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Abstract 
The present manuscript examines the circular restricted gravitational three-body 
problem (CRGTBP) by the introduction of a new approach through the pow-
er series method. In addition, certain computational algorithms with the aid 
of Mathematica software are specifically designed for the problem. The algo-
rithms or rather mathematical modules are established to determine the ve-
locity and position of the third body’s motion. In fact, the modules led to ac-
curate results and thus proved the new approach to be efficient. 
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1. Introduction 

The circular restricted gravitational three-body problem (CRGTBP) is a special 
case of the gravitational three-body problem which is one of the most important 
n-body problems. The CRGTBP consists of three bodies; the two bodies of them 
(which are referred to as the primaries or the primary and the secondary) are 
moving in a circular orbit about their common mass’s center under the influence 
of their mutual gravitation and the third body is infinitesimal mass moving un-
der the gravitational significance of the two masses where its mass cannot influ-
ence the two masses. Furthermore, the third body has a common plane of 
movement as defined by both the primary and secondary [1]-[6]. The problem is 
tackled by studying the motion of the third body assuming full knowledge of the 
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primary and the secondary with regards to their motions [1] [2] [7] [8]. 
Many physicists and mathematicians have used the method of power series to 

solve a variety of unsolvable differential equations. The method has been used 
significantly to solve the celestial mechanic problems as better exactness of in-
spectional data is required for relatively optimal solutions to the bodies’ dynam-
ical equations of motion. Numerous scientists have used this method including Saad 
et al. [9] that used it to get recurrent algorithm for comets under non-gravitational 
motion. Rabe [10] used a new computational and iteration method to determine a 
series of periodic Trojan orbits in the restricted problem of three bodies. Deprit and 
Price [11] used the numerical methods to compute characteristic exponents in the 
planar restricted problem of three bodies. Sharaf et al. [12] found symbolic solution 
of the three-dimensional restricted three-body problem and applied it for any given 
set of initial values.  

However, we aim in this paper to employ an approach based on the power se-
ries to establish an algorithm or mathematical module using Mathematica to 
tackle this important problem of circular restricted gravitational dynamical 
problem. More specifically, we determine the components of the velocity and 
position vectors of the third body with regard to the CRGTBP. 

2. Dynamical Equations of Motion of CRGTBP 

The dynamical equations of motion for the CRGTBP are given by the following 
coupled first-order system as follows [12]  
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where ( ),0,0µ , ( )( )1 ,0,0µ− −  and ( ), ,x y z , are the coordinates of the pri-
mary, the secondary and the third body, respectively. More, µ  is the primary’s  

mass, 1 µ−  is the secondary’s mass ( µ  is larger than 1 µ− , where 10,
2

µ  ∈   
).  

1G =  is the unit of the force of a gravitational constant; with 1r  denoting the 
distance of the primary and 2r  that of the secondary both to the third body [1] 
[2] [6] [13] given by  
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Using Broucke’s method [14], the following system of first-order differential 
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equations [12] is thus obtained  
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3. Solution by Power Series 

The equations given in (3) are unsolvable analytically. Therefore, these equations 
are solved in this section using the power series method and their analytical so-
lutions are given in terms of recurrence relations of the coefficients posed by the 
variables. 

Thus, with the use of the method of power series, the motion’s variables are as 
follows [12] [14] 
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In these power series, the first coefficients are given by the known initial val-
ues of ( )0 0 0 0 0 0, , , , ,x y z u v w  as follows [12]  

1 0 1 0 1 0, , ,X x Y y Z z= = =  

1 0 0 1 0 0 1 0 0, , ,U u x V v y W w z= = = = = =    

( )2 2 2
11 0 0 0 ,R x y zµ= − + +  

( )2 2 2
21 0 0 01 ,R x y zµ= + − + +  

( ) ( )3 3
11 11 21 21, .S R S R− −= =  

The following recurrence relations for the remaining coefficients are found 
using power series [12]  
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4. Algorithm for CRGTBP 

* Purpose 
To generate the components of position and velocity for the third body at any 

time.  
* Input  

0x , 0y , 0z , 0u , 0v , 0w , µ , t and NN.  
* Output  
The components of position and velocity for the third body at any time.  
* Module list.  

{} ( ) ( ) ( )Module , 1 x0; 1 y0; 1 z0;X Y Z= = =  
( ) ( ) ( )1 u0; 1 v0; 1 w0;U V W= = =  

( ) ( )22 21,1 y0 z0 x0 ;R µ= + + −  
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5. Application for CRGTBP 

For a numerical example of CRGTBP algorithm, the initial values of components 
for the position and velocity vectors are considered to be  

0 0 00.153910449, 0.886499068, 0.384340387,x y z= − = =  

0 00.00000000017268248, 0.0000000002545393,u v= − = −  

0 0.0000000001103033, 0.0121505816.w µ= − =  

Then, we get the final value components for the position and velocity vectors 
as given in Figures 1-12. 

It is remarkable to mention here that the accuracy is increased with an in-
crease in the number of terms of the power series, but after NN = 50, the accu-
racy is fixed. So, we aren’t needed to the more of terms of the power series. 
 

 

Figure 1. Comparing the exact and approximate values for x when NN = 10. 
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Figure 2. Comparing the exact and approximate values for y when NN = 10. 
 

 

Figure 3. Comparing the exact and approximate values for z when NN = 10. 
 

 

Figure 4. Comparing the exact and approximate values for u when NN = 10. 
 

 

Figure 5. Comparing the exact and approximate values for v when NN = 10. 
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Figure 6. Comparing the exact and approximate values for w when NN = 10. 
 

 

Figure 7. Comparing the exact and approximate values for x when NN = 50. 
 

 

Figure 8. Comparing the exact and approximate values for y when NN = 50. 
 

 

Figure 9. Comparing the exact and approximate values for z when NN = 50. 
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Figure 10. Comparing the exact and approximate values for u when NN = 50. 
 

 

Figure 11. Comparing the exact and approximate values for v when NN = 50. 
 

 

Figure 12. Comparing the exact and approximate values for w when NN = 50. 

6. Conclusion 

In conclusion, the analytical solutions to the circular restricted gravitational 
three-body problem (CRGTBP) are determined via the application of the power 
series method. Also, a module or algorithm is specifically designed and imple-
mented via the help of Mathematica software to find the components of the ve-
locity and position vectors for the third body. Finally, the proposed methodology 
via the devised module has worked accurately and resulted in reliable results as 
shown. 
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