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Abstract 
A novel method for the computation of the motion of multi-body systems is 
proposed against the traditional one, based on the dynamic exchange of at-
traction forces or using complex field equations, that hardly face two-body 
problems. The Newton gravitational model is interpreted as the emission of 
neutrino/gravitons from celestial bodies that combine to yield a cumulative 
flux that interacts with single bodies through a momentum balance. The neu-
trino was first found by Fermi to justify the energy conservation in β decay 
and, using his model; we found that the emission of neutrino from matter is 
almost constant independently from the nuclides involved. This flux can be 
correlated to Gauss constant G, allowing the rebuilding of Newton law on the 
basis of nuclear data, the neutrino weight and the speed of light. Similarly to 
nature, we can therefore separate in the calculations the neutrino flux, that 
represents the gravitational field, is dependent on masses and is not bound to 
the number of bodies involved, from the motion of each body that, given the 
field, is independent of the mass of bodies themselves. The conflict between 
exchanges of forces is avoided, the mathematics is simplified, the computa-
tional time is reduced to seconds and the stability of result is guaranteed. The 
example of computation of the solar system including the Sun and eight pla-
nets over a period of one to one hundred years is reported, together with the 
evolution of the shape of the orbits. 
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1. Introduction 

The problem computing the interactive forces of a group of celestial objects and 
consequently of predicting their orbital motion for all future times has been, af-
ter Newton, the headache of scientists and mathematicians till nowadays. 
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Newton himself solved the problem of two interacting bodies, but he soon 
discovered that, for multiple bodies, his differential equations of motion did not 
predict some orbits correctly: the attracting forces do conform to his laws of mo-
tion and to the law of universal gravitation, but the many multiple interactions 
make any exact solution intractable. 

The problem of finding the general solution was considered very important 
and challenging: in the late 19th century King Oscar of Sweden, established a 
prize for anyone who could find the solution to the problem, The prize was 
awarded to Poincaré, even though he did not solve the original problem but a 
restricted three-body problem in which the third mass is negligible. 

The general n-body problem fell in the hand of mathematicians: the elegant 
Hamilton’s approach transforms the original Newtonian system of 3 n second 
order differential equations of motion in a system of 6n first order differential 
equations with 3n position coordinates and 3n momentum values; however no 
analytical or numerical solution has been found. 

After the extensive work of Poincare [1] [2], many proposals and models of 
Celestial Mechanics, both numerical and analytical or a mixture of the two, are 
present in the literature, and also full books have been written. 

Unfortunately all works are based on the idea of interacting forces, that, after 
the failure of eminent mathematicians and on the basis of our modest experience, 
we consider an incorrect representation of gravity. 

We did not find in the literature an alternative view as that presented in this 
paper and therefore, instead of boring the reader with incorrect mathematics 
and unsuccessful results, we want only to cite the recent opinion of Celletti [3], 
an expert researcher working in the field, that sounds like a voice outside the 
crowd. 

“An accurate prediction of the dynamics of the objects of the solar system of-
ten requires very long computations; even the easiest problem provided by the 
two-body model deserves computational skill in solving Kepler’s equation, 
which allows deriving the Keplerian elements of the orbit as a function of time. 

In passing from the two to the three-body problem, an increasing complexity, 
due to nonintegrability and chaos, is a trademark of Celestial Mechanics; the 
three body problem motivated the development of perturbation theories aimed 
to find approximate solutions of the equations of motion.” 

Therefore the fault is not of the Newton model, nor of mathematics, but of the 
way mathematic is applied. 

For those that are interested in the relation between mathematics and physics 
we suggest the last recent book of Penrose [4] The Road to Reality. 

The book is just over 1100 pages, of which the first 383 are dedicated to ma-
thematics: Penrose’s goal is to acquaint inquisitive readers with the mathemati-
cal tools needed to understand nature. 

Only on the last page of the conclusion, he wisely invites the reader to open a 
different window for understanding the unknowns of the Universe. 
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In the case under study, of celestial mechanics, the escape from the exchange 
of forces model was found in the so called field equations models. 

Every engineer expert in fluid dynamics had the opportunity to deal with the 
Navier-Stokes field equations, that describe the motion of viscous fluids through 
mass, momentum and energy balance, and is aware of the problems encountered 
in their use to solve real problems. 

Remember that these equations were written applying balances to a cell of 
fluid and then transforming finite differences to derivates by the limit to zero 
procedure. 

The analytical solution of these equations is, except for simpler cases, imposs-
ible, due to the large nonlinearities, the nature and properties of fluids (forget-
ting the turbulence tensor) and the boundary conditions that are the cause of in-
stabilities. 

The numerical solution involves the opposite procedure of transforming dif-
ferential equations into finite difference equations, that are usually different 
from the original elementary cell balances, are numerically less stable and need a 
convergence with boundary conditions. 

The use of parametric functions or series of functions followed by parameters 
optimization, partially solves the instability problems but is quite approximate. 

Therefore, in solving scientific or engineering problems, we decided to main-
tain the original cell balances, selecting the cell size, the cell equations according 
to the nature of phenomena involved and including boundary conditions: the 
resulting system of nonlinear equations can be easily solved by available com-
puter programs [5], almost independently from the problem complexity and 
size. 

The use of computers, not available at the times of Newton and Poncarè, helps 
in the simplification of mathematical algorithms and computation procedures 
and, contrarily to the common opinion, to bring researchers nearer to physical 
phenomena, if supported by experimental data. 

It would have been impossible for Maxwell to write his electromagnetic field 
equations, without the anticipation, the experiments and the investigations of 
Faraday, a genius with poor format education and limited knowledge of mathe-
matics. 

Maxwell’s equations are again partial differential equations that relate the 
electric and magnetic fields to each other and, in spite of the elegant and exhaus-
tive description of the phenomena involved, they are very difficult to solve due 
to nonlinearities and boundary conditions. 

As far as multiple attractions or repulsion are concerned, the two bodies 
problem is again a limit for analytical calculations and numerical calculations do 
no go far ahead. 

When Einstein was in trouble with the problem gravitation, the example of 
Maxwell, whose equations are in line with Lorenz transformation and hence 
with special relativity, paved the way. 
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Einstein field equation theory, as explained in [6], are hard to swallow but, af-
ter the theoretical presentation of tensor properties, the elegance of mathematics 
is impressive and the capability of including both fluid dynamics (Navier-Stokes) 
and electrodynamics (Maxwell) is surprising. 

For this reason Einstein field equation was considered, during the last century, 
a mathematical monument comprehensive of all the laws of the Universe. 

However we feel uncomfortable with its use for solving real problems, even 
with the aid of supercomputers and there is no knowledge of its use for systems 
exceeding two bodies. 

We have also to recognize that the theory is far to be simple, in contradiction 
with Einstein main thought: “most of the fundamental ideas of science are es-
sentially simple and may, as a rule, be expressed in a language comprehensible to 
everyone”.  

The concept of exchange of forces has been overcome by the idea of the cur-
vature of space-time, a sort of mobile mathematical basin built around the bo-
dies that constrains all physical bodies and make them move along specific lines. 

In the absence of the knowledge of the nature of gravity we hold this as a so-
phisticated representation of a phenomenon that Galileo tried to explain to Sim-
plicio making him rotate a physical bucket full of water, in the Dialogue Con-
cerning the Chief World Systems (Dialogo dei Massimi Sistemi) [7]. 

Einstein thought dominated the scene of the last century generating a school 
of scientists that under his name are proposing new investigations and advance 
new theories. 

My feeling is that we are shortening times and enlarging figures beyond what 
Nature is telling us. 

What follows is an example of joining experimental facts taken from mechan-
ics, nuclear data and quantum mechanics theories, to change our view of the 
motion of bodies in the sky. 

2. The Gravity Field Equation Simple 

The number of important laws of physics can be counted on the fingers of one 
hand and may change with time; the experiments, if properly performed, will 
step in science forever, ready to be explained and used in different periods of 
time,  

One of these important experiments is that performed by Galileo with the 
falling of objects of different shapes, weight and size at the same time, due to 
Earth gravity. 

Galileo could not appreciate the secret hidden under his experiment and he 
spent his life, even when arrested in home, to look at the sky with his telescope; 
the sky was also the preferred reference of Copernicus, Kepler and Newton for 
gravitational phenomena. 

Till nowadays gravitation has been segregated in the sky, but the Galileo expe-
riment suggests another direction that even Einstein could not imagine: if the 
action of gravity is the same on a ball of iron and on a piece of wood it should 
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not depend on the chemical and type of nuclide involved but has to relight to the 
elementary particles, neutrons and protons that are common to all matter. 

Therefore, if we want to understand the nature of gravity, our investigation 
should be moved away from the fantastic objects appearing in the sky and fix 
our attention on the nuclear structure of matter. 

We had to wait four centuries, after Galileo, before Fermi [8] developed a 
theory of β decay and justified the existence of the neutrino ν, an elusive particle 
that can cross matter without interaction. 

He assumed the following nuclear dynamic transformations of protons p, 
neutron n and electrons/positrons β−/β+ with the neutrino ν compensating for 
the lack of energy in the electrons emission spectrum: 

β− emission           1kn p β ν−←→ + +  
β+ emission           2kp n β ν+←→ + +                          (1) 
Orbital electron capture 3kp nβ ν− ←→+ +  
And the electron-positron annihilation reaction with the production of two γ 

photons having energy of 0.511 Mev each, equal to the rest energy of an electron,  

2β β γ− ++ =                          (2) 

This scheme also justifies the number of nuclear bonds and the nuclear bind-
ing energy of nuclides [9] and, if we argue that this reaction scheme is valid not 
only for radioactive nuclides but can be extended to all nuclides at all tempera-
tures, we have a model and a new law for the emission of radiation from the bulk 
of matter. 

From Equation (1) we can compute the neutron and proton dynamics in all 
nuclides [10]:  

We assume k1 = 0.0009625, experimentally known, being related to the 12 
minutes half life of neutron, and derive the other constants by fitting the neu-
tron/ proton distribution of the 1806 known nuclides including stable nuclei and 
γ emitters. 

The least square fit of the proton and neutron distribution gives the following 
values with an astonishing determination index equal to 99.7%: 

1 2 30.0009625, 4.71554E 06, 0.00105382k k k= = − =          (3) 

If we use these constants to compute the rate of neutrino emission, we dis-
cover that it is almost constant for all nuclides with a mean value of Fo = 
6.668E+23 neutrino per kg and per second and this value does not significantly 
change from light to heavy nuclides as first reported in [10]. 

We remember that, following Plank, matter emits radiation from the surface 
independently from its chemical or physical composition (another experimental 
fact), in agreement with our result based on fitting data of all known nuclides. 

The radiation is generated and transferred at various temperatures but we 
know that the nuclear clock is not affected by temperature and therefore the 
constancy of atomic matter emissivity is an important new law of physics. 

The radiation is generated by nuclei in the bulk of a body, only part of it 
reaches a small layer near the surface where is emitted in the form of light, with 
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a Black Body spectrum, the remaining part, the most important one is filtered 
and degraded by matter and escapes undetected from the body in the form of the 
elusive neutrino and is the one justifying Galileo experiment and the one re-
sponsible for “moving the Sun and the other Stars”. 

However only a small portion of the neutrino flux interacts with the physical 
bodies, the majority being dispersed in the space: the neutrino is therefore re-
sponsible for the increase of the entropy of the Universe, with the stars loosing 
mass, the attraction between celestial bodies decreasing and the expansion of the 
Universe continuing slow in our time frame.  

Anyhow, once known the position and the mass Mi of celestial bodies, the 
vector flux of neutrino Fs per unit area in a point of the space at a distance Ri and 
unit vector ri can be easily computed by vector summation of bodies flux con-
tributions: 

( )( )2 2neutrin4 o ms o i i iiF M r Rπ= ∑F               (4) 

The neutrino flux is spread on the surface of the sphere of radius Ri but we are 
interested in the surface available that is the cross section σn of nucleon (pro-
ton-neutron) having mass mn (kg) and radius rn (m): 

( )2 2m kgnnn r mσ = π                       (5) 

The neutrino crosses matter without interaction and we can define the neu-
trino flux per unit weight of crossed matter: 

( )neutrino kg sm n sσ ⋅=F F                    (6) 

This unit piece of matter itself emits neutrino in all directions that sum with 
the neutrino field in the positive direction of Fm and subtract in the opposite one, 
the result being a net emission in the Fm direction,  

Neutrino has a mass µ and travel with the speed of light causing a pull oppo-
site to Fm 

( )2m s kgg mcµ= − ⋅F F                     (7) 

that is equivalent to Newton attraction force. 
The Gauss constant G therefore can be easily related to nuclear parameters: 

( ) ( )3 2 12 m4 1E 34 6.668E 11 s kgo n n oG F cr m Fµ − −= = + = ⋅ ⋅−       (8) 

The magic of this relation has no explanation but the relevant point is that we 
can write G and the Newton Universal Gravitation Equation on the sole basis of 
nuclear properties,  

The other important point is that we can compute the gravitational field in 
terms of neutrino flux per m2 or per kg or momentum for whatever complex 
system of celestial bodies once known their position, their motion being left to a 
subsequent step.  

For the particular case of two dimensions Cartesian coordinates with n celes-
tial bodies having mass Mi and position xi, the components Fsx and Fsy of the 
neutrino flux Fs (4) at the point x, y can be written: 
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( ) ( )
( ) ( )

3

3

4

4

sx o i i ii

sy o i i ii

F F M x x R

F F M y y R

= − π

= − π

∑
∑

                  (9) 

where ( ) ( )2 2
i i iR x x y y= − + −  and the module of the flux Fs being  
2 2 .s sx syF F F= +  

Similar relations can be written for Fm and for Fg. 
Here we use, as example, a simplified solar system with the Sun and only the 

eight planets, with the data, taken from literature, reported in Table 1. 
To make it simpler we start with the origin in the Sun and with the planets 

positioned along the x axis at the given distance from the Sun. 
For the representation the original scale of values has been maintained in spite 

of the large distances and the high values of the module Fs. 
The values of neutrino flux are based on the mass, diameter and aphelion dis-

tance from the Sun of Tab. 1 and are plotted on a 100 × 100 Excel spreadsheet 
for detailed views of parts of the solar system. 

The neutrino flux Fs (neutrino/m2) can be easily computed for the simple case 
of the main planets of the solar system but we could equally consider whatever 
additional body rotating with them around the Sun. 

Figure 1 shows the module of the neutrino flux Fs, that is the is flux lines, in 
the zone of the terrestrial planets, all other planets being present, while Figure 2 
reports a view of the gaseous planets zone. 
 

 
Figure 1. Map of neutrino flux Fs, truncated near the Sun, for the four terrestrial planets 
(evidenced by a cusps). 
 

 

Figure 2. Map of neutrino flux Fs around the Sun for the four gaseous planets (evidenced 
by a cusps). 
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Table 1. Data of sun and planets used in the calculations. 

 SUN MERCURY VENUS EARTH MARS JUPITER SATURN URANUS NEPTUN 

MASSkg 1.990E+30 3.3300000E+23 4.869000E+24 5.972190E+24 6.4191000E+23 1.898700E+27 5.651000E+26 8.684900E+25 1.024400E+26 

DIAMETER m 6.960E+08 2.4396400E+06 6.051590E+06 6.378150E+06 3.39700000E+06 7.149268E+07 6.026714E+07 2.555725E+07 2.476636E+07 

ECCENTRICITY 0.000E+00 2.0560000E−02 6.800000E−04 1.670000E−03 9.34000000E−03 4.840000E−03 5.410000E−03 4.720000E−03 8.600000E−04 

Semimajor axus m 0.000E+00 5.791000E+10 1.082100E+11 1.496000E+11 2.27920000E+11 7.785700E+11 1.433530E+12 2.872460E+12 4.495060E+12 

MEAN DISTANCE m 0.000E+00 5.790917E+10 1.082089E+11 1.495983E+11 2.27956600E+11 7.784120E+11 1.426725E+12 2.870972E+12 4.498253E+12 

APHELIUMm 0.000E+00 5.910063E+10 1.082836E+11 1.498498E+11 2.30048800E+11 7.823382E+11 1.441285E+12 2.886018E+12 4.498926E+12 

ɳ (vr correction) 0.04 0.17 0.11 0.06 0.04 0.04 0.04 0.04 0.04 

 
Figure 3 is a snapshot of Jupiter where the prevailing values of Jupiter emis-

sion are evidenced together with the subtraction of neutrino flux in the direction 
of the Sun and the sum up in the opposite direction. 
 

 

Figure 3. Map of neutrino flux Fs around the Jupiter (evidenced by a truncated cusps). 
 

Everybody can appreciate how easily and comfortably this calculation can be 
done without the anxiety of mutual interactive competing forces. 

The neutrino flux is therefore the real field equation for proceeding to celestial 
mechanics calculations: the cause of motion is a physical reality, separated from 
the effect, the motion itself. 

Therefore Newton law should not be interpreted as an exchange of forces but 
as the emission by bodies of neutrino in the space that causes a neutrino unbal-
ance on the receiving bodies. 

Newton law is still valid, the mathematics is formally the same but the use of 
equations is different: cause and effect are separated. 

3. Fast and Stable Planetary Orbit Calculation 

Now that we have a precise and simple representation of the gravitational field, 
an object, immersed in this field, is willing to move and we know that our pla-
nets move following a quasi-circular orbit or better an elliptic orbit around the 
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Sun. 
Due to planets motion, the Sun also moves together with them around a ba-

rycenter whose coordinates are: 

b i i ii i

b i i ii i

x x M M

y y M M

=

=
∑ ∑
∑ ∑

                      (10) 

The velocity and acceleration of all orbiting bodies are better defined using 
polar coordinates (r, ϑ ) 

velocity rv vϑ= +r ϑ                        (11) 

acceleration ra aϑ= +r ϑ                      (12) 

where r and ϑ  are the radial and tangential versors. 
The coefficient of radial acceleration, following Newton, is equal to Fg and that 

of the tangential acceleration is zero and is related to the momentum conserva-
tion: 
 

2 2
r ga r r r v r Fϑϑ′′ ′ ′′= − = − = −                  (13) 

For a circular orbit de second derivative of r, r′′  is equal zero, 2a v rϑ ϑ= −  
and the velocity vϑ  can be directly computed from Fg: 

gv rFϑ =                           (14) 

Equation (14) can be used for a first local approximation but if we insist for a 
Keplerian orbit we can use the Vis-viva equation [11], derived from the conser-
vation of energy and momentum, that we can rewrite in the following form: 

( ) ( )2 1g g gv F r r a rF rF r aϑ = − = − −             (15) 

from Equations (13) and (15) we can compute the second derivative of r, that is 
related to a property of the ellipse, the semi-major axis a: 

( )1gr F r a′′ = −                        (16) 

The gravitational field Fg can be rigorously computed, once known the posi-
tion of masses Mi while Equations (14) and (15) contain hypothesis about the 
orbit, are useful locally for the calculation, but the final orbit shape is mainly in-
fluenced by the change of Fg from time to time. 

The only additional variable we need is the radial velocity vr in Equation (12), 
that is zero for circular orbits and is proportional to vϑ  for the elliptical ones, 
depending on the eccentricity e, that, like the semimajor axis, should be a result 
of the calculation. 

Therefore we assume  

rv vη= ϑ                          (17) 

and find the value of η for the planets imposing the closure of the orbit after the 
first annual cycles. 

The last line of Table 1 shows the values of η used for the calculations. 
The vector vr is directed along the radius r toward the barycenter b and using 
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Equation (17) 

( )
( )

rx r b

ry r b

v v x x r

v v y ry

= −

= −
                    (18) 

The vector vϑ is perpendicular to Fg and thus using Equations (14) or (15)  

gy
x

g

gx
y

g

F
v v

F

F
v v

F

ϑ ϑ

ϑ ϑ

= −

= −
                      (19) 

and the velocity of each celestial bodies is simply defined by: 

x x rx

y y ry

v v v
v v v

ϑ

ϑ

= +

= +
                      (20) 

The problem of the orbit calculation is now reduced to elementary algebra 
through the following simple steps: 

1) Given planets positions, compute the barycenter using (10). 
2) Compute the fluxes Fs (Fsx, Fsy) and Fg (Fgx, Fgy) from (9) at the coordinates 

of each body. 
3) Compute the velocity v (vx, vy) of each planet from (20). 
4) Select a time step dt (1 or two days) and update planet position 

x

y

x x v dt
y y v dt
= +

= +
                     (21) 

5) Return to point 1, with the updated planet position, till the maximum time 
(1 year, 100 years or more) is elapsed. 

Some trial runs can be used to adjust η  in Equation (17). 
Note that steps 1 and 2 are rigorous and there is no conflict between bodies. 
Step 3 and 4 are independent of the mass of the bodies that has been ac-

counted in step 1 and 2 and therefore no conflict is present here too. 
Consequently the computation is very accurate and stable with a computer 

time that can be measured in seconds for processing the elementary algebra (21), 
most of the time being dedicated to printing results. 

Figures 4(a)-(d) show, in the original fixed x, y plane, the orbits, for the first 
Earth year, of the barycenter, the Sun and the planets. 

The calculation has been made using locally the circular orbit approximation 
that is maintaining the second radial derivative equal zero and computing vϑ 
with Equation (14), but introducing the correction factors η of vr of Table 1. 

The orbits are very clean: almost one revolution and one line for the majority 
of planets and shape apparently indistinguishable from a circle. 

If we introduce the second derivative in Equation (15) and maintain the same 
correction factor for vr the results appear very similar, the controlling factor be-
ing the field equation Fs (4) representing the flux or momentum Fg (7) of neu-
trino. 

We report for comparison in Figure 5 the terrestrial planets orbits using Equ-
ation (15) for the computation of vϑ. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. (a) Barycenter trajectory during the first Earth year from the origin of calcula-
tions (14); (b) Sun trajectory during the first Earth year from the origin of calculations 
(14); (c) Terrestrial planets orbits during the first Earth year from the origin of calcula-
tions (14); (d) Terrestrial and Gaseous planets orbits during the first Earth year from the 
origin of calculations (14). 
 

 

Figure 5. Terrestrial planets orbits during the first Earth year from the origin of calcula-
tion (15). 
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The orbits of Figure 5 are very similar to those of Figure 4(c) as if the gravi-
tational field is prevailing over the tricks of the calculation. 

Changing the integration step from one to two days has no effect and the 
computation time is almost instantaneous. 

The computation over an extended time of one hundred Earth years is equi-
valently stable allowing many rounds of the terrestrial planets and some com-
plete run of the gaseous ones; the computational time again is less than ten 
seconds. 

The calculation has been made with a time step of 1.2 days exceedingly small 
for the phenomena involved and in agreement with the graphical ability of Excel.  

Figures 6(a)-(d) show the motion of the Barycenter and the Sun and the obits 
for the terrestrial and gaseous planets using Equation (14) for vϑ and the η cor-
rection for vr of Table 1. 

In Figure 6(a) one can distinguish the effect, on the motion of barycenter, of 
the rapid rotation of the terrestrial planets and the slow motion of the gaseous 
ones,  

In Figure 6(b) one can appreciate the slow motion of the pachyderm Sun to 
compensate the planets merry go-round. 

In Figure 6(c) the orbits of the terrestrial planets appear to shift revolution by 
revolution, as if each planet is trying to find the right position compatible with 
the position of the other planets. 

We have selected some orbits within the bunch and they appear identical at 
the beginning, in the center and at the end of calculations and they appear iden-
tical but shifted in space (not reported here). 

The orbits of the gaseous planets appear regular, even if they had not enough 
time to stabilize themselves and to balance the entire solar system. 

Figures 7(a)-(d) present the equivalent orbits obtained using vϑ local of Equ-
ation (15). 

There is no way, even superimposing figures, to distinguish about the results 
and again it is clear that the dominating force is the neutrino flux Fg, in spite of 
the tricks used to force the Keplerian elliptic orbits. 

To better understand the evolution of the orbits we computed, as probably 
Kepler did, the distance of the planets from the Sun in function of time. 

We discover that the time necessary for a planet to settle in stable orbits and 
find its place in the sky, depends on their frequency and is less for Mercury than 
for Mars, and that the orbits, appearing circles, are really elliptic. 

Figure 8 shows that Mecury rapidly reaches a steady state distance and Figure 
9 gives a gross variation of the distance in a large period of time.  

Going to details Figure 10 shows the variation of distance from the Sun with-
in each Mercury year in a sinusoidal behavior typical of elliptic orbits. 

Figures 11-13 show the equivalent oscillations of distances from the Son for 
Venus, Earth and Mars. 

Mars with its long period of revolution, almost double that of Earth, needs  
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Figure 6. (a) Barycenter trajectory during the 100 Earth years from the origin of calcula-
tions (14); (b) Sun trajectory during 100 years Earth years from the origin of calculations 
(14); (c) Terrestrial planets orbits during 100 Earth years from the origin of calculations 
(14); (d) Gaseous planets orbits during 100 Earth years from the origin of calculations 
(14). 
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(d) 

Figure 7. (a) Barycenter trajectory during the 100 Earth years from the origin of calcula-
tions (15); (b) Sun trajectory during 100 years Earth years from the origin of calculations 
(15); (c) Terrestrial planets orbits during 100 Earth years from the origin of calculations 
(15); (d) Gaseous planets orbits during 100 Earth years from the origin of calculations 
(15). 
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Figure 8. Distance (m) of Mercury from the sun in function of time (year). 
 

 

Figure 9. Distance (m) of Mercury from the sun in a large time interval (year). 
 

 

Figure 10. Variation of distance from the sun in a series of Mercury years. 
 

 

Figure 11. Variation of distance from the sun in a series of Venus years. 
 

 

Figure 12. Variation of distance from the Sun in a series of Earth years. 
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Figure 13. Variation of distance from the Sun in a series of Mars years. 
 
additional time to reach a stable position and still shows an elliptic shape for its 
orbit. 

For the gaseous planets the time needed for stabilization will be longer, but 
this should not be a problem for our calculation method. 

The method presented virtually has no limits in stability and computational 
time and can be used for studying different starting points, adding additional 
celestial bodies within or outside the solar system and simulating the evolution 
over millennia of known clusters of rotating bodies. 

We have given only a flavor of what can be done with this tool for analyzing 
the celestial motion in detail and of the quantity of data available under the sim-
ple graphical representation. 

We have also shown the merits of this new approach to gravity for multiple 
celestial bodies calculations. 

The comparison with experimental data will be of help both for refining the 
method and for acquiring a quantitative picture of small and large pieces of the 
Universe. 

4. Conclusions 

Gravity has always been seen as an exchange of forces, between massive bodies, 
that decreases with the square of the distance coherently with Newton Universal 
Gravitational Law. 

The transmission of this force is considered by Newton instantaneous but, due 
to the large astronomical distance and assuming that the action of this forces 
propagates with the velocity of light, the interval between the start and the arriv-
al of this force might appear relevant, requiring the introduction of relativistic 
time in gravitational phenomena. 

However if gravity is the result of a flux of neutrino, continuously irradiated 
from a massive body to a point in the space, this flux is almost the same over a 
large period of time and the map of these fluxes becomes a quiet and steady val-
ley, where the bodies present receive their impulse to move. 

The two approaches give a similar result and have similar mathematics only in 
the two body case but diverge beyond, with a net distinction between cause and 
effect, as in the proposed application. 

The flux of neutrino (or graviton) is the cause, generated by physical bodies, 
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and can be easily computed summing up all contributions; the effect, for a tiny 
or large object immersed in this flux, is motion. 

The flux field can be computed rigorously independently of the number and 
size of bodies, while motion calculation is independent of bodies’ masses. 

Natural evolution of phenomena and the calculation have a similar behavior: 
they are never nervous and unstable, as shown in the stepwise integrations of the 
planets’ orbits, where the result does not change if the time step is one or two 
Earth days. 

As a general rule, derived by the experience on many other applications, we 
can say that, if a model or a set of mathematical expressions do not fit with 
physical phenomena, either mathematics are wrong or incorrectly applied. 

Therefore we feel comfortable with Newton Law, living on our Earth, and 
should be also comfortable, travelling in the near and far space, provided we 
understand and use gravity the right way. 
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Nomenclature 

p proton 
n neutron 
ν neutrino 
β− electron 
β+ positron 
γ photon 
mn neutron mass (1.67548E−27 kg) 
rn neutron radius (1.05247E−15 m) 
σn neutron cross section (m2/kg) 
μ neutrino mass (2.02E−39 kg) 
c speed of light (299,730,000 m/s) 
η ratio of vr/vϑ 

G Gauss constant 
k1, k2, k3 nuclear reaction constants 
Fo Neutrino emission per kg of matter per second (6.668E+23 neutrino/kg s) 
Mi Mass of i-th celestial body (kg) 
R, distance a point of space from i-th celestial body 
ri versor of distance R, in the direction of a point in the space 
Fs vector flux of neutrino per square meter in a point in the space (Neutri-

no/m2 s) 
Fs module of Fs 

Fsx, Fsy components, of Fs in the x, y coordinates 
Fm vector neutrino flux per kg of matter (neutrino/kg s) 
Fg vector neutrino momentum flux per kg of matter (cm/s2kg) 
Fg module of Fg 
xi, yi coordinates of i-th orbiting body  
xb, yb coordinates of barycenter of orbiting bodies 
r versor radius of orbiting body in barycentric angular coordinates 
r radius 
r′′  second derivative of r 
ϑ versor angular position of orbiting body in barycentric angular coordinates 
a semi major axis 
e eccentricity 
vr, vϑ radial and angular velocity 
vrx, vry and vϑx, vϑy cartesian components of vr, vϑ 
ar, aϑ radial and angular acceleration 
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