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Abstract 
We study the Peregrine rogue waves within the framework of Derivative 
Nonlinear Schrödinger equation, which is used to describe the propagation of 
Alfven waves in plasma physics and sub-picosecond or femtosecond pulses in 
nonlinear optics. The interaction and degeneration of two soliton-like solu-
tions and its relations for the breather solution have been analyzed. The Pe-
regrine rogue waves have been considered from the two kinds of formation 
processes: it can be generated through the limitation of the infinitely large pe-
riod of the breather solutions, and it can be interpreted as the soliton-like so-
lutions with different polarities. As a special example, a special Peregrine ro-
gue wave is generated by a breather solution and phase solution, which is 
given by the trivial seed (zero solution).  
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1. Introduction 

In the past years, rogue waves, commonly defined as gigantic waves appearing 
from nowhere and disappearing without trace, have attracted a lot of attention 
in deep ocean waves [1], optical fibers [2] [3], and water tanks [4] [5]. The ap-
pearance of rogue waves can be related to the modulation instability of the wave 
background [6] [7]. The focusing nonlinear Schrödinger (NLS) equation,  
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21 0,
2t xxiψ ψ ψ ψ ∗+ + =                      (1) 

is commonly considered as a classic model to describe rogue waves. As it has a 
rich of many exact solutions due to its integrability, the Peregrine soliton [8],  

2 2

1 21 4 e ,
1 4 4

itit
t x

ψ + = − + + 
                   (2) 

possesses a high amplitude and two hollows and is the prototype of the rogue 
waves, which “appear from nowhere and disappear without a trace” [9]. The Pe-
regrine soliton is usually be obtained from the breather solutions, such as the 
Kuznetsov-Ma breather [10] [11] and the Akhmediev breather [12], of the NLS 
equation through the limit of the infinitely large period of the breather soliton 
solutions. 

Considering the generalization of the type of NLS equation, the study of rogue 
waves in the Derivative Nonlinear Schrödinger(DNLS) equation has also caused 
a lot of research [13] [14] [15] [16] [17]. The DNLS equation  

( )2 0,t xx x
iq q i q q∗− + =                     (3) 

is originated from nonlinear optics and plasma physics. Here “*” denotes the 
complex conjugation, and subscript of x (or t) denotes the partial derivative with 
respect to x (or t). In nonlinear optics, the DNLS equation is used to describe the 
propagation of sub-picosecond or femtosecond pulses in optical fibers [18] [19] 
[20]. In plasma physics, the DNLS equation governs the evolution of small but 
finite amplitude Alfvén waves that propagate quasi-parallel to the magnetic field 
[21] [22]. Kaup and Newell [23] firstly obtained the one-soliton solutions under 
the vanishing boundary conditions by the inverse scattering transform. The 
N-soliton formula [24] for the DNLS equation under vanishing boundary condi-
tion was expressed by determinants. Some special soliton solutions [25] of the 
DNLS equation under nonvanishing boundary conditions were obtained, and 
the algebraic soliton was also given. The two-soliton solution of the DNLS equa-
tion under vanishing boundary conditions and nonvanishing boundary condi-
tions is introduced as the so-called “paired soliton” [26] [27], which is now re-
garded as one kind of breather solution. By introducing an affine parameter, 
Chen and Lam [28] revised the inverse scattering transform for the DNLS equa-
tion under nonvanishing boundary conditions, and then got the single breather 
solution, which can be reduced to the dark soliton and the bright soliton. The 
rogue waves [13] [14] [15] [16] [17] can be constructed from the degeneration of 
breather solutions, soliton solutions and phase solutions through the Darboux 
transformation (DT) [29] [30], which is a very powerful method in the study of a 
plethora of integrable nonlinear systems [31] [32] [33] [34]. The breather solu-
tions are characterizing solitons which propagate on an unstable finite back-
ground. The Peregrine rogue waves are generated through the limitation of the 
infinitely large period of the breather solutions. The multiple soliton solutions 
and phase solutions collisions have played a very important role in Peregrine 
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rogue waves formation. Collisions of many soliton-like structures can cause such 
exciting rogue wave phenomenon [35] [36]. In addition, the interest in two soli-
ton solution stems not only from soliton molecules [37] [38] [39] in modern 
nonlinear optics, but also from its application, such as the formation of the 
structure of soliton turbulence [40] in integrable systems. Similar soliton 
breathing behavior is not only limited to optical systems [41], but also can be 
found in nonlinear fluid waves [42]. Based on previous researches [35]-[41], it is 
very important to study the interaction of two solitons and their related struc-
tures. In this work, we provide the interaction and degeneration of two soli-
ton-like solutions and its relations for the breather solutions. At the same time, 
according to the specific reasons for the formation of Peregrine rogue waves, 
some classifications are given. 

The structure of this paper is as follows. In Section 2, we give the analytical 
form of the Peregrine rogue waves by DT from a periodic solution of the DNLS 
equation. Based on the explicit expression and their formation process, we can 
get the relations between breather solutions, phase solutions, soliton solutions 
and Peregrine rogue waves. In Section 3, The interaction and the degeneration 
mechanism of two soliton-like solutions and their key properties such as its rela-
tions for the breather solution are discussed. In the limitation 

11 cλ λ→  and  

22 cλ λ→  ( ( )1

21 2
2c c a c iλ = − − , ( )2

21 2
2c c a c iλ = − − − ), the two soliton-like  

solutions gradually degenerate into the Peregrine rogue waves under the condi-
tion 2 23 1

8 2
c a c< ≤ . Finally, we summarize our main results in Section 4. 

2. Analytical Form of Peregrine Rogue Waves 

The analytical form of Peregrine rogue waves rq  of the DNLS equation is 

( )( )
( )

( )( )
2

2
2

2 3 2 4 2 2 2 2 6 2 2 2 4

2 2 4

1 4 8 2 1 2
exp ,

1 2

1 8 12 8 6 2 8 1,

2 4 2 6 .

r

c R ic at iR R iR
q ia at x c t

R iR

R c a t c a t c a tx c at c ax c atx
R c at c x c t

− − + + −
= + −

+

= − + − − − + −

= + −

      (4) 

which includes both quasi-rational bright-dark solitons and Peregrine rogue 
waves [15]. After calculation and analysis, the Peregrine rogue waves can be ex-
pressed in the above form under the condition 23

8
c a< . The maximum ampli-

tude of 2
rq  occurs at ( 0x = , 0t = ) and is equal to 29c , and the minimum 

amplitude of 2
rq  occurs at (

( )2

2

3 2 3
32 12

c a
x

ac a c

− +
= −

−
,  

2

1 3
32 12

t
ac a c

=
−

) and (
( )2

2

3 2 3
32 12

c a
x

ac a c

− +
=

−
, 2

1 3
32 12

t
ac a c

= −
−

),  

and is equal to 0. Obviously, this quasi-rational solution is a Peregrine rogue 
wave. In Figure 1, we give the dynamic evolution diagram of Peregrine rogue 
waves under two different excitation mechanisms (see Figure 1(a) and Figure 
1(c)), and give the special Peregrine rogue waves (see Figure 1(b)) which can be  
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(a) 

  
(b)                                       (c) 

Figure 1. (Color online) The density plot of the rogue solution 2
rq  with the parame-

ters 1c = , (a) 1a = , (b) 1
2

a = , (c) 7
16

a = . The Peregrine rogue waves can be formed 

by the breather solutions, soliton-like solutions and phase solutions under the different 
parameters a. 
 
formed by two kinds of excitation mechanism. The specific formation mechan-
ism is described in more detail by the collisions of two soliton-like structures in 
the next part. 

3. The Interaction and Degeneration of Two Soliton-Like  
Solutions 

The DNLS equation [23] can be given by the integrability condition  
[ ], 0t xU V U V− + =  of the following Kaup-Newell (KN) Lax pair with the re-

duction condition r q∗= − . The Lax pairs corresponding to the DNLS equation 
can be given as follows:  

( )2 ,x J Q Uψ λ λ ψ ψ∂ = + =                    (5) 

( )4 3 2
3 2 12 ,t J V V V Vψ λ λ λ λ ψ ψ∂ = + + + =              (6) 

with 

0 0
, , ,

0 0
i q

J Q
i r

φ
ψ

ϕ
     

= = =     −     
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2

3 2 1 2

0
2 , , .

0
x

x

iq q r
V Q V Jqr V

ir r q
 − +

= = =  
+ 

 

Here λ , an arbitrary complex number, is called the eigenvalue (or the spectral 
parameter), and ψ  is called the eigenfunction associated with the eigenvalue 
λ  of the KN Lax pair. 

Next we give the general forms of the N-order soliton solutions [13] by using 
the determinant representation of the N-fold DT of the DNLS equation:  

[ ]
2
11 11 12
2 2
21 21

2 .nq q iΩ Ω Ω
= +
Ω Ω

                    (7) 

Here, 1) for 2n k= ,  
1 2 3

1 1 1 1 1 1 1 1 1
1 2 3

2 2 2 2 2 2 2 2 2
11

1 2 3

,

n n n

n n n

n n n
n n n n n n n n n

λ ϕ λ φ λ ϕ λϕ φ
λ ϕ λ φ λ ϕ λ ϕ φ

λ ϕ λ φ λ ϕ λ ϕ φ

− − −

− − −

− − −

Ω =





     



           (8) 

2 3
1 1 1 1 1 1 1 1 1

2 3
2 2 2 2 2 2 2 2 2

12

2 3

,

n n n

n n n

n n n
n n n n n n n n n

λ φ λ φ λ ϕ λϕ φ
λ φ λ φ λ ϕ λ ϕ φ

λ φ λ φ λ ϕ λ ϕ φ

− −

− −

− −

Ω =





     



 

1 2 3
1 1 1 1 1 1 1 1 1

1 2 3
2 2 2 2 2 2 2 2 2

21

1 2 3

,

n n n

n n n

n n n
n n n n n n n n n

λ φ λ ϕ λ φ λ φ ϕ
λ φ λ ϕ λ φ λ φ ϕ

λ φ λ ϕ λ φ λ φ ϕ

− − −

− − −

− − −

Ω =





     



 

2) for 2 1n k= + ,  
1 2 3

1 1 1 1 1 1 1 1 1
1 2 3

2 2 2 2 2 2 2 2 2
11

1 2 3

,

n n n

n n n

n n n
n n n n n n n n n

λ ϕ λ φ λ ϕ λ φ ϕ
λ ϕ λ φ λ ϕ λ φ ϕ

λ ϕ λ φ λ ϕ λ φ ϕ

− − −

− − −

− − −

Ω =





     



           (9) 

2 3
1 1 1 1 1 1 1 1 1

2 3
2 2 2 2 2 2 2 2 2

12

2 3

,

n n n

n n n

n n n
n n n n n n n n n

λ φ λ φ λ ϕ λ φ ϕ
λ φ λ φ λ ϕ λ φ ϕ

λ φ λ φ λ ϕ λ φ ϕ

− −

− −

− −

Ω =





     



 

1 2 3
1 1 1 1 1 1 1 1 1

1 2 3
2 2 2 2 2 2 2 2 2

21

1 2 3

,

n n n

n n n

n n n
n n n n n n n n n

λ φ λ ϕ λ φ λϕ φ
λ φ λ ϕ λ φ λ ϕ φ

λ φ λ ϕ λ φ λ ϕ φ

− − −

− − −

− − −

Ω =





     



 

Note that the eigenfunction k
k

k

φ
ψ

ϕ
 

=  
 

 associated with the eigenvalue kλ  
has the following properties [29] 

1) k kφ ϕ∗ = , k kλ λ∗= − ;  
2) k lφ ϕ∗ = , k lϕ φ∗ = , k lλ λ∗ = − , where k l≠ .  
Based on the N-order solutions of the DNLS equation by determinant expres-

sion, we can get  
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[ ] ( )
( )

( ) ( )
( )

2 22
1 2 1 2 1 1 2 2 1 22 1 1 2 2 1 2

2 2
2 2 1 1 2 1 2 2 1 1 2 1

2 ,q q i
λ λ φ φ λϕ φ λ φ ϕλϕ φ λ φ ϕ

λ φ ϕ λϕ φ λ φ ϕ λϕ φ

− −−
= +

− + − +
     (10) 

with 1φ  and 1ϕ  given by Equation (11). 
Set a and c to be two real constants, substituting ( )( )( )2expq c i ax c a at= + − +  

into the spectral problem Equation (5) and Equation (6), the eigenfunction kψ  [13] 
associated with kλ  is given by  

( )
( )
( )[ ] ( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ]

, ,
, ,

1 , , 1, 2 , , 1, 1 , , 2, 2 , , 2,
.

1 , , 2, 2 , , 2, 1 , , 1, 2 , , 1,

k k

k k

k k k k

k k k k

x t
x t

x t k x t k x t k x t k

x t k x t k x t k x t k

φ λ
ϕ λ

ϖ λ ϖ λ ϖ λ ϖ λ

ϖ λ ϖ λ ϖ λ ϖ λ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 
  
 
 + + − + −
 =
 + + − + − 

 (11) 

Here 

( )[ ]
( )[ ]

( )( ) ( )( )( )

( )( ) ( )( )( )

2 2
2

2 22
2

1 , , 1,
1 , , 2,

2 1exp
2 2

,
22 1exp

2 2 2

k

k

k

kk

k

x t k
x t k

s x t c a t
i ax c a at

s x t c a tia i s
i ax c a at

c

ϖ λ
ϖ λ

λ

λλ
λ

 
  
 
  + + − +  + + − +  
  =   + + − + − +  − + − +     

 

( )[ ]
( )[ ]

( )( ) ( )( )( )

( )( ) ( )( )( )

2 2
2

2 22
2

2 , , 1,
2 , , 2,

2 1exp
2 2

,
22 1exp

2 2 2

k

k

k

kk

k

x t k
x t k

s x t c a t
i ax c a at

s x t c a tia i s
i ax c a at

c

ϖ λ
ϖ λ

λ

λλ
λ

 
  
 
  + + − +  − + + − +  
  =   + + − + − −  − − + − +     

 

( )2 4 2 24 4 .k ks a c aλ λ= − − − −  

1) Breather solution: Under the choice one paired eigenvalue 1 1 1iλ α β= +  
and 2 1 1iλ α β= − +  and the eigenfunction kψ  associated with kλ  from a pe-
riodic solution, then the breather solution has the following form as the Equa-
tion (53) from [13]. We give that the breather solutions gradually become into 
Peregrine rogue wave solutions under the condition 21

2
c a<  in Figure 2. 

2) Two soliton-like solutions: Under the choice 1 1 2 2,i iλ β λ β= =  and the 
eigenfunction kψ  associated with kλ  from a periodic solution, then  

( ) ( )22 2 2 2
2 1 2 1 22

1 21 2 1 2
1 22 1 2 1

1 21 2 1 2

4 4
,sp

c
q c Re

g gg g g g
g gg g g g

β β β β

β ββ β β β
∗ ∗∗ ∗

∗ ∗

 
 − −
 = + −
   

−− −    
   

  (12) 

https://doi.org/10.4236/jamp.2020.812208


H. Q. Zhou et al. 
 

 

DOI: 10.4236/jamp.2020.812208 2830 Journal of Applied Mathematics and Physics 
 

  
(a)                                      (b) 

Figure 2. (Color online) The density plot of the breather solution 2
bsq  with the para-

meters 1a = , 1c = , 1
1
2

α = − , 1
1 ˆ
2

mβ = − + , (a) 1ˆ
5

m = , (b) 1ˆ
50

m = . When ˆ 0m → , 

the breather solution 2
bsq  gradually becomes a Peregrine rogue wave solution (i.e. 

Figure 1(a)). 
 

( )( )

( )( )

2
2 2

2 2

2 12 1 cosh 2
2 2

1sinh 2 ,
2

i
i i i

i

i
i i

i

a
g h x t c a t

c

h
i h x t c a t

c

β
β

β

β
β

 +  = + − + − +   
  

 + − + − + 
 

 

( )22 2 24 2 , 1,2.i i ih c a iβ β= − + =  

In the l imitat ion ( )2
1

1 2
2

c a cβ → − −  and  ( )2
2

1 2
2

c a cβ → − − − ,  

( ( )1

21 2
2c c a c iλ = − − , ( )2

21 2
2c c a c iλ = − − − , the values of spectral para-

meters are the zero point of ih  and give the soliton-like solutions with different 
polarities), the two soliton-like solutions 

2
spq  gradually degenerate into the  

Peregrine rogue waves (see in Figure 3) under the condition 2 23 1
8 2

c a c< < .  

Note that a single soliton-like solution is given in the Equation (49) from [13]. 
From the expression of a single soliton-like solution, we can get the bright and 
dark soliton and phase solution directly. The expressions of the two solitons are 
complex, so the complex relations are obtained: two solitons, two phase solu-
tions and soliton-phase solutions. 

3) A special example: Based on the above two mechanisms, we found that 
21

2
c a=  is boundary points. In order to better understand this state, we con-

sider the equivalent solution in this case (when 21
2

c a= , the seed solution has  

the following form: 2 41 1exp
2 4

q c i c x c t  = −  
  

, which can be given by (13) 

with 1n = ). 

11 12
2

11

2 ,msq i ∗

Ω Ω
=

Ω
                       (13) 
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(a)                                      (b) 

Figure 3. (Color online) The density plot of the two soliton-like solution 
2

spq  with the 

parameters 7
16

a = , 1c = , 1
1 1 ˆ2
2 8

mβ = − − + , 2
1 1 ˆ2
2 8

mβ = − + + , (a) 1ˆ
5

m = , (b) 

1ˆ
50

m = . When ˆ 0m → , the two soliton-like solution 2
bsq  gradually becomes a Pere-

grine rogue wave solution (i.e. Figure 1(c)). 
 

2
1 1 1 1 1
2

11 2 2 2 2 2
2
3 3 3 3 3

,
λ ϕ λ φ ϕ
λ ϕ λ φ ϕ
λ ϕ λ φ ϕ

Ω =  

3
1 1 1 1 1
3

12 2 2 2 2 2
3
3 3 3 3 3

,
λ φ λ φ ϕ
λ φ λ φ ϕ
λ φ λ φ ϕ

Ω =  

( ) ( )2 4 2 4
1 1 1 1 1 1 1exp 2 , exp 2 , ,i x t i x t ihφ λ λ ϕ λ λ λ   = + = − + =     

( ) ( )2 4 2 4
2 2 2 2 2 2 2exp 2 , exp 2 , ,ki x t i x t il sφ λ λ ϕ λ λ λ   = + = − + = +     

( ) ( )2 4 2 4
3 3 3 3 3 3

3

exp 2 , exp 2 ,

, .k k

i x t i x t

il s s R iR

φ λ λ ϕ λ λ

λ

   = + = − +   
= − ∈ 

 

A special Peregrine rogue generated by a breather solution and phase solution 
(see Figure 4), which is given by the trivial seed (zero solution). 

Based on the above analysis, we can get the relations between breather solu-
tions, phase solutions, soliton solutions and rogue waves. The condition 

23
8

a c>  on (c, a)-plane in Figure 5 can give the generation of the Peregrine 
rogue waves, so we can generate the Peregrine rogue waves from the degenera-
tion of three kinds of solutions, namely, the breather solutions, the soliton-like 
solutions and the phase solutions. 

4. Summary 

In the paper, we provide the formation mechanism of Peregrine rogue waves of 
the DNLS equation, which is used to describe the propagation of Alfven waves in 
plasma physics and sub-picosecond or femtosecond pulses in nonlinear optics.  
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(a)                                (b) 

    
(c)                                (d) 

Figure 4. (Color online) The density plot of the mixed solution 2
msq  (the solution in-

cludes breather solution and phase solution.) with the parameters 1 1,
2 2

l h= − = − , (a) 

1
1
5

s = , (b) 1
1
50

s = , (c) 1
1
5

s i= , (d) 1
1
50

s i= . When ˆ 0m → , the mixed solution 

2
msq  gradually becomes a Peregrine rogue wave solution (i.e. Figure 1(b)). 

 

 

Figure 5. (Color online) Under the condition 21 0
2

a c− >  on ((c), (a))-plane, the Pere-

grine rogue waves can be given by the degeneration of breather solutions, but under the 

condition 21 0
2

a c− <  on ((c), (a))-plane, the Peregrine rogue waves can be given by the 

degeneration of soliton-like solutions (their related structures of soliton and phase solu-

tions). Note that under the condition 21 0
2

a c− =  on ((c), (a))-plane, the Peregrine ro-

gue waves can be given by the degeneration of the breather (phase) solutions. The curve 

(red, long dash) is 21 0
2

a c− = , but the curve (blue, solid) is 23 0
8

a c− = . 

https://doi.org/10.4236/jamp.2020.812208


H. Q. Zhou et al. 
 

 

DOI: 10.4236/jamp.2020.812208 2833 Journal of Applied Mathematics and Physics 
 

The bound state of two soliton-like solutions is figuratively illustrated in Figure 
2 and Figure 3. In one case, the breather solution is the bound state periodically 
oscillates. In another case, the bound state of two soliton-like solutions has the 
collision of two solitons. Collisions of two soliton-like structures can cause such 
exciting rogue wave phenomenon. These results are helpful to the realization 
and observation of physical experiments. 
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