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Abstract 
Traditional linear program (LP) models are deterministic. The way that con-
straint limit uncertainty is handled is to compute the range of feasibility. Af-
ter the optimal solution is obtained, typically by the simplex method, one 
considers the effect of varying each constraint limit, one at a time. This yields 
the range of feasibility within which the solution remains feasible. This sensi-
tivity analysis is useful for helping the analyst get a feel for the problem. 
However, it is unrealistic because some constraint limits can vary randomly. 
These are typically constraint limits based on expected inventory. Inventory 
may fall short if there are overdue deliveries, unplanned machine failure, 
spoilage, etc. A realistic LP is created for simultaneously randomizing the 
constraint limits from any probability distribution. The corresponding dis-
tribution of objective function values is created. This distribution is examined 
directly for central tendencies, spread, skewness and extreme values for the 
purpose of risk analysis. The spreadsheet design presented is ideal for teach-
ing Monte Carlo simulation and risk analysis to graduate students in business 
analytics with no specialized programming language requirement. 
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1. Introduction 
1.1. Risk Analysis and Business Analytics 

Risk analysis is an emerging topic in business management. The textbook 
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“Business Analytics (Evans [1])” is designed to be spreadsheet (excel) based. It 
covers useful excel functions and illustrates how they are used to execute Monte 
Carlo simulation for the purpose of risk analysis. However, the chapter on linear 
optimization collapses to a traditional deterministic LP where the solution tool is 
the add-in SOLVER. Risk analysis in linear programming as described there re-
lies on sensitivity analysis. In sensitivity analysis of the objective function, one 
objective function coefficient value at a time is varied within the range of opti-
mality while all others are held constant. In the real world the coefficients can 
vary randomly and simultaneously. Ridley, et al. [2] describes a randomized li-
near program where all objective function coefficients are varied simultaneously. 
The random values are selected in accordance with any specified probability dis-
tribution. That paper and this one present spreadsheet designs for teaching 
Monte Carlo simulation and risk analysis to graduate students in business ana-
lytics (see also Stanton and Stanton [3]; Johnson, Albizri and Jain [4]; Pual and 
MacDonald [5]), with no requirement for a specialized programming language. 

In sensitivity analysis of the constraint limits, one constraint value at a time is 
varied within the range of feasibility while all others are held constant. In the 
real world the constraint limits can vary randomly and simultaneously. This pa-
per describes a randomized LP where all constraint limits are varied simulta-
neously. The random constraint limit values are selected in accordance with any 
specified probability distribution. Said distribution can be aligned with what oc-
curs in reality. Some of these Monte Carlo simulations are feasible and some are 
not. The feasible solutions are kept, and the infeasible solutions are discarded 
and disregarded. The set of objective function values of the solutions that are 
kept represent the distribution of possible objective functions values. In the typ-
ical business problem, they are profits derived from random inventories, un-
planned machine failure, spoilage, pilferage, etc. The analysis of these profits 
represents business risk analysis. It tells management the long term expected 
profit to plan for. It also tells the management the probability of low to no prof-
its for which cash flow may be disrupted. If the expected profit is positive and 
acceptable, arrangement can be made to tide the business over during lean times. 

The coefficients of the decision variables in the constraints of the LP are held 
constant throughout. They represent the rate at which the resources are con-
sumed. They are technological coefficients. They cannot change randomly. They 
may change very slowly as new technological inventions occur and are imple-
mented. But the time for this is well outside the planning horizon of the LP. 

1.2. Preparing Next Generation Business Analysts  
and Policy Planners 

According to Schoenherr et al. [6] the most needed skills for data scientists are 
forecasting, optimization, statistics, economics, mathematical modeling and ap-
plied probability. Modern world economies are arguably increasingly complex, 
more data enriched, technologically advanced, have gotten more predictable in 
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some ways, yet are often impacted by uncertainties of various kinds across in-
dustries. Examples of such uncertainties include unpredictable fluctuations in 
demand, supply of outputs, raw materials, and supply chain stability and resi-
lience. There are also the issues of scalability due to spatial or other constraints 
such as a pandemic etc. across various sectors (Tran and Smith [7]; Marino and 
Marufuzzaman [8]; Ivanov and Das [9]; Steen and Brandsen [10]). These uncer-
tainties give rise to the need for research, teaching and learning of various 
stochastic optimization techniques. One important aspect of stochastic opti-
mization is that it is inherently nonroutine in nature and hence does not lend 
itself readily to algorithms or automation. Due to the limitations in applying 
artificial intelligence to stochastic optimization, combined with increased un-
certainties of various kinds in the natural and built environment, there is an 
increased need for training new generations of decision science practitioners 
who will have practical proficiency in stochastic programming. All these including 
the aforementioned diverse and contextual uncertainties trigger changes in con-
straints. 

Mirkouei et al. [11] mentioned a four-step process-based framework that 
emphasizes engaging students of manufacturing engineering and allied discip-
lines in effective psychomotor learning for leveraging a participatory pedagogy. 
In the framework proposed there, the four steps suggested were as follows: de-
fine learning outcomes, create relevant and attractive instructional resources, 
create active learning resources, and develop a summative assessment mechan-
ism. Researchers found positive benefits from using customized information 
technology equipment to promote student hands on learning. Suárez et al. [12] 
reported evidence that professors and students both found interactive Jupy-
ter-notebook, an open-source web application, very effective for teaching and 
learning methods of optimization. Out of various canonical branches of stochas-
tic optimization (Powell [13]), randomized constraint limit linear programming 
is an area that needs to be explored further. In order to groom a new generation 
of decision science practitioners as harbingers of the 4th industrial revolution, we 
must teach students the skills of stochastic optimization. Students must learn to 
cope with and lead the waves of changes continually occurring in the economy 
and society (Gleason [14]). To meet the challenge, we must find innovative and 
more engaging ways to teach our decision science students variants of stochastic 
optimization techniques with the spirit of pedagogic flexibility and resilience. 

1.3. Organization 

The remainder of the paper is organized as follows. Section 2 is a review of re-
lated literature. Section 3 introduces the example problem used for illustration. 
The next section gives the traditional graphical solution. The next section gives 
the traditional algebraic solution and illustrates the new randomized LP solu-
tion. Some mathematical underpinnings are then explored. The final Section 4 
summarizes some conclusions and suggestions for future research. 
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2. Literature Review 

LP as an optimization method can be traced back to the 1940s. Dantzig [15] was 
the pioneer of the simplex method for solving LP problems across various activi-
ties, sectors and industries including scientific research, for profit and not-for 
profit business operation management, infrastructure planning, spatial planning 
defense industry planning etc. The LP simplex method helps to solve optimiza-
tion problems with specific objective functions (such as cost minimization, prof-
it maximization, distance minimizing delivery routes planning, multi-plant 
production etc.) subject to input constraints of various forms. Although variant 
methods have been developed to solve large LP problems such as the interior 
point algorithm (Roos et al. [16]), construction of LP using aggregate data (Be-
liakov [17]), the issue of uncertainty in variables or coefficients in the objective 
function seem to have remained largely under-addressed. 

LP is a deterministic global optimization method for finding a global maxi-
mum or minimum optimal solution subject to given constraints. One approach 
to deal with uncertainty is post optimality analysis, also known as sensitivity 
analysis (Higle and Wallace [18]). Sensitivity analysis is a “what if” scenario 
analysis where the effect on the optimal solution is measured against changing 
values for parameters. Several scholars (e.g. Eiselt et al. [19]; Hladík [20]; Panik 
[21]) discussed aspects of sensitivity analysis in greater detail. 

Some degree of uncertainty is allowed under the fuzzy programming method 
where the desired objective value is assumed to be ambiguous (Bellman et al. 
[22]; Inuiguchi et al. [23]; Sakawa [24]). Another approach for dealing with un-
certainty is Stochastic Programming (SP), as defined by Dantzig and Thapa [25] 
in a quest for deriving “the best plan of action (in some expected-value sense) 
while hedging against the myriad of possible ways the best laid plans can go 
awry”. These stochastic methods utilize the expected values of the objective func-
tion coefficients when the coefficients are unknown during the decision-making 
processes. 

Talluri et al. [26] exposited randomized linear program (RLP) for computing 
network bit prices, where itinerary demand realization sequences were simulated 
and solved using deterministic linear programming (DLP). They explained that 
RLP is only a little more complicated to implement than DLP. Wajs et al. [27] 
conducted risk analysis using DLP and applied Monte Carlo simulation model-
ing technique to explore greatest effects on the total remediation cost for a land-
fill area in a city in Poland contaminated from municipal solid waste disposal. 
Adler et al. [28] offered an extension of Clarkson’s [29] randomized algorithm 
for a LP to a general scheme for finding solutions to convex optimization prob-
lems. The aim is to speed-up the simplex method (or any vertex enumeration 
method) for a LP when the number of constraints is much larger than the num-
ber of variables. Mohammed and Kassem [30] consider a product mix problem 
in which several scenarios are presented to examine the variant impacts on rev-
enue, profit, materials cost, resources’ utilization and productivity. However, 
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these stochastic methods do not consider solutions for all values of the random 
coefficient. 

Cai, et al. [31] employ an interval linear programming (ILP) method to derive 
optimum alternative solutions under multiple uncertainties related to energy 
sector management with the help of a fuzzy random interval programming 
model. They contend that solutions obtained will be helpful for more efficient 
enterprise resource planning (ERP) systems. The ERP systems basically provide 
support to various units of an enterprise (such as production, marketing, and 
sales) so that they can access, share and integrate necessary data simultaneously 
as required. Wu [32] proposed three experimental models of robustness under 
uncertainty regarding global supply chain management for manufacturing indus-
tries. Pourjavad and Mayorga [33] proposed a fuzzy multi-objective mixed-integer 
LP model which is at first transformed into multi-objective mixed integer LP by 
a weighted average method. Then, variants of fuzzy programming approaches 
are utilized to find solutions for a sustainable supply chain under uncertainty. 
However, the foregoing cited research papers do not create LP methods that al-
low for simultaneous randomization of the constraint limits from any probabili-
ty distribution. 

3. The Linear Program 

The general LP may be written as 
Maximize Tp x z=  
Subject to Ax b≤  

0x ≥  
where ( )1 2 3, , , , nx x x x x=   is a vector of decision variables,  

( )1 2 3, , , , np p p p p=   is a vector of independent profit contributions,  
( )1 2 3, , , , mb b b b b=   is a vector of constraint limits, and  

A is an m × n matrix of constants. 
Consider an example taken from Evans [[1], p. 474]. The name of the business 

is Slenka Ski. Slenka Ski produces two types of Skis, Jordanelle and Deercrest. 
The per unit profit contributions are $ 50 and $ 65 respectively. There is a fabri-
cation constraint of 84 hours and a finishing constraint of 21 hours. Jordanelle 
uses 3.5 hours of fabrication time and 1 hour of finishing time. Deercrest uses 
4.0 hours of fabrication time and 1.5 hours of finishing time. There is also a 
market mix requirement that Deercrest production must be no less than twice 
that of Jordanelle. As always, there are the nonnegativity constraints. 

Let Jordanelle be represented by X1 and Deercrest be represented by X2. 
SLACK SLOPE 

Maximize  1 250 65X X+  
Subject to  1 23.5 4.0 84X X+ ≤  23.625 −0.875   (Fabrication) 

1 21.0 1.5 21X X+ ≤  0.0  −0.667 Binding (Finishing) 

1 22.0 1.0 0X X− + ≥  0.0  2.0  Binding (Market mix) 

1 2, 0X X ≥          (nonnegativity) 
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The deterministic graphical solution is given in Figure 1, where X1 = 5.25, X2 
= 10.5, and the Objective function value (profit) = $ 945. The fractional amounts 
of X1 and X2 are interpreted as work in progress. 

Graphical Solution 
 

 
Figure 1. Graphical solution of a deterministic LP. 

 
Algebraic Solutions 
The first algebraic solution will be created in an excel spreadsheet and ex-

ecuted by the add-in SOLVER. A spreadsheet for the production of Slenka Skis 
is shown in Figure 2. 

Deterministic solution 
Rewriting the LP in terms of the excel fields, the problem formulation is 
Maximize Profit =  D22 B9 B14 C9 C14= ∗ + ∗  
Subject to   D15 B6 B14 C6 C14 D6= ∗ + ∗ ≤  

D16 B7 B14 C7 C14 D7= ∗ + ∗ ≤  
D19 B8 B14 C8 C14 D8= ∗ + ∗ ≥  

Initially, all parameters of the LP, including the objective function coefficients, 
are assumed to be known at the time that a decision is to be made regarding the 
optimal values of the decision variables. The original objective coefficients (not 
shown to save space) are 50 for Jordanelle and 65 for Deercrest. This LP was 
solved by the excel add-in SOLVER. The solution is ( )1 B14 5.25X = = , 

( )2 C14 10.5X = = . The profit for this configuration is D22 = SUMPRODUCT 
($B$9:$C$9, $B$14:$C$14) = $ 945. See the LP in the top left corner of Figure 2. 

Monte Carlo Simulation 
The Monte Carlo simulations are based on 100 sets of two constraint limits. 

To save space 30 are shown in Figure 2. The fabrication constraint is assumed to 
be normally distributed with a mean of 84 hours and standard deviation of 1 
hour. The finishing constraint is assumed to be normally distributed with a 
mean of 21 hours and a standard deviation of 1 hour. The simulations were re-
peated with standard deviations of 5 hours for both constraints. SOLVER is ex-
ecuted for each combination of constraint limits. In each case the profit is com-
puted and saved. These profits are used to construct histograms of profit distri-
butions. 
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Figure 2. Monte Carlo computer simulations of LP profit for random constraint limits. 
 

Profit Distribution 
The profit distributions are given in Figure 2 for a fabrication time constraint 

limit that is normal with mean 84 hours and standard deviation 0.1 hour. The fi-
nishing time constraint limit is normal with mean 21 hours and standard devia-
tion 0.1 hour. The resulting mean profit is $ 1049 with a standard deviation of 
$ 4 and the shape is similar to a normal distribution. The simulation is repeated 
with both constraint limit time standard deviations changed to 1 hour. The re-
sulting mean profit is $ 939 with a standard deviation of $ 51 and the shape is 
right skewed, similar to a chi-square distribution. 

Mathematical Underpinning 
Let us consider the effect of the randomness in the constraint limits on profit. 

The constraints themselves are independent of each other. One constraint limit 
does not affect the other. But their effects can combine via the structure of the 
LP to impact the profit. Consider the possibility of a multiplicative combination. 
To investigate this possibility, consider 2Y X= , where X > 0 is profit. Then, the 
cumulative distribution of Y is 

( ) ( ) ( ) ( )2
YF x P X x P X x P x X x= < = < = − < < , 

where P denotes probability. 
That is, ( ) ( ) ( )Y X XF x F x F x= − − . 

Then, ( ) ( ) ( ) ( )1 1 , 0
2 2Y Y X Xf x F x f x f x x

x x
′= = + − > . 

If ( )~ ,X N µ σ , ( )
( )2

221 e
2

x

Xf x
µ

σ

σ

−
−

=
π

 

Then, ( )
( ) ( )2 2

2 22 21 1 1 1e e , 0
2 2 2 2

x x

Yf x x
x x

µ µ

σ σ

σ σ

− − −
− −

= >
π π

+ .  
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And, if ( )~ 0,1X N  then 

( ) 2 21 1 1 1e e , 0
2 2 2 2

x x
Yf x x

x x
− −+= >

π π
, 

( ) 21 e , 0
2

x
Yf x x

x
−= >

π
. 

Therefore, X2 follows a chi-square ( 2χ ) distribution with 1 degree of freedom. 
As it turns out, examination of the profit histogram for 1σ =  hour shows 

that it bears resemblance to the theoretical 2χ  distribution. Also, it is well 
known that as the ratio of the mean to the standard deviation ( µ σ ) increases, 
the 2χ  distribution approaches a normal distribution. As it turns out, the prof-
it histogram for the smaller 0.1σ =  hour bears resemblance to the theoretical 
normal distribution. In either case, high profit is unlikely to be a source of busi-
ness concern. So, the amount of spread represented in the histograms is an indi-
cator of risk of low profit, albeit temporary. These are consistent with the above 
formulated normal/chi-square relationship. In the long run, low profit periods 
will be offset by high profit periods. This implies that the simple solution to 
guard against problems of cash flow is to arrange a bank overdraft protection 
plan. 

Continuing on in this investigation, consider the profit distributions when the 
constraint limit standard deviation is increased to 5σ =  hours. The resulting 
mean profit is $ 943 with a standard deviation of $ 224 and the shape is similar 
to a uniform distribution. The distribution is flattening. As the standard devia-
tion is increased to 10σ =  hours, the mean profit is $ 1010 with a standard 
deviation of $ 335 and the shape is skewed to the left. As the standard deviation 
is increased to 20σ =  hours, the mean profit is $ 978 with a standard deviation 
of $ 450 and the shape once more appears normal. In retrospect, after reviewing 
all five histograms (A-E), they appear to follow a skew generalized normal dis-
tribution. Skew generalized normal here means extension of skew normal 
(O’Hagan and Leonard [34]; Ashour and Abdel-hameed [35]; Azzalini [36]). 
The distribution includes a shape parameter (Hosking and Wallis [37]), that de-
termines the amount and direction of skew. To obtain these results, the shape 
parameter must be a function of the standard deviation. Positive shape for left 
skew, negative shape for right skew and zero shape for symmetric normality. 
Segment (A) appears normal. Segment (B) is right skewed. Segment (C) appears 
uniform and contains a point of inflection as the skew goes from right to left. 
This uniform segment bears resemblance to the special extreme platykurtic case 
of the generalized normal distribution when the top is flat (Figure 4). Segment 
(D) is left skewed. Segment (E) appears normal. The distributions (A-E) appear 
to be five from a family of distributions comprising a skew generalized normal 
distribution. 

This family is depicted in the theoretical skew generalize normal distributions 
in Figure 3. The probability density function (PDF) is 
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( )
( )
y
x− −

ϕ
α κ ξ  

where 

( )1 log 1 if 0

if 0

x

y
x

 − 
− − ≠    = 
− =

κ ξ
κ

κ α

ξ κ
α  

and φ is the standard normal PDF ( ) 2 21 2 e y−π . 

The cumulative density function (CDF) is ( )yΦ  where Φ  is the standard 
normal CDF, ξ  represents location (real), α  represents scale (positive, real) 
and κ  represents shape (real). The symmetric center segment in Figure 3 
( 0κ = ) is further designed per the special case of the uniform flat top distribu-
tion from the generalized normal distribution in Figure 4 ( 8β = ). 

 

 
Figure 3. Skew generalized normal distribution. 

 

 
Figure 4. Generalized normal distribution. 

 
The generalized normal distribution is shown in Figure 4. The PDF is 

( )( ) ( )2 1 e x βµ αβ α β − −Γ , where µ  represents location (real), α  represents 
scale (positive, real), β  represents shape (positive, real) and Г denotes the 
Gamma function. 

4. Conclusion 

Randomized constraint limits are more realistic than deterministic limits assumed 
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to be known ahead of time. Numerous contingencies can result in changes in 
production limitations. For the case of normally distributed LP constraint limits, 
the simulated profits follow what appears to be a skew generalized normal dis-
tribution that approaches a normal distribution. When the variance is small or 
large the distribution is bell shaped. In between these, the shape is flat topped, a 
special case of the generalized normal distribution. Risk can be managed by ar-
ranging a bank overdraft plan that compensates for the risk implied by the profit 
distribution. The results of this research are quite a fascinating and unexpected 
outcome. Instructional one might say. The spreadsheet design for randomizing 
and solving the LP constraint limits expands the use of excel in teaching Monte 
Carlo simulation and risk analysis to graduate students in business analytics with 
no specialized programming language required. In this paper the excel add-in 
SOLVER is user executed for each combination of constraint limits. One might 
investigate the creation of an embedded VB script to automate the execution of 
SOLVER and may incorporate the same functionality in Jupyter-notebook. Fu-
ture research might consider other constraint limit distributions. 
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