

t
U t

τ
τ

≥
 is called to 

be a process in a Hilbert space H , if  
1) ( ), : ,U t tτ τ→ ≥H H ; 
2) ( ) ( ) ( ), , , , ,U t s U s U t t sτ τ τ τ= ∀ ≥ ≥ ∈R ; 
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3) ( ),U Iτ τ =  (identity operator of H ), τ ∈R .  
Definition 2.2. A function ( ) ,s sϕ ∈R , is said to be a complete trajectory of 

the process ( ){ },
t

U t
τ

τ
≥

, if ( ) ( ) ( ), , ,U t t tτ ϕ τ ϕ τ τ= ∀ ≥ ∈R . The kernel   of 
the process ( ){ },

t
U t

τ
τ

≥
 consists of all bounded complete trajectories of 

( ){ },
t

U t
τ

τ
≥

, i.e.,  

( ) ( ) ( ) ( ) ( ){ }: , , , , , ,U t t t s sϕϕ τ ϕ τ ϕ τ τ ϕ= ⋅ = ≥ ∈ ≤ ∈ R R
H

 

and the kernel sections ( )s ⊂ H  of the kernel   at time s∈R  is  

( ) ( ) ( ){ }: .s sϕ ϕ= ⋅ ∈   

Definition 2.3. The fractal dimension dim f   of a compact set   in a 
metric space   is defined as follows, namely  

( )
( )0

ln ,
dim limsup ,

ln 1f

N
ε

ε
ε→

=


  

where ( ),N ε  is the minimal number of closed sets of radius ε  which cover 
the set  . 

The criterion below is directly cited from Zhou et al. [21]. 
Lemma 2.1. Let ( ){ },

t
U t

τ
τ

≥
 be a continuous process on a Hilbert space H  

and ( ){ }t
t

∈R
A  be a family of compact, negatively invariant (i.e.,  

( ) ( ) ( ),t U t τ τ⊂A A  for all ,t τ τ≥ ∈R ) subsets of H . Assume that 
1) there exists a uniform finite covering of closed subsets with diameter 2 of 
( )tA  for all t∈R , that is, there exists N   closed balls of   with diame-

ter 2 covering ( )tA  for all t∈R , where N   is independent of t; 
2) for any τ ∈R , there exists 0Γ >  and 0 1η< < , which are all indepen-

dent of τ ∈R  such that for ( ) , 1, 2ιω τ ι∈ =A , 
a) there exists 0L >  yields 

( ) ( )1 2 1 2, , ,U U Lτ τ ω τ τ ω ω ωΓ + − Γ + ≤ −
HH

 

i.e., ( ),U τ τΓ +  is Lipschitz on ( )τA ; 
b) there exists finite-dimensional orthoprojector P of H  satisfies  

( ) ( ) ( )( )1 2 1 2, , ;I P U Uτ τ ω τ τ ω η ω ω− Γ + − Γ + ≤ −
HH

 

then 

( ) 18 1 2dim dim ln 1 ln .
1 1f

L
P

η η

−+   
≤ ⋅ + ⋅   − +  

A  

3. Fractal Dimension of Compact Kernel Sections for  
Dissipative Non-Autonomous KGS Lattice System 

Consider the dissipative non-autonomous KGS lattice system with the initial 
conditions as vector form  

( )
( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2

,

, ,
, , ,m m mm m m

iw Aw i w uw f t

u u Au u w g t t
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α

β γ µ τ τ
τ τ τ τ τ τ

∈ ∈ ∈

− + + =
 + + + − = > ∈
 = = =



 

 

Z Z Z

R     (3.1) 
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where ( )m m
w w

∈
=

Z
, mw ∈C ; ( )m m

u u
∈

=
Z

, mu ∈R ; ( )m m m
uw u w

∈
=

Z
, 

( )22
m

m
w w

∈
=

Z
; ( ) ( )( )m m

f t f t
∈

=
Z

, ( ) ( )( )m m
g t g t

∈
=

Z
; i  is the imaginary 

numbers’ unit; α , β , γ  and µ  are positive constants;  
( ) 1 12 m m mmAz z z z− += − − , m∈Z , z  denotes u  or w . 

We set 

2, 0.
4

v u u βγλ λ
β γ

= + = >
+

  

Thus, (3.1) can be written as below  

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )T T

, , ;

, , , , , ;

G F t t

u v w u u u w

ϕ ϕ ϕ τ

ϕ τ τ τ τ τ τ λ τ τ τ

 + = >


= = + ∈



 R
   (3.2) 

where ( )T, ,u v wϕ = , v u uλ= + , ( ) ( ) ( )( )T2, 0, ,F t w g t iuw if tϕ µ= + − , and 

( )
0
0 .

0 0

I I
G A I I

iA I

λ
γ λ λ β β λ

λ

− 
 = + + − − 
 + 

 

From Zhao and Zhou [29], we can see, for given ( ) ( )( )m m
f t f t

∈
= ∈

Z
 

with 2H l= , ( ) ( )( )m m
g t g t

∈
= ∈

Z
 with 2H =  , the solution mappings of 

(3.2), that is,  
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )T T

, : , , , ,U t u v w H t u t v t w t Hγ γτ ϕ τ τ τ τ ϕ= ∈ → = ∈ ,  
t τ∀ ≥ , τ ∈R , generate a family of continuous processes ( ){ },

t
U t

τ
τ

≥
 in Hγ . 

Moreover, the family of processes ( ){ }, ,
t

U t
τ

τ τ
≥

∈R , possess a family of com-

pact kernel sections ( ){ }ττ
∈


R

, where ( )τ  is included in a uniformly 

bounded set { }2 2
0: HH R

γγϕ ϕ= ∈ ≤B  and satisfies  

( ) ( ) ( ), , ,U t t tτ τ τ τ= ∀ ≥ ∈  R , here  

( ) ( ) ( )
1 22 2 42

0 4
0

2sup sup sup1 ,t t t
f t g t f t

R
µ

δ α β α β
∈ ∈ ∈

  
  

= + +  
  

  

R R R      (3.3) 

( )0 2 2
min , , 0.

4 4 4

α βγδ δ δ
β γ β γ β

 = = > 
  + + +

        (3.4) 

In the sequel, we get an upper bound of the fractal dimension of the compact 
kernel sections ( )τ , which is generated by the process of the dissipative 
non-autonomous KGS lattice system (3.1). 

Suppose ( ) ( ) ( )ιϕ τ τ∈ , τ ∈R , then  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

T
, , ,t U t u t v t w tι ι ι ι ιϕ τ ϕ τ τ= = ∈ ⊆ B  for  

( ),t Tτ τ− ≥ B , 1, 2ι = . Set ( ) ( ) ( ) ( ) ( )1 2t t tφ ϕ ϕ= − , then by (3.2), we have  
( )( ) ( )( )

( ) ( ) ( ) ( )( )

1 2

T

, , ,
, ,

, , ,

G F t F t
t

φ φ ϕ ϕ
τ τ

φ τ ξ τ ζ τ ς τ

 + = − > ∈
 =



R         (3.5) 

where ( ) ( ) ( )TT, , , ,m m m mm m
φ ξ ζ ς ξ ζ ς φ

∈ ∈
= = =

Z Z
, and ( ) ( )1 2u uξ = − ,  
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( ) ( )1 2v vζ ξ λξ= + = − , ( ) ( )1 2w wς = − . 
Lemma 3.1. For any 0Γ > , ( ),U τ τΓ +  is Lipschitz on ( )τ , i.e.,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

0 0 01 2 1 2e ,
C R

H Hγ γ

δ
ϕ τ ϕ τ ϕ τ ϕ τ

− Γ
Γ + − Γ + ≤ −    (3.6) 

where 
2

0
2 1

3
C µ

β α
= +                        (3.7) 

0R  and 0δ  as in (3.3) and (3.4), respectively. 
For brief, we denote by ( ),⋅ ⋅Re  and ( ),⋅ ⋅Im  respectively the real part and 

imaginary part of inner product ( ),⋅ ⋅ . 
Proof. Taking the real part of the inner product ( ), Hγ

⋅ ⋅  of (3.5) with φ , we 
have  

( ) ( ) ( )( ) ( )( )( )1 2, , , , , .HH H
G F t F t

γγ γ

φ φ φ φ ϕ ϕ φ+ = −Re Re Re      (3.8) 

By simple computation, we get  

( ) ( ) 21 d, ,
2 d HH

t
t γγ

φ φ φ=Re                   (3.9) 

( ) ( )2 2 2 2

2 2 2
0

,
2

3 ,
2 4

H

H

G
γ

γ

γ

βφ φ δ ξ ζ ζ α ς

β αδ φ ζ ς

≥ + + +

≥ + +

Re
        (3.10) 

( )( ) ( )( )( )
( ) ( )( )

1 2

2 22 2 2 1 2

, , ,

3 1 .
2 4 2 12

H

H

F t F t

w w

γ

γ

ϕ ϕ φ

β α µζ ς φ
β α

−

 
≤ + + + + 

 

Re

      (3.11) 

Actually 

( )( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( ) ( )( )( )

1 2

2 21 2 1 1 2 2

1 2 1 1 2 2

, , ,

, ,

, ,

H
F t F t

w w i u w u w

w w i u w u w

γ

ϕ ϕ φ

µ ζ ς

µ ζ ς ς

−

 = − + − 
 

≤ + + −

Re

Re Re

Re

 

and 

( ) ( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( )

1 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2

,

,
2

,
2

1 ,
2

i u w u w

u u w w u u w w
i

u u w w

w w
γ

ς

ς

ς

ξ ς

−

 − + + + −
 =
  
 
 − +
 = −
  
 

≤ +
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Re

Im
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thus 
( )( ) ( )( )( )

( ) ( )( ) ( ) ( )( )

1 2

1 2 1 2

, , ,

1 .
2

H
F t F t

w w w w

γ

γ

ϕ ϕ φ

µ ζ ς ξ ς

−

≤ + + +

Re
       (3.12) 

Applying Young’s inequality to (3.12), it is obvious to know that (3.11) holds. 
Taking (3.8)-(3.11) into account, we see  

( ) ( ) ( ) ( ) ( )( )
( ) ( )

2 22 2 2 1 2
0

22
0 0 0

d 12
d 6

2 .

H H H

H

t t t w w
t

C R t

γ γ γ

γ

µφ δ φ φ
β α

δ φ

 
≤ − + + + 

 

≤ −

   (3.13) 

Set t τ= Γ + , 0Γ > , and then apply Gronwall’s inequality to (3.13), it is easy 
to see that (3.6) holds. The proof is completed. 

Lemma 3.2. There exists a finite dimensional orthoprojector P  of Hγ  
and ( )0,1η ∈  such that  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 2
0 0

1 2

, ,

.

H

H

I U U
γ

γ

τ τ ϕ τ τ τ ϕ τ

η ϕ τ ϕ τ

− Γ + − Γ +

≤ −

P

      (3.14) 

Proof. For this purpose, we choose an increasingly smooth function 
( ) [ ]( )1 , 0,1χ θ +∈ R , yielding  

( )
( )

( )

0, 0 1;
0 1, 1 2;

1, 2;

χ θ θ
χ θ θ

χ θ θ

= ≤ ≤
 ≤ ≤ ≤ ≤
 = ≥

 

and at the same time, there exists a constant 0χ  such that ( ) 0χ θ χ′ ≤ , 
θ +∀ ∈R . 

Let M be a fixed positive integer, set ( )m mm
m

m
M

ψ ψ χ φ
∈

∈

  
= =      

Z
Z

,  

( )T, ,m m m m m
φ ξ ζ ς

∈
=

Z
. Taking the real part of the inner product ( ), Hγ

⋅ ⋅  in (3.5) 

with ψ , we get  

( ) ( ) ( )( ) ( )( )( )1 2, , , , , .HH H
G F t F t

γγ γ

φ ψ φ ψ ϕ ϕ ψ+ = −Re Re Re    (3.15) 

Similar to Zhou [14], we have  

( ) ( )2 202 11 d, ,
2 d m HHH m

m
t M M γγγ

χ γ λ
φ ψ χ φ φ

γ∈

  + +
≥ + 

 
∑

Z
Re     (3.16) 

( )

( ) ( )

( )

2 2 2 202

2 2 202
0

,

3 2 2
2

3 2 23 ,
2 4

H

m m m m H
m

m m m HH
m

G

m
M M

m
M M

γ

γ

γγ

γ

φ ψ

χ γ λβχ δ ξ ζ ζ α ς φ
γ

χ γ λβ αχ δ φ ζ ς φ
γ

∈

∈

  + + ≥ + + + −  
  

  + + ≥ + + −  
  

∑

∑

Z

Z

Re

 (3.17) 
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and analogous to (3.11), we obtain  
( )( ) ( )( )( )

( ) ( )( )

1 2

22 2 1 22 0

, , ,

3 .
2 4 4

H

m m m m mH
m

F t F t

m C
w w

M

γ

γ

ϕ ϕ ψ

β αχ ζ ς φ
∈

−

  ≤ + + +  
  

∑
Z

Re

     (3.18) 

Combining (3.15)-(3.18), we get  

( ) ( )( )

2

22 2 21 20 0
0

d
d

2
2 .

2

m H
m

m m m m HH H
m

m
t M

m C
w w

M M

γ

γγ γ

χ φ

χ
χ δ φ φ φ

∈

∈

 
 
 
  ≤ − + + +  

  

∑

∑

Z

Z

 

From Zhao and Zhou [29], we know that for 0
0

0

0
2C
δ

η = > , there exist 

( ) ( )0 0 0 , , ,Tη τ τΓ = Γ ≥B B  and an integer ( )0 , ,M η τ ∈NB , which satisfies  

( )
( )

( )
( )



( )0 0

2 2 0 0 0

, , , , 0

31 1 ,
2 , , 10m m

m M m M

C
f g

Mη τ η τ

δ η
τ τ

α β η τ≥ ≥

+ + ≤∑ ∑
B B B

 

where  



( )22 4
0 00 0

0

5 4 42
,

RR
C

χ γ λµ χ
αβ γ

+ +
= +  

such that  

( ) ( ) ( )
2

0
0 0 0

2 0

, 1, 2, , , , .
2Hm M

t M M t
Cγ

ι δ
ϕ η ι η τ τ

≥

≤ = = ∀ ≥ − ≥ Γ∑ B  

Thus, for any ( )0 , ,M M η τ≥ B  and 0t τ− ≥ Γ , we have 

( ) ( ) ( )2 2 20
0

2 2

2d .
d m mH H H

m M m M
t t t

t Mγ γ γ

χ
φ δ φ φ

≥ ≥

≤ − +∑ ∑        (3.19) 

By (3.13), it can easily obtain  

( ) ( )( ) ( )
2

0 0 022 2
e .

C R t

H H
t

γ γ

δ τ
φ φ τ

− −
≤                (3.20) 

From (3.19) and (3.20), we get  

( ) ( ) ( )( ) ( )
2

0 0 022 2 20
0

2 2

2d e .
d

C R t
m mH H H

m M m M
t t

t Mγ γ γ

δ τχ
φ δ φ φ τ

− −

≥ ≥

≤ − +∑ ∑  

Furthermore, by Gronwall’s inequality, we have  

( ) ( )
( )( )

( )
2

0 0 0

0

2
2 20

2
2 0 0 0

2 e 1e .
2

C R t
t

m H H
m M
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δ τ
δ τ χ

φ φ τ
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− −
− −

≥

 − ≤ + ⋅
 −
 

∑  

Set 

( )
( )

( )( )

( ) ( )

2
0 0 0 0

0 0

2
0

0 2
0 0 0

0 0 0

2 e 1
max , , , 1 ,

1 e 2

, , , ,

C R

M M
C R

T

δ

δ

χ
η τ

δ

η τ τ

− Γ

− Γ

  −    = + 
− − 

  
Γ = Γ >

 B

B B

      (3.21) 
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and define ( ){ }2 | 0, 2m mM m
H H m Mγφ φ φ

∈
= = ∈ = >





Z , it is clear that  

( )4

2dim 4 1MH M= + < +∞


 . Let 2: MH Hγ → 

P  be the finite dimensional or-
thoprojector from Hγ  to 2MH



, then for 0t τ τ= Γ + > , (3.14) holds with  

( )2
0 0 0 0

0 0

1 2
2

0
2

0 0 0

2 e 10 e 1,
2

C R

M C R

δ
δ χ

η
δ

− Γ
− Γ

 − < = + ⋅ <
 −
 





        (3.22) 

where 0 0 0, ,R Cδ  and 0,M Γ  as in (3.3), (3.4), (3.7) and (3.21), respectively. 
The proof is completed. 

As a straightforward consequence of Lemma 2.1, Lemma 3.1 and Lemma 3.2, 
we get the following Theorem 3.1. 

Theorem 3.1. The compact kernel sections ( )τ  has a finite fractal dimen-
sion ( )dim f τ , which satisfies  

( ) ( )
( )2

0 0 0 0
1

4
8 1 e

2dim 4 1 ln 1 ln ,
1 1

C R

f M

δ

τ
η η

− Γ
−

  +      ≤ + ⋅ + ⋅ − +   
 
 



 

   (3.23) 

where 0 0 0 0, , , ,R C Mδ Γ  and η  as in (3.3), (3.4), (3.7), (3.21) and (3.22), re-
spectively. 

4. Conclusions 

This paper studied the fractal dimension of the compact kernel sections which is 
generated by the process of the dissipative non-autonomous KGS lattice system 
described in (3.1) by applying a criterion given in Lemma 2.1 cited directly from 
Zhou et al. [21], and then an upper bound of the fractal dimension is obtained in 
(3.23) presented in Theorem 3.1. 

Remark. We can use the argument in this paper to study the dissipative 
non-autonomous Klein-Gordon-Schrödinger lattice system defined on nZ  
with 2n ≥ , n∈N . In this case, operator A possesses the following decomposi-
tion  

1 2 ,nA A A A= + + ⋅⋅⋅ +  

meanwhile  

, , 1, 2, , ,j j j j j j H
A B B B B B K j n= = ≤ = ⋅⋅⋅  

where 
H⋅  means the norm in space H, K is a positive constant. Here, linear 

operator ( )2 2:  or jB H H H l→ =   and its adjoint operator jB  are defined by  

( ) ( ) ( )
0 0

0 0

, ,, , ,njk jk

m m

j j k m j j k m m mm m
k m k m

B z b z B z b z z z H− ∈
=− =−

= = = ∈∑ ∑ Z
 

where 1,2, ,j n= ⋅⋅⋅  and ( )1 2 1 1, , , , , , , n
jk j j j nm m m m m k m m− += ⋅⋅ ⋅ + ⋅⋅ ⋅ ∈Z . 
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