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Abstract 
We analyze the particular behavior exhibited by a chaotic waves field con-
taining Peregrine soliton and Akhmediev breathers. This behavior can be as-
similated to a tree with “roots of propagation” which propagate randomly. 
Besides, this strange phenomenon can be called “tree structures”. So, we 
present the collapse of dark and bright solitons in order to build up the above 
mentioned chaotic waves field. The investigation is done in a particular non-
linear transmission line called chameleon nonlinear transmission line. Thus, 
we show that this line acts as a bandpass filter at low frequencies and the im-
pact of distance, frequency and dimensionless capacitor are also presented. In 
addition, the chameleon’s behavior is due to the fact that without modifying the 
appearance structure, it can present alternatively purely right- or left-handed 
transmission line. This line is different to the composite one.  
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1. Introduction 

Metamaterials are materials which have both the permeability ( µ ) and the 
permittivity ( ε ) parameters are set negative at the same frequency [1] [2]. This 
kind of materials is often called double-negative material or left-handed meta-
materials [1] [2]. This class of materials has negative refractive index. So, they 

How to cite this paper: Essama, B.G.O., 
Essiane, S.N., Biya-Motto, F., Nnanga, B.M.N., 
Shabat, M. and Atangana, J. (2020) Peregrine 
Soliton and Akhmediev Breathers in a 
Chameleon Electrical Transmission Line. 
Journal of Applied Mathematics and Phys-
ics, 8, 2775-2792. 
https://doi.org/10.4236/jamp.2020.812205  
 
Received: April 29, 2020 
Accepted: December 4, 2020 
Published: December 7, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2020.812205
https://www.scirp.org/
https://doi.org/10.4236/jamp.2020.812205
http://creativecommons.org/licenses/by/4.0/


B. G. O. Essama et al. 
 

 

DOI: 10.4236/jamp.2020.812205 2776 Journal of Applied Mathematics and Physics 
 

are not found in nature but they can be artificially designed [2]. At microwave 
frequencies transmission lines have been proposed [3], a special left-handed 
transmission line [4], and composite right/left-handed transmission line [5]. 

The analysis of extreme wave events has formed one of the most useful points 
of intense theoretical investigations and physical applications [6] [7]. Several re-
searches and diverse experiments have been done in order to observe the emer-
gence of extreme events in many physical domains. Among them, we have non-
linear optics [8], modelocked lasers [9], hydrodynamics [10], and plasmas [11]. 
The most known rogue events are Peregrine solitons [12], Kuznetsov-Ma 
breathers [13] [14], and Akhmediev breathers [15]. 

One of the most significant rogue waves mechanism of generation is modula-
tion instability which can be seen as a fundamental property of many nonlinear 
dispersive systems [16]. This phenomenon is associated with the growth of pe-
riodic perturbations on a continuous-wave background [16]. In optics, modula-
tion instability comes from noise results in a series of high-contrast peaks of 
random intensity [17] [18]. These localized peaks are compared to ocean rogue 
waves [19]. More so, significant researches on modulation instability are been 
done in some domains such as nonlinear optics [20] [21], hydrodynamics [22], 
and electrical transmission lines [23]. 

However, there exists a strange phenomenon directly related to the investiga-
tion of extreme events. It appears when a chaotic waves field is generated by 
modulation instability. This expanding structure corresponds to the so-called 
“tree structure” [24]. Some investigations have been done in literature concern-
ing this phenomenon. Among them, there is the “Christmas tree” which appears 
during the formation of Peregrine waves [25]. Such phenomenology has been 
firstly observed and extensively analyzed in [26], which is related to the umbili-
cal gradient catastrophe. It has been also shown that Raman effect can induce 
the appearance of particular “tree structure” with roots which can be called 
“roots of propagation” [24] [27]. Authors else such as Dudley [28], sustains that 
such “tree structures” correspond to signatures of analytic nonlinear Schrödin-
ger equation solutions in chaotic modulation instability [24]. Furthermore, to 
the best of our knowledge, the characterization of electromagnetic wave behavior, 
the description of internal excitation leading to specific rogue waves generation, 
the so-called tree structures corresponding to rogue events signature in a cha-
meleon transmission line, have been least reported. 

In this paper, based on the work of Fukushima et al. [29], Marquié et al. [23] 
and that of Togueu et al. [30], we model the electromagnetic wave behavior by a 
nonlinear Schrödinger equation. Thus, this equation includes second-order dis-
persion and cubic-nonlinearity in a modulable transmission line. The coeffi-
cients of this equation are expressed as function of frequency. This electromag-
netic wave is analyzed when right-handed behavior and left-handed one alterna-
tively exhibited in the line. The chameleon’s behavior of this particular line is 
verified. Furthermore, some specific conditions allowing the line to act as a filter 
are presented at low frequencies. More so, we also present internal and physical 
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conditions leading to special rogue events such as the so-called tree structures. 
We demonstrate that the line can support dark and bright soliton solutions. 
Moreover, collective coordinates technique and the Gaussian ansatz function are 
used [31], in order to characterize the light pulse. 

The paper is organized as follows. In Section 2, we present the logarithmic 
nonlinearity for the capacitance, the voltage propagation equations and the non-
linear Schrödinger equation model. The coefficients of this last equation are 
plotted in order to improve the comprehension of strange phenomena studied. 
Thereafter, we apply the collective coordinates technique in order to obtain the 
collective coordinate equations of motion. In Section 3, we apply numerical ex-
periments in order to investigate numerically the collective coordinates and 
present the results. The outcomes are summarized in Section 4. 

2. Mathematical Description of the Model 
2.1. Preliminaries 

The model under consideration represents a modulable nonlinear electrical 
transmission line where elementary cell is illustrated in Figure 1 [29] [30]. 

Each unit cell, such as the nth one, contains a linear inductor 1L  in parallel 
with a linear capacitor 1C  in the series branch and a linear inductor 2L  in pa-
rallel with a nonlinear capacitor ( )nC V  in the shunt branch. Here we assume 
that the logarithmic nonlinearity for the capacitance is given by [32] [33]: 

( ) 0 0

0

ln 1 n
n

n

V C V
C V

V V
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                   (1) 

where 0V  and 0C  take constant values. 
Applying Kirchhoff’s laws to the circuit model, we can obtain the following 

voltage propagation equations [30]: 
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Figure 1. Model for the unit-cell circuit. 
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where 1
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CC
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=  and 2
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1
L C

ω = . Equation (2) shows that an  

additional dispersion coefficient rC  is considered on the line. Thereafter, the 
numerical simulations will consider the following parameters [23] [30]: 1 680 HL = µ , 

2 470 HL = µ , 0 470 pFC =  and 0 3.9 VV = . 
The capacitor 1C  is considered as a free parameter with physically accep-

tance value [30]. According to the investigations done in [30], the parameter rC  
will impose the behavior of the transmission line. So, they show that when  

2

1
r

LC
L

<  we have the right-handed behavior, but for 2

1
r

LC
L

> , the transmission 

line exhibits left-handed behavior. It is important to note that a rapid calculation 

leads to 2

1

0.691
L
L

≈ . This situation justifies the name “Chameleon transmission 

line” because the line changes its behavior but does not modify its external as-
pect. 

2.2. Theoretical Model for Electrical Transmission Line 

The nonlinear Schrödinger equation inspired from [30], but reformulated in 
terms of slowly varying envelope of the electric field ( ),A Z τ  as follows [34]: 

2
22

22
A Ai i A A
Z τ

Θ∂ ∂
= − + ϒ

∂ ∂
                     (3) 

where ( ),A Z τ  is the slowly varying envelope of the electric field at position 

( )gZ n V tε= −  and at time 2tτ ε=  [30]. Here ε  is a positive and small parame-
ter. The terms 2Θ  and ϒ  are second-order dispersion and cubic-nonlinearity, 
respectively [35] [36] [37] [38]. These above mentioned coefficients are defined as 
follows [30]: 
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where the wave number k is taken in the Brillouin zone. This dispersion relation 
admits two cutoff frequencies at 10 rad Cellk −= ⋅  and 1rad Cellk −= ⋅π  [30]. 
The group velocity is given by [30]: 
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                     (6) 

The group velocity gV  plays a key role in the nature of waves. 

2.3. Collective Coordinate’s Theory 

The collective coordinate’s technique is a great method of characterization of a 
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light pulse intensity profile using ansatz functions [39] [40]. The variational eq-
uations are essential to obtain a good description of the light pulse [35] [36]. 

2.3.1. Conventional Gaussian Ansatz Function 
For our variational analysis, the desired form of the Gaussian ansatz function f is 
given by [37] [38]: 

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )( ) ( )

2
22

1 4 2
3

5 2 6

1, exp
2

X Z
f Z X Z iX Z X Z

X Z

iX Z X Z iX Z

τ
τ τ

τ

  −
= − + −    


+ − +


    (7) 

where 4
1 2 3 5 6, , 2 log 2 , , ,

2
XX X X X X
π

 are the conventional collective coordi-
nates often used to represent the pulse amplitude, temporal position, full width 
at half-maximum (FWHM) of peak power, chirp, frequency shift and phase, re-
spectively [41] [42]. 

2.3.2. Collective Coordinate Equations of Motion. 
Then, the equations of motion obtained from Bare approximation [39] [40], are 
given by the following expressions [31] [42]: 

( ) ( )1 1 4 2
1
2

X Z X X Z= Θ                      (8) 

( ) ( )2 5 2X Z X Z= − Θ                       (9) 
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( )5 0X Z =                          (12) 
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           (13) 

Equations (8)-(13) present the variational equations which are function of the 
coefficients ( )2 ZΘ  and ( )Zϒ . All these equations are influenced by ( )2 ZΘ  
except the dynamics of frequency shift, ( )5X Z , which is only closed to zero. 
Furthermore, the quantity ( )Zϒ  is only acted on ( )4X Z  and ( )6X Z . 
However, the most important point is that all the variational equations are 
strongly dependant on frequency ω  [37] [38]. 

3. Numerical Experiments 
3.1. Initial Conditions at the Beginning of the Propagation 

The initial conditions at the beginning of the propagation are the same com-
pared to those used in [35] [36] [37] [38]. For the analysis of our optical system 
the wave number is taken as 13 rad Cellk −= ⋅ . Otherwise, two lengths of propa-
gation will be taken such as 243 10 mZ −= ×  and 610 mZ −= . Figures 2-4 show  
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Figure 2. Frequency dependencies of the coefficients of Equation (3). (a) Second-order 
dispersion: (a) 0rC =  and (b) 0.3rC = . Cubic-nonlinearity: (c) 0rC =  and (d) 

0.3rC = . 
 

 

Figure 3. Frequency dependencies of the coefficients of Equation (3). Product of disper-
sion and nonlinearity (a) 0rC =  and (b) 0.3rC = . 

 
frequency dependencies of coefficients of Equation (3) for 0rC = , 0.3rC = , 

1rC = , 1.5rC =  and 10rC = . These figures present the variations of 
second-order dispersion and that of cubic-nonlinearity. In addition, the varia-
tions of the product of these two effects are also included. According to the col-
lective coordinate representation, the solid red curve corresponds to the dynam-
ics of collective coordinates obtained from bare approximation (Gaussian Ansatz 
function) as depicted in Figure 5(a) and Figure 5(b). Further, the dashed black 
curves represent the collective coordinates coming from minimization. Thus, the 
dotted green curve gives the residual field energy (RFE) [35] [36] [37] [38].  
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Figure 4. Frequency dependencies of the product of dispersion and nonlinearity coeffi-
cients for Equation (3): (a) 1rC = . (b) 1.5rC = ; (c) 10rC = . 

 

 

Figure 5. Chaotic wave’s field for 0rC = . Dynamic of collective coordinates: (a) 
0.25 rad sω = ; (b) 0.35 rad sω =  [Frequency ranges considered: 0 0.78 rad sω≤ ≤  

and 0.78 rad sω >  at 243 10 mZ −= × ]. 

 
Figure 6(a) and Figure 6(b) represent full numerical equations [35] [36] [37]. 
Moreover, Figure 6(c) and Figure 6(d) show 2D full numerical equations [24] 
[27] [28]. 

3.2. Introduction of Right-Handed Propagation 

The right-handed behavior occurs on the line when 0 0.691rC≤ <  [30]. Con-
sequently, two cases will be investigated known as 0rC =  and 0.3rC = . 
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Figure 6. Chaotic wave’s field for 0rC = . Full equations: (a) 0.25 rad sω = ; (b) 
0.78 rad sω = . 2D Full equations: (c) 0.25 rad sω = ; (d) 5 rad sω =  [Frequency 

ranges considered: 0 0.78 rad sω≤ ≤  and 0.78 rad sω >  at 243 10 mZ −= × ]. 

3.2.1. Akhmediev-Peregrine Waves Field Generation at Low  
Frequencies 

The first considered case is 0rC =  at low frequencies 0 0.78 rad sω< <  for 
243 10 mZ −= × . When the frequency is given such as 0.25 rad sω =  we obtain 

25 2 1
2 0.5 10 ps m−Θ = − × ⋅  and 1 10.025 W m− −ϒ = − ⋅  as depicted in Figure 2(a) 

and Figure 2(c). Besides, the product 2 0Θ ϒ > , so the nonlinear Schrödinger 
model supports bright soliton solution as seen in Figure 3(a). The strong nega-
tive nonlinearity acts on the weak negative dispersion in order to provoke the 
multiplication of several broken points presented in Figure 5(a). In fact, all the 
dynamic of collective coordinates coming from minimization are broken at 

240.5 10 mZ −= × . This situation reveals that a strange phenomenon acts in the 
system. So, the bright soliton has lost its stability. Besides, the residual field 
energy increases and approaches 100 percent. This information suggests an in-
crease of internal distortions as depicted in Figure 5(a). The strong negative 
nonlinearity continues to act on the weak negative dispersion in order to induce 
the fragmentation of the bright soliton into several grains of activity [43]. Hence, 
once grains activated, the spatial inhomogeneity acts as a nonlocal coupling that 
provides a coherent build-up of an extreme event. These monster events contin-
ue to undergo distortions originating from the strong negative nonlinearity. Be-
sides, this trouble situation provokes the multiplication of strong harmonic 
waves with several residual wave motions at adjacent sideband frequencies [16] 
[22] [43]. This situation induces the modulation of residual waves. Hence, this 
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perturbed situation provokes the generation of a chaotic waves field containing 
one Akhmediev-Peregrine soliton [44] (left) and several Akhmediev breathers 
(right) [15] [43], as depicted in Figure 6(a). 

3.2.2. Tree Like-Structures at Low Frequencies 
The observation of 2D full equation of this perturbed waves field shows the 
fragmentation of the bright soliton as depicted in Figure 6(c). Besides, the col-
lapse of this wave leads to a strange phenomenon. In fact, we observe a strange 
structure similar to a tree with the multiple roots [25]. Those roots propagate 
randomly in the optical system as seen in Figure 6(c). Then, this structure can 
be assimilated to a tree with many roots which can be called roots of propagation 
[25]. Besides, the most colored point in the left part corresponds to the Akhme-
diev-Peregrine wave. In the second part, the black big points stand for the Akh-
mediev waves train in which the amplitude waves reach 0.75 × 1026 W as illu-
strated in Figure 6(c). The average black points also correspond to the average 
Akhmediev waves train. Their amplitudes approach 0.5 × 1026 W. Moreover, the 
very small black point stands for the most little Akhmediev waves train in which 
the waves amplitude reaches 0.25 × 1026 W as depicted in Figure 6(c) and Fig-
ure 6(e). Further, similar rogue signatures have been studied. Among them we 
have the researches concerning specific tree structures called Christmas tree 
[25]. Consequently, this expanding structure, which is called Christmas tree ap-
pears to emerge past the formation of the original Peregrine peak [25]. As the 
structure expands, progressively at the peak emergence times more localized 
peaks arise. Furthermore, this strange tree structure has been also investigated in 
Kundu-Eckhaus equation by Bayindir [27]. Indeed, it has been assimilated to a 
chaotic waves field induced by modulation instability [27]. Otherwise, a similar 
situation has also been presented in optical field by Dudley et al. [28]. In fact, 
tree structure is assimilated to signatures of analytic nonlinear schrödinger equ-
ation solutions in chaotic modulation instability. Hence, the structure obtained 
is similar to a density map [28]. Then, according to previous investigations [25] 
[27], each rogue event has a particular signature corresponding to a specific tree 
structure. So, we present here the particular signature of a chaotic waves field 
containing Akhmediev-Peregrine waves, Peregrine waves and Akhmediev wave 
trains. 

3.2.3. Soliton Stability at High Frequencies 
We consider 0rC =  and the propagation at high frequencies is obtained for 

0.78 rad sω >  for 243 10 mZ −= × . When the frequency increases from  
0.25 rad sω =  to 0.35 rad sω = , the strong negative nonlinearity continues to 

acts on the weak negative dispersion. This situation leads to the broken points 
exhibited by the dynamic of collective coordinates originating from minimiza-
tion as illustrated in Figure 5(b). Indeed, this dynamics of collective coordinates 
begins to beak at 242.5 10 mZ −= × . This information denotes that perturbations 
least act in the system since they only influence the end of the propagation as 
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depicted in Figure 5(b). If the frequency continues to increase from 
0.35 rad sω =  to 0.78 rad sω = , the bright soliton gains in stability as de-

picted in Figure 6(b) where the robustness of the pulse is presented. In fact, the 
strong negative nonlinearity and the weak negative dispersion are completely 
compensated [24], and have built up a robust wave. Despite the action of per-
turbations depicted in Figure 5(b), the stability of bright soliton is totally res-
tored at high frequency as shown in Figure 6(d) by the signature of the stable 
soliton. Moreover, similar soliton light pulse stability was recently investigated 
in ultracold bosonic seas by Charalampidis [25]. 

3.3. Second Case of Right-Handed Propagation 

The second case of right-handed behavior of the electrical line is considered for 
0.3rC =  [30]. When the frequency is considered such as 0.15 rad sω =  the 

second-order dispersion coefficient has a weak negative value −1024 ps2∙m−1 and 
the cubic-nonlinearity presents a strong positive value 1.5 × 10−3 W−1∙m−1 as de-
picted in Figure 2(b) and Figure 2(d). The product of these two effects is 

2 0Θ ϒ <  as illustrated in Figure 3(b). Hence, at low frequencies the dark soli-
ton propagates. The soliton light pulse regains its stability as seen in Figure 7(a). 
Besides, it appears that the weak negative value of dispersion is completely com-
pensated the strong positive value of the nonlinearity in order to build-up the 
dark soliton depicted in Figure 7(a). This stability is maintained at high fre-
quencies as illustrated in Figure 7(b) for 0.15 Mrad sω = . It clearly appears 
that the introduction of 0.3rC =  modifies the behavior of the line at low fre-
quencies. In fact, the line acts as a bandpass filter [30], which totally cleans and 
cancels the distortions acting at low frequencies as depicted in Figure 7. 

3.4. Introduction of Left-Handed Propagation 

The left-handed behavior occurs when 0.691rC > . Three cases will be investigated 
corresponding to 1rC = , 1.5rC =  and 10rC = . We consider the first mentioned 
case of left-handed behavior known as 1rC = . Figure 4(a) presents 2 0Θ ϒ <  
 

 

Figure 7. Soliton light pulse propagation for 0.3rC = . (a) Full equations 0.15 rad sω = ; 
(b) 2D Full equations 0.15 Mrad sω =  [Frequency ranges considered: 0 0.78 rad sω≤ ≤  

and 0.78 rad sω >  at 243 10 mZ −= × ]. 
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justifying the propagation of dark soliton. The dynamic of collective coordinates 
originating from Gaussian Ansatz practically reconstruct the behavior exhibited 
by that coming from minimization as depicted in Figure 8(a). Despite some 
disparities exhibited by those two dynamic, residual field energy approaches 0.02 
percent. This fact suggests that the reconstruction is good as depicted in Figure 
8(a) revealing the robustness of the soliton light pulse. This stability and this 
robustness are clearly maintained at low frequencies when the frequency in-
creases from 0.15 rad sω =  to 0.25 rad sω =  as depicted in Figure 8(a) and 
Figure 9(a). In addition, this stable behavior exhibits its signature as illustrated 
in Figure 9(c). 

Moreover, we consider the significant increase of the length of propagation 
from 243 10 mZ −= ×  to 610 mZ −= . Besides, at high frequencies for  

0.25 Mrad sω =  the dynamics of collective coordinates originating from mini-
mization reconstructs that coming from Gaussian Ansatz as seen in Figure 8(b). 
The residual field energy confirms the good reconstruction since it reaches 0.2 
percent. When the frequency significantly increases from 0.25 Mrad sω =  to 

25 Mrad sω = , second-order dispersion and cubic-nonlinearity interact. This 
situation induces modulational instability leading to the collapse of the dark so-
liton. This above mentioned modulational instability provokes the coherent 
build-up of the chaotic waves field depicted in Figure 9(b). Indeed, as previously 
observed the chaotic waves field presents Akhmediev-Peregrine freak wave and 
Akhmediev waves trains as depicted in Figure 9(b). The signature of this chaotic 
waves field is also illustrated in Figure 9(d). However, the aspect of this chaotic 
waves field is practically identical to that obtained at low frequencies when 
right-handed propagation was considered as depicted in Figure 9(d) and Figure 
6(c). So, the significant increase of the length of propagation from 3 × 10−24 m to 
10−6 m induces a considerable decrease of soliton peak power from 2.5 × 1026 W 
to 7 W. 
 

 

Figure 8. First case of left-handed behavior. Soliton light pulse and chaotic wave’s field 
for 1rC = . Dynamic of collective coordinates: (a) 0.15 rad sω =  at 243 10 mZ −= × ; (b) 

0.25 Mrad sω =  at 610 mZ −=  [Frequency ranges considered: 0 0.78 rad sω≤ ≤  and 
0.78 rad sω > ]. 
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Figure 9. First case of left-handed behavior. Soliton light pulse and chaotic wave’s field 
for 1rC = . Full equations: (a) 0.25 rad sω = ; (b) 25 Mrad sω = . 2D Full equations: 
(c) 0.85 rad sω = ; (d) 25 Mrad sω = . (a) and (c) at 243 10 mZ −= × ; (b) and (d) at 

610 mZ −=  [Frequency ranges considered: 0 0.78 rad sω≤ ≤  and 0.78 rad sω > ]. 

 
The propagation is not favorable at high frequencies for left-handed behavior 

of the line. More so, the behavior of the line has changed. When right-handed 
behavior occurs the soliton light pulse propagates at high frequencies and it is 
destroyed at low frequencies. However, when left-handed behavior arrives the 
soliton light pulse propagates very well at low frequencies and it is totally de-
stroyed at high frequencies. Hence, all these results suggest that the soliton light 
pulse propagates in opposite sense when the line changes its behavior from 
right-handed to left-handed. This result allows us to rename this transmission 
line as chameleon transmission line since its behavior changes without modify 
its physical aspect. This information is identical to that recently in [30]. 

3.5. Impact of Cr on Tree Structures 

We consider the case of right-handed propagation where 0rC =  at low fre-
quencies. So, we obtain the tree structure depicted in Figure 6(c). This tree 
structure corresponds to rogue events signature where Akhmediev-Peregrine 
waves and Akhmediev waves trains appeared. At low frequencies, the rogue 
events which appear on the rogue signature depicted in Figure 6(c) are com-
pletely cancelled when 0.3rC =  as seen in Figure 7(b). 

3.5.1. Modified Chaotic Waves Field 
This figure corresponds to the signature of the stable soliton light pulse. So, the 
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transmission line acts as bandpass filter at low frequencies. At high frequencies, 
when 1rC =  the left-handed behavior occurs and the rogue events signature is 
restored as seen in Figure 9(d). It is clearly observed that the number of big 
black points was increased from three to four as seen in Figure 6(c) and Figure 
9(d). This result suggests that the radiations have increased in the system and 
they have provoked the multiplication of rogue events when 25 Mrad sω = . If 
the frequency is maintained and rC  increases from 1 to 1.5 the number of black 
big points decreases from four to three as depicted in Figure 9(d) and Figure 
10(a). This situation denotes that the radiations have decreased in the system. 
So, the number of Akhmediev waves trains have decreased. If 10rC =  the 
radiations significantly increase leading to a strong perturbed chaotic waves 
field depicted in Figure 10(b). Besides, this perturbed system exhibits a 
strange tree structure illustrated in Figure 10(c). The precedent chaotic waves 
has changed into a strong perturbed chaotic waves field. The new field exhibits 
three Akhmediev-Peregrine rogue waves corresponding to the most colored 
points as seen in Figure 10(c). There are also some Peregrine waves represented 
by the least colored points. Otherwise, some Akhmediev waves trains are also 
represented. 

3.5.2. Modified Tree Structure 
In addition, when we pass from right-handed behavior ( 0rC = ) to left-handed 
one ( 1rC = ) the peak power decreases from 2.5 × 1026 W to 7 W as seen in 
 

 

Figure 10. Influence of rC  parameter on rogue events signature at 610 mZ −=  when 

25ω =  Mrad/s. 2D Full equations: (a) 1.5rC =  and (c) 10rC = ; (b) Full equation 
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10rC = . 

Figure 6(c) and Figure 9(d). This brutal decrease of pulse peak power is not 
only due to the increase of the distance, but also due to a strange phenomenon. 
This strange phenomenon responsible to the strong decrease of peak power is 
called absorption. This phenomenon is normal because absorption is always ob-
served in left-handed materials [45]. Besides, it has been demonstrated that in a 
realistic metamaterial system, absorption is unavoidable [45] [46] [47] [48]. In 
fact, some researchers such as Popov and Shalaev [45] sustain that absorption 
can be counteracted by optical amplification. Moreover, for left-handed behavior 
when rC  increases from 1 to 10 the peak power also increases from 7 W to 25 
W as depicted in Figure 9(d) and Figure 10(c). It appears that the dimension-
less capacitor rC  plays a crucial role in this transmission line. First, it modifies 
the aspect of rogue events signature. Second, it induces the multiplication of ro-
gue events. Three, it introduces right- or left-handed behavior on the transmis-
sion line. Four, it modifies the pulse peak power. Five, it provokes the inversion 
of sense of waves propagation on the line. Six, it transforms the line into a 
bandpass filter at low frequencies. 

3.6. Influence of Frequency on Soliton Peak Power 

Moreover, when the dimensionless capacitor is neglected ( 0rC = ) at right-handed 
behavior, the frequency significantly increases from 0.25 rad/s to 5 Mrad/s. Then, the 
soliton peak power considerably decreases from 2.5 × 1026 W to 14 × 1020 W. This 
situation is clearly illustrated in Figure 6(c) and Figure 9(d). So, an increase of 
frequency implies a decrease of pulse peak power in right-handed behavior of 
the line. However, if the right-handed propagation is maintained ( 0.3rC = ), the 
frequency increases from 0.15 rad/s to 0.15 Mrad/s. Moreover, the soliton peak 
power also decreases from 10 × 1026 W to 5 × 103 W as depicted in Figure 7(a) 
and Figure 7(b). Hence, this behavior of frequency is similar to that above men-
tioned. If the left-handed behavior ( 1rC = ) occurs the frequency increases from 

0.25 rad sω =  to 25 Mrad sω = . Consequently, the soliton peak power signif-
icantly decreases from 6×1023 W to 7 W as depicted in Figure 9(a) and Figure 
9(b). It clearly appears that the influence of frequency on peak power strongly de-
pendant on the value of dimensionless capacitor rC  in the case of left-handed 
behavior. 

4. Conclusion 

In summary, we have studied an electromagnetic wave propagation when 
second-order dispersion and cubic-nonlinearity effects come into play. Those ef-
fects interact in a modulable electrical transmission line in order to build up dark 
or bright soliton. Thereafter, the manifestations exhibited for both right-handed 
and left-handed behaviors have been compared. Thus, collective coordinates 
technique of investigation has been used in order to study internal and external 
behaviors of electromagnetic light pulse. This investigation has been done at 
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specific frequency ranges known as 0 0.78 rad sω< ≤  and 0.78 rad sω > . The 
numerical analysis leads to the following numerical outcomes. Firstly, we have 
verified that the line supports dark and bright soliton solutions. Thereafter, we 
also have verified that the line can exhibit chameleon’s behavior. Indeed, we 
have shown that for right-handed behavior ( 0rC = ), we obtain a chaotic waves 
field containing Akhmediev-Peregrine freak wave and Akhmediev freak waves 
trains, at low frequencies. However, this situation has been improved at high 
frequencies where a stable soliton has been obtained. Secondly, the second case 
of right-handed behavior ( 0.3rC = ) has shown that the line acts as a bandpass 
filter at low frequencies and has maintained the robustness of the soliton at high 
frequencies. Thirdly, the left-handed behavior ( 1rC = ) has restored the chaotic 
waves field at high frequencies and a stable soliton at low frequencies. Fourthly, 
we have presented the key role played by the dimensionless capacitor rC  on the 
line. One, it has modified the aspect of rogue events signature and has induced 
the multiplication of rogue events. Two, it has introduced right- or left-handed 
behavior on the transmission line. Three, it also has modified the pulse peak 
power and has provoked the inversion of sense of waves propagation on the line. 
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