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Abstract 
This paper presents a simple Josephson-junction circuit with two parameters 
(inductance and capacitance) which can be tuned to represent different ener-
gy landscapes with different physical properties. By tuning this quantum cir-
cuit through external accessible elements we can move from two to three and 
more energy levels depending on the parameter setting. The inductance, the 
capacitance as well as the external voltage (driving terms) condition the 
number of relevant energy levels as well as the model to be used. We show 
that the quantized circuit represents a multi-state system with tunneling in-
duced by the Landau-Zener and Landau-Zener-Stückelberg transition. The 
special cases of single crossing and multi-crossing models are thoroughly stu-
died and the transition probability is obtained in each case. It is proven that, 
the crossing time as well as the relaxation time affect drastically the transition 
probability; the system mimics a single passage for short relaxation and a 
multiple passage problem for large relaxation. The nonlinearity of energy le-
vels modifies the transition probability and the derived adiabatic parameters 
help to redefine the Landau-Zener probability. The observed constructive and 
destructive interferences are parametrically conditioned by the initial condi-
tion set by the inductive branch. Moreover, the total population transfers as 
well as the complete blockage of the system are obtained in a permissible 
range of parameters only by changing the values of the inductance. Therefore, 
the system models a controllable level-crossing where the additional branches 
(inductive and capacitive) help in designing the number of states, the type of 
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interferometry as well as the control of states occupation. 
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1. Introduction 

The Josephson effect, predicted in 1962 by B.D. Josephson [1], is a phenomenon 
that occurs when two superconductors are separated by a very thin layer of 
non-superconductive material. A superconducting current passes through the 
barrier and the electrical properties of this system are very precisely defined [2]. 
This current depends on the phase difference between the superconductors and 
it has been observed experimentally by P.L. Anderson and J.W Rowel [3] and 
called Josephson’s current [4]. Furthermore, if we apply a constant voltage to 
this junction, an alternating current is created and it was experimentally demon-
strated by S. Saphiro in 1963 [5]. 

It has been demonstrated that the well-known Josephson effect is a result of 
the quantum tunnelling [2] [6] [7] [8] [9]. In fact, Josephson’s effect is a ma-
croscopic observation of the tunnelling effect of condensed electron pairs be-
tween the Fermi surfaces of two metals through a thin barrier. From another 
perspective, quantum tunnelling is a well-known phenomenon where a particle 
crosses a potential barrier higher than its own energy [10]. There exist applica-
tions in many fields of physics, chemistry and biology [11] [12]. The quantum 
tunnelling phenomenon is the key point of quantum computing and has also 
been used in characterizing dynamical behaviour across Josephson junctions 
[13] [14] [15] [16]. The phenomenon gained a lot of interest in the two last dec-
ades [17] in the investigation of properties of superconducting devices [18]-[27]. 
One of the prominent applications of the Josephson junction is found in quan-
tum computing where the resulting physical system when modelled as a qubit is 
helpful in implementing logic gates, as well as quantum transistors [28] [29]. 
This is achieved by modelling Josephson circuits as two or multi-state systems 
[30] [31]; some examples include traditional two-state systems [32], flux qubits 
[33], charge qubits [34], Cooper-pair box [35] [36] and three state systems [37]. 
In these set-ups, due to external sources (current or voltage), the tunnelling oc-
curring is of the Landau Zener type. 

In the early 1930’s, Landau and Zener developed a possible transition between 
two similar levels because of a control-value scanned at the point of minimum 
energy splitting [38] [39] [35]. The Landau-Zener tunneling is at the basis of 
several quantum mechanical processes, and it was recently discovered in period-
ic structures, with applications in driven superlattices [40], current driven Jo-
sephson junction [41] and bosonic systems [42] [43] [44]. The Landau-Zener 
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tunneling occurs at the crossing of two energy levels which move away due to a 
weak interaction [35], and it has largely been investigated for particular confi-
gurations such as external field influence, periodic modulation [45] [46], 
non-linear models [42] [43] [47] [48], multi-state models [37] [49] and mul-
ti-crossing model in its multiple configurations (real or fictitious crossing) [50] 
[51] [52] and it still gains a lot of attention due to its prominent uses. 

From another perspective, level crossing systems often show avoided energy 
level (anti-crossing) which can be handled using an external control-value [53]. 
When the energy level in a given region has a double crossing, the accumulation 
phase between transitions generates either a destructive or constructive interfe-
rence in the time domain, called Stückelberg oscillations [54] [55]. When such 
a level crossing system is subjected to a periodic driving force, the physical 
observables of the system show a periodic dependence that mimics the Lan-
dau-Zener-Stückelberg interferometry [51]. Landau-Zener-Stückelberg interfe-
rometry is therefore the realization of an interferometer with an energy spec-
trum having at least two bands or branches, separated by a gap [56]. The Lan-
dau-Zener Stückelberg interferometry has been demonstrated for supercon-
ducting qubits [53] [57], a Cooper-pair box [35] [36], nitrogen deficiency centers 
[58], and quantum dots [59] [60]. The Landau-Zener-Stückelberg interferometry 
is of major importance in quantum computation since it helps in the design of 
controllable modulus and also confers a better read out for quantum logic gates 
[50] [61]. 

In the present work, we shall show that a simple electrical circuit with a single 
Josephson junction assisted by controllable parameters (inductance and capa-
citance) and under a periodic force will present the abovementioned phenome-
na. The main objective of this work is to show how the resulting modified Jo-
sephson junction can model either a controllable two or multi-state system 
where quantum tunnelling is induced by the Landau-Zener scenario. The re-
sulting quantum interferometer is defined and the condition for constructive 
and destructive interferences is investigated. 

The rest of this paper is organized as follows: Section 2 presents the electronic 
circuit and describes the elements. In Section 3, we focus on the construction of 
the Hamiltonian of the system based on the range of values of controllable pa-
rameters. Section 4 is devoted to quantum tunnelling and the evaluation of state 
occupation in different set-ups (two-state and multi-state); interference is also 
investigated. Section 5 presents the summary of the work. 

2. Circuit and Model: Description of Circuit Elements 

The electrical circuit that we are analyzing is given by the following graph (See 
Figure 1) as presented in [62]. 

Summarizing, a single-component Josephson junction (JJ) (blue part of the 
circuit [63]-[68]) connected in parallel to a coil of inductance L, which is part of 
the C1-L-C2 tank circuit series with a periodic force, while the Josephson junction,  

https://doi.org/10.4236/jamp.2020.811192


P. Nguenang et al. 
 

 

DOI: 10.4236/jamp.2020.811192 2572 Journal of Applied Mathematics and Physics 
 

 
Figure 1. Josephson junction based circuit [62]. 

 
the nonlinear element, plays the feedback loop [62]. Applying Kirchhoff’s law on 
the circuit on Figure 1, we obtain the following expressions: 

( ) ( )0

2 jt V tφ
Φ

=
π
                        (1a) 

( ) ( ) ( ) ( )

( )0

2 sin
2 2

2 1 ,
2 2

js
j

j j

j

V te t iCV t
C C C R C

C t p
C C LC

φ

φ

 
= − −  +  

Φ − − +  π 





            (1b) 

where φ  and jV  are respectively the phase and the voltage of the Josephson 

junction and the constant p is expressed as: ( ) ( )1 10 0p i
LC C

φ= − . The capaci-

tors 1C  and 2C  are assumed identical and equal to C. 0

2
Φ
π

 is the quantum 

flux. 
To facilitate discussions, we define new variables: ( )1x tφ= ,  

( ) ( )0
1 2 j jP t C V t=

π
Φ

, 0e  is the amplitude of 
( )
2

e t
, tτ = Ω , 02

2 2j

C
C C

β
Φ

=
+ π

, 

1
sia

C
= , 

2
0

2 jCµ
Φ =  

 π
, 0

3
1

2
a

LC
Φ
π

= , such that the circuit represented in Fig-
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ure 1 is well represented by the dimensionless generalized coordinates: 

( ) ( )
( ) ( ) ( )( ) ( )( )
1 1

1 0 1 1 3 1sin sin .

x P

P e a x a x p

µ τ τ

τ β τ τ τ

=

= Ω − − −





         (2) 

Here, jC  is the capacitance of the capacitor parallel to the Josephson junc-
tion component. It is the first controllable parameter that conditions the value of  

the charging energy 
2

2µ
  as well as the energy stored in the junction 1aβ  

through parameters β  and µ . 

L is the inductance of the coil parallel to the Josephson junction component; it 
is the second controllable parameter that conditions the shape of the potential 
energy and therefore, the level configuration as well as the number of states 
through the 3a  parameter. 

The parameter p carries the initial conditions in the inductive branch. It is 
helpful in the design of constructive and destructive interferences. ( )0 sine τ  is 
the periodic force (external source) that induces the time dependence of energy 
levels and conditions the avoided crossing on the energy-time graph.  

3. Hamiltonian Modelling  

To study the microscopic phenomenon that conditions the behaviour of the cir-
cuit, we focus on Hermitian contributions and ignore dissipative terms (that 
means jR  is very large). Representing Equation (3) as the Hamilton’s equation 
with generalized coordinates ( )1 1,x P , the Hamiltonian of the system is given by: 

( ) ( )( ) ( )
2

2 1
1 1 1 1 1 1 3

1, cos ,
2 2

xH x P P p f t x a x aβ β β
µ

= + − + +        (3) 

and the Lagrangian 

( ) ( )( ) ( )
2

2 1
1 1 1 1 1 1 3

1, cos .
2 2

xL x P P p f t x a x aβ β β
µ

= − − − −        (4) 

Here, 1x  plays the role of coordinates while 1P  is the particle momentun 
and from canonical quantization (first quantization) [ ]1 1,x P i=   and

1
1

P i
x
∂

= −
∂
 . From the Lagrangian of the system, we deduce in terms of 1x  the 

dimensionless confining static potential: 

( ) ( )( ) ( )
2
1

1 1 1 1 32 2 2

2 2 2cos .
2
xU x p f t x a x aµ µ µβ β β β= − + +

  

      (5) 

The shape of the confining potential is conditioned by the tunable parameters 
(inductance L, capacitance C and jC ) through parameters β , 1a , µ  and 

3a ; two particular cases are observed: 
Firstly, the effective charging energy of the system is greater than the effective 

energy stored in the Josephson junction ( 12

2 1aµ β 



 and 1 3a a ). Here, the 

last two terms of the Hamiltonian act as a perturbation to the self consistent part. 
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In the second case, the effective charging energy of the system is smaller than 

the effective energy stored in the Josephson junction ( 12

2 1aµ β 



 and 1 3a a ). 

Here, the last two terms of the Hamiltonian can no more be treated as a pertur-
bation but as a part of the self consistent Hamiltonian. It is instructive to men-
tion that the condition 1 3a a>  is very crucial for the appearance of multiple  

potential wells; if 1 3a a≤  and no matter the value of 12

2 aµ β


, we obtain a  

modified single harmonic potential and therefore no tunnelling barrier. These 
situations are depicted in Figure 2 and Figure 3. 

In Figure 2, we present the case where the effective charging energy of the 
system is greater than the effective energy stored in the Josephson junction  

( 12

2 1aµ β 



). The diagram presents several minima with different energies;  

each minimum represents a possible phase state and the system can be modelled 
as a multi-state one. 

In Figure 3 ( 12

2 1aµ β 



), we find only two relevant energy minima; the  

remaining curvature do not present any dept and cannot be considered as a con-
fining well. The system can be modeled as a two-state system with different 
ground state energy [69]. 

It is instructive to mention that, the number of states in the system is conditioned  
 

 

Figure 2. Schematic representation of the potential with respect to 1x . 2

2 0.25µ β =


; 

1 2a = ; 1p = ; 3 0.01a = . 
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Figure 3. Schematic representation of the potential with respect to 1x . 2

2 9µ β =


; 

1 2a = ; 1p = ; 3 0.5a = . 
 

by the inductance value. From a deeper investigation, if 3

1

1
a
a

> , the system 

mimics a simple harmonic potential, the system is devoid of potential barrier. If 

3

1

0.1284374 1
a
a

< <  ( 3 1a a< ), the system presents two energy minima; the sup-

plementary curvature do not present any deepness and the confining potential is  
a double well; this is helpful in designing a two-state system. If  

3

1

0.0709134 0.1284374
a
a

< <  ( 3 1a a< ), the system has four energy minima and 

can therefore be modelled as a four-states system; 3

1

0.0490296 0.0709134
a
a

< < , 

we have six minima so a six-states system; 3

1

0.0374745 0.0490296
a
a

< < , the 

system presents eight-states; we can easily realize that the smaller the factor 3

1

a
a

,  

the larger the number of energy minima and consequently the number of states. 
If that factor is exceedingly small, we have an infinite number of states describ-
ing the situation in Figure 2. 

These particular behaviours are obtained from a single Josephson junction 
circuit only by playing on tuneable parameters that are the inductance L and the  

capacitance C and jC ). Therefore, when 12

2 1aµ β <


 we resume the condition 
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as 
32

0

4 2
2

j

j s

C
C C i

 
< + 

π
Φ 



; for 3 1a a< , we design as 0

2 SLi
φ
π
< ; here, the effective  

charging energy of the system is larger than the effective energy stored in the 
junction. This condition is achieved by reducing the frequency Ω  of generator 
for the process to be adiabatic and reducing the capacitance jC  and enhancing  

the inductance L. When the capacitance jC  is enhanced, 
4

2
j

j

C
C C+

 is large;  

the effective energy stored in the junction becomes large and can no more be 
considered as a perturbation; the number of states of system is reduced and a  

two-state system is achieved for 3

1

0.1284374 1
a
a

< <  with the confining poten-

tial represented by a double well (see Figure 3). 

3.1. Large Effective Charging Energy 

When the effective charging energy of the system is greater than the effective 

energy stored in the Josephson junction then 12

2 1aµ β 



 and 1 3a a . 

In this situation, the shape of the potential is given in Figure 2 and the Ha-
miltonian is given by 

( ) ( )( )
2

2 1
1 1 1 3 1

1 cos .
2 2

xH P a x a p f t xβ β β
µ

= + + + −           (6) 

Since 12

2 1aµ β 



 and 1 3a a  then, the two last terms of the Hamiltonian 

are considered as a perturbation and the unperturbed part can be labeled as 0H  
therefore, 

0 1,H H V= +  
where 

( )2
0 1 1 1

1 cos ,
2

H P a xβ
µ

= +
 

( )( )
2
1

1 3 1.2
xV a p f t xβ β= + −

 
To quantize this Hamiltonian, we use the displacement operator and write 

down the wave function as follows: 

( ) ( ) ( )( )1 1 1, , exp d .ix t x t p f t x tψ ϕ β = − −  ∫


            (7) 

The effective Hamiltonian of the perturbed system is reduced to: 

( )( ) ( )
2

2 1
1 1 1 3

1 cos ,
2 2

xH P F t a x aβ β
µ

= − + +             (8) 

with 

( ) ( )( )0 sin d .F t p e t tβ= − Ω∫                    (9) 
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The Schrödinger equation of the unperturbed part is 

( )2
1

2 2 2

2 cos2
0.m m

m

a xE
x

µβψ µ
ψ

 ∂
+ − = 

∂   

             (10) 

Because of intrinsic parity of the potential, the solution is characterized by an 
even function. The solution of this equation is the well known periodic Mathieu 
function [70] given by 

1
2

2
, ,

mm i
aACe xµβ

ψ  =  
 

                    (11) 

or in terms of series 

( ) ( )1
2

0

2
cos .

m

m
i n

n

aCe A mxµβ∞

=

 =  
 

∑
  

The unperturbed wave function is then a linear combination of cosine func-

tions; since 1
2

2
1

aµβ




, the energy of the unperturbed part is [71] [72]. 

( )
( )

2
12

2 4 2

22
2 1

m aE
m

m
µβµ

+
−



                    (12) 

or 

( )
( )

22
12

2 22 1m

a
E m

m
µ β

µ
+

−





 . 

The second part of the energy is just the perturbation (very small) and the 
system mimics a high energy quantum rotor. From the wave function in Equa-
tion (11), we can build the solution of the system inducing the perturbation ( 1V ) 
as a linear combination of cosine functions but with variable coefficients. 
Therefore, 

( )
cos .m

m
m

A t
mxψ

π
= ∑                      (13) 

This wave function satisfies the time dependent Schrödinger equation; which 

when multiplied by the factor 1 cos nk
π

 and the integral over 0 2x π   

one has 

( ) ( )
( )

( )( )

1
1 1 3 2

2

1
2

.
2

n n n n m
m

n
n

ai A t A A a A
t n m

m F t
A

β
β

µ

− + −
∂

= + +
∂ −

−
+

∑

∑







        (14) 

We observe that the additional coupling factor(
( )3 2

1a
n m

β
−

) decays quickly  

when the difference between quantum numbers ( m n− ) is large; since 3a  is 
chosen to be very small, only the nearest neighbour are relevant and enables us 
to write the effective Hamiltonian 
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( )† † †
1 1 ,m m m m m m m

m
A A A A A A− += + ∆ +∑                (15) 

or in terms of states: 

( )| 1 | 1m
m

m m m m m m= 〈 +∆ 〈 − + +∑             (16) 

with 

( )( )
2

2
3

4 1 ,
3 2m a m F tε β

µ
= + −

π


 
31 .

2 2
aa ββ

∆ = +
 

Focusing only on states 0m = , 1m =  and 1m = − , the electronic circuit 
mimics a three-state system: 

1

0

1

0
.

0

− ∆ 
 = ∆ ∆ 
 ∆ 


 


                      (17) 

1− , 0  and 1  are the energies of the three relevant states; ∆  stands for 
the energy gap. 

If all the states are considered as relevant, the system mimics a multi-state 
system with an infinite number of states represented by the Hamiltonian as fol-
low: 

( )| 1 | 1m
m

m m m m m m= 〈 +∆ 〈 − + +∑ 
 

3.2. Low Effective Charging Energy 

In the case where the effective charging energy of the system is less than the ef-

fective energy stored in the Josephson junction, the factor 32

2 aµ β


 is large and  

the shape of the confining potential changes drastically (double well potential 
Figure 3). This is achieved by reducing the value of the capacitance C and the 
inductance L. The Hamiltonian of the system is given as in Equation (8) 

To analyse the form of the wave function, we take 

( )2
0 1 1 1

1 cos ,
2

H P a xβ
µ

= +                   (18) 

the corresponding eigenfunctions of this part are periodic Mathieu wave function: 

( ) ( )cos ,m
im n

m
Ce A q mx

∞

= ∑
 

but in this configuration 12

2 1aµ β 



 therefore, the energy spectrum of the 

system [71] [72]: 

( )
1
21 1

2 2 2

2 4 2
2 1 ,m a an

µ µβ µβ   − + +   
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so 
1
2

1
1

12 , .
2 8m

aa nβ β
β

β
µ

  + Ω + Ω =   
   

 
             (19) 

The latter corresponds approximatively to the solution of a particle in a har-
monic potential. The eigenfunction of the whole system can then be described 
by the Hermite polynomial 

( ) ( )
1

2 22
exp .

22 !n nn

xx H n
n
β βφ β

 − 
  

   π
             (20) 

Since the junction operates at very low temperature, only the ground state 
( 0n = ) is relevant. Observing Figure 3, we have two states corresponding to the 
ground state of each potential well and described by the left and right wave func-
tions 

( )
1

22 2exp ,
2R

k ky yφ
  

= − 
π


  

                 (21) 

( )
1

22 2exp ,
2L

k kz zφ
  

= − 
π


  

                 (22) 

with 

1
2

k αµΩ =  
 

 and ( )2 2 2 2
3 1 3a a aα

β α
µ

Ω = − − . 1y x α= +  and 

1z x α= −  are two new variables that help to center the wave function with the 
bottoms of the double well. The bottoms are located at 1x α= ± . 

The global wave function of our system is now written as a superposition of all 
possible states: 

( ) ( ) .R R L LC y C zψ ψ ψ= +                   (23) 

The wave function (24) can now be used and the time dependent Schrödinger 
equation for the perturbed system gives: 

( )

( )

0

0

d
,

d
d

,
d

L
L L R

R
R R L

Ci t C C
t

Ci t C C
t

= + ∆

= + ∆








                   (24) 

with 

( )( )0 ,L p f tαβ= − − 
 

( )( )0 ,R p f tαβ= + − 
 

( ) ( )
2

2 23
0 1

1exp exp 1 2 ,
2 4 4
a

k a k
k k

β
α β α

µ
  ∆ = − + − + −  

  



 
where α  is the solution of the nonlinear equation ( )1 3sin 0a aα α− = ; the 
term 2α  is the width of the barrier between the two wells. 0  is a constant 
energy shift with no relevance as far as probability is concerned. 
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The Hamiltonian of the system is then written as follows: 

( ) ( ) ( ) ( )† † † †
0 0 .eff L L L R R R R L L Rt C C t C C C C C Cα α= + + ∆ + ∆        (25) 

This is the Hamiltonian of a two-state system that can also be rewritten in 
terms of Pauli matrix 

( )( ) 0 0 .eff z xp f tαβ σ σ= − + ∆ +                 (26) 

The system mimics the flux qubit or Cooper-pair box with two relevant states 
[33] [35] [36]. 

4. Quantum Tunneling: Survival and Transition Probabilities 

In order to investigate the quantum tunneling occurring in the system, we focus 
on the two models mentioned above. For each of these configurations, the sys-
tem is isolated and therefore the study related to decoherence are omitted; the 
transition probabilities will be investigated for each cases. 

4.1. Two-State 

The two-state system is obtained when 12

2 1aµ β 



 and 1 3a a . To achieve 

this, we reduce the capacitance jC  as well as the inductance L so that 
2

0
2

4
1

2 2
j s

j

C i
C C

Φ 
 +  π





. The Hamiltonian of the system is given by 

( )( )( )
( )( )( )

† † †
0 0 0

†
0 .

eff L L L R R L

R R

f t p C C C C C C

f t p C C

αβ

αβ

= − − + ∆ + ∆

+ + −

 


 

To solve the problem, we make use of the dynamic matrix approach [73]. We 

introduce the field vector of the system as L

R

C L
C R

ψ
 

=  
 

 with 0

L
R

ψ
 

=  
 

  

being the static field function; we construct the Hamiltonian of the system in 
matrix representation as 

( ) ,H t Gψ ε ψ ψ ψ+ += +                     (27) 

where, ( )
( )( )

( )( )
0

0

0

0

p f t
t

p f t

αβ
ε

αβ

 + −
 =
 − − 




 and  

( )
( )

0

0

0
0

G
α

α
 ∆ 

=  ∆ 
 are respectively the energy and tunneling matrix. The 

equation of motion is given as follows: 

( ),0 .i t Gψ ε ψ ψ= +                      (28) 

Considering the transformation 

( )
0

exp d ,
tiψ ε τ τ ψ

 
→ − 

 
∫


                  (29) 

and with the help of the Campbell-Baker-Hausdorff Formula [74], the equation 
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of motion expressed through the dynamic matrix is as follows 

( ) ( ),0
0 0

1 exp d exp d ,
t ti iG

i
ψ ε τ τ ε τ τ ψ

   
= −   

   
∫ ∫

  

         (30) 

where 

,0
d ,
dt
ξψ ψ=                          (31) 

with the dynamic matrix being 

*

0
,

0
a

a
ξ

 
=  − 

                        (32) 

and 

( ) ( )( )0 2exp d d ,
t ia p f

i
α αβ τ τ τ

−∞

∆  = − 
 ∫ ∫

 

            (33) 

We find the properties and exact solution of the transition matrix MT  of this 
problem. The analytical expression of MT  is obtained from the solution of: 

( )0 0
ˆexp .MT Tψ ψ ξ ψ= =                    (34) 

where T̂  is the time ordering operator. We remark that the Hamiltonian de-
scribes a periodic system. Therefore, if the transition matrix MT  describes the 
evolution of the system after a single period, the evolution after n periods is ob-
tained as the nth power of the transition matrix. Therefore, if T is the period and 
n an arbitrary integer, 

( ) ( ) ( )0 0, ,
nM MT T nT Tψ ψ ψ ψ= =                (35) 

( ) ( ) ( ) ,
nMnT Tψ τ ψ τ+ =                    (36) 

Therefore, the main difficulty is to find out MT  for a single period. To ana-
lyse that term, we plot the diabatic and adiabatic energies of the system in Figure 
4. 

It is seen that we have two crossings, the first playing the role of a beam split-
ter while the second recombine the energy lines giving rise to an interferometer. 
Such a system has been largely studied in the literature [53] [57]. 

The time interval two crossings is known as relaxation time and conditions 
the appearance of interferences. For small relaxation time, the system undergoes 
a diabatic change resulting in a sudden death of the survival probability at the 
effective crossing point. The system mimics a single passage problem that re-
sembles the so-called slow driving regime [51]. On the other hand, for large re-
laxation time, the system undergoes an adiabatic change and saturates prior to 
the second crossing thereby guaranteeing a survival probability. Here, the dy-
namic matrix of the system can be decomposed and reordered in term of cross-
ing time; the later mimics the so-called fast driving regime see ref. [51]. 

Therefore, the solution (34) can be reordered in terms of the two crossing 
times. The field vector of the system is given by 
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Figure 4. Diabatic and adiabatic energies versus dimensionless time for a two-state con-
figuration. The dotted black line is diabatic energy and the solid blue line is adiabatic 
energies. 

 

( )( ) ( )( )1 2 0
ˆ exp exp ,T t tψ ξ ξ ψ=                  (37) 

and the transition matrix 

( )( ) ( )( )1 2
ˆ exp exp ,MT T t tξ ξ=                  (38) 

with 

( ) ( )1 2* *

0 0
, ,

0 0
a b

t t
a b

ξ ξ
   

= =   
     

( )0 ( ) 2exp ( ) d d ,
t ia p f

i
α αβ τ τ τ

−∞

∆  = − 
 ∫ ∫

   
( ) ( )0 2 2exp exp ( ) d d .

t i p ib p f
i
α αβ αβ τ τ τ

−∞

∆    = −   Ω  

π

∫ ∫
    

The action of the time ordering operator help in the derivation of the transi-
tion matrix of the system [50] [75]; it is a 2 2×  matrix with elements: 

( ) ( )1 2 1 2 ac11
exp 2 ,MT p p q q i= − − Φ                 (39) 

( ) ( ) ( )( ) ( )1 2 ac 1 2 ac 012
exp exp exp ,MT i p q i q p i i= Φ − − Φ − Φ       (40) 

( ) ( )( ) ( ) ( )( )* *

21 12 11 22
, ,M M M MT T T T= − =            (41) 

with 
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( ) ( )0
ks

2
1 exp 2 1 , exp ,k

k v
e

q i v i
αβ

λ φ
  = − − Λ −  Ω  

π
  

( ) 02
exp 1 , , 1, 2,k

k v
e

p v k
αβ

λ
  = − Λ − =  Ω  

π
  

0 2s 1s
2 , 2 ,pv vαβ φ φ= Φ = + + π
Ω  

here, ac 2s 1s2 vφ φ= − + πΦ  is the phase accumulated after the two passages, 
( )ks ln iφ λ λ λ λ= + + Γ  is the Stock’s phase of the kth passage 

( )2
0 0

0

2
, , .v v

e
v

e
α αβ

λ λ λ
αβ

∆  = = Λ Ω Ω  

               (42) 

are respectively the Landau-Zener and the renormalized Landau-Zener parame-
ters of the system, 

2 20 0 0 0 02 2 2
, , ,J E

e e e e e
v A v W v

αβ αβ αβ αβ αβ     Λ = +     Ω Ω Ω Ω Ω     

π π
    

     (43) 

is the adiabatic power of the system that renormalizes the Landau-Zener para-
meter and appears as a consequence of the nonlinearity of energy level. 

Under these considerations, the survival and transition probabilities of the 
system are respectively given by 

( )( ) ( )2 2 2 2
1 2 1 2 ac 2 1 accos 2 sin 2 ,sP p p q q q q= − Φ + Φ           (44) 

( )2 2 2 2
tr 1 2 1 2 1 2 1 2 ac2 cos 2 .P q p p q p p q q= + + Φ              (45) 

It is instructive to mention that the probability as well as the phase accumu-
lated is different from one passage to another. In the particular case where the 
system is design in such a way that 1 2p p p= =  then the survival and transition 
probabilities become 

( ) ( ) ( )
22 2 2 2

st2 1 4 1 cos ,sP p p p= − + − Φ              (46) 

( ) ( )2 2 2
tr st st ac4 1 sin , .

2
P p p= − Φ Φ +

π
Φ =             (47) 

The system under this condition mimics a Landau-Zener-Stückelberg interfe-
rometer with the accumulated phase being the Stückelberg phase [51]. For the  

critical value 2
2

p = , any anti-crossing behaves like a 50 - 50 beam splitter and 

the probabilities are given by 

( ) ( )2 2
st tr stcos , sin .sP P= Φ = Φ                 (48) 

the system oscillates between the two basis states and the interference in this case 
is constructive. In the particular case where 2v n=  (n being an integer), the 
two passages are identical and therefore for small values of the gap 

1s 2s 0φ φ− =                          (49) 

and the probabilities are given by 
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0 0
tr 2 2

2 2
4exp 2 2 , 1 exp 2 2 ,n n

e e
P n n

αβ αβ
λ λ

       = − Λ − − Λ       Ω Ω       
π π

 

  (50) 

2

0
2

2
2exp 2 2 , 1 .s n

e
P n

αβ
λ

   = − Λ −   Ω   
π

  
The latter mimics the result derived by Zener in the double passage problem 

[76]. In a general frame, constructive interference will be observed when the 
imaginary part of the diagonal elements of the transition matrix tends to zero. 
Therefore the condition of appearance of constructive interference is resumed by 

2s 1s , 0,1, 2,3, 4,v n nφ φ− =π=π+                 (51) 

Furthermore, the parameter v helps to control the style of interference. If v is 
an integer, the transitions are identical and the conditions above are almost sa-
tisfied. The plotting of survival and transition probabilities for constructive and 
destructive interferences is depicted on Figure 5 and Figure 6. 

Figure 5 and Figure 6 show the plotting of survival and transition probabili-
ties versus time for several periods and different values of parameters. From 
Figure 5, it is seen that after any crossing, the probability add up and enable the 
oscillation of probabilities between the two basis states (Stückelberg oscillations) 
[54] [55]. The observation in Figure 5 show that, after any half-period even if 
two consecutive crossings can add up there will be a cancellation that destroys 
the construction of probabilities; the system cannot oscillate between the two 
basis states and the interference is known as destructive. It can be seen that if v is 
an integer, the transitions under the same period are identical ( 1 2p p= ) and the 
phase accumulated become small. We register an oscillation of probabilities (see 
panel 5(a)); for some particular values of v, the second crossing behaves as a ref-
lector but even in those cases the overall probability oscillates and the interfe-
rence is still constructive. From another perspective, the types of interferences 
are conditioned by the parameter v; if v is an even integer, the interferences are 
purely constructive; the probabilities add up and we register an oscillation of 
probabilities. If v is an odd integer, the phase accumulated has a ( )2 1n + π  de-
phasing after a single passage. As a result, we register a certain sending back or 
cancelation after any construction, however, the overall probability oscillates 
around the two basis states with interferences being constructive. In the case 
where v is not an integer, the interferences are almost destructive unless condi-
tion (51) is satisfied. So the appearances of constructive and destructive interfe-
rences are controlled with the turnable parameters (p, L and jC ). 

From another perspective, if the parameter v is larger than the oscillation am-
plitude ( 0p e> ) there is no crossing in the energy spectrum and therefore, no 
tunneling. A similar observation is achieved when we reduce the value of the 
inductance (L). Since the width of the barrier ( 2α ) is an inverse proportion of 
the inductance, any enhancement in the inductance reduces the barrier width. 
The plotting of the probability limit for a single transition against the width of 
the barrier is depicted in Figure 7. 
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Figure 7 shows the variation of the probability limits for a single passage ver-
sus the width of the barrier; the observation of this figure shows that for small 
values of α  the transition probability is unity while the survival probability is 
zero. This only highlights that by reducing the width of the barrier (enhancing  

 

 
Figure 5. Survival Probability (solid blue line) and transition probability (dotted-black 
line) versus dimensionless time (τ ) for a two-state configuration (constructive interfe-

rence) for parameters: (a) 0v = , 02 180eαβ
=

Ω π

; (b) 3v = , 02 180eαβ
=

Ω π

. 
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Figure 6. Survival probability (solid blue line) and transition probability (dotted-black 
line) versus dimensionless time (τ ) for a two-state configuration (destructive interfe-

rence) for parameters: (a) 1.25v = , 02 180eαβ
=

Ω π

; (b) 3.125v = , 02 180eαβ
=

Ω π

. 

 
L), we easily achieve a perfect transfer of the population. However, for large val-
ues of α  the transition probability vanishes while the survival probability is 
unity. This materializes the complete blockage of the system achieved for large 
values of α . It is instructive to mention that, in this model, the total population  
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Figure 7. Survival probability (solid blue line) and transition probability (dotted-black 
line) versus width of the barrier (α ) in a two-state configuration. 

 
transfer as well as the complete blockage are obtained in permissible range of 
parameters only by changing the values of the inductance. 

4.2. Three-State System 

This configuration is obtained under the condition 12

2 1aµ β 



 but with 

1 3a a  where only the two relevant neighbouring states are considered. The 
Hamiltonian of the model is given by a 3 3×  matrix: 

1 0

0 0 0

0 1

0
.

0

− ∆ 
 = ∆ ∆ 
 ∆ 


 

  
with 

( ) ( )
2

0 0cos cos .
2m

e em pt t pt t
αβ αβ

αβ αβ
µ µ

   − Ω + − Ω   Ω Ω   

 

 

 
It can be seen that the energies of the system have both linear and a sinusoidal 

time dependence. The graphical representation of the diabatic and adiabatic 
energies is given in Figure 8. 

This figure shows the plots of diabatic energies (dot black curves) as well as 
adiabatic (solid blue curves) as a function of the dimensionless time; the parameter  

that makes time dimensionless is: 0 t
β

τ =


 ( 0
pαββ

µ
=
 ). The system  
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Figure 8. Diabatic and adiabatic energies versus dimensionless time. The dotted black 
line is diabatic energy and the solid blue line is adiabatic energies. 

 
presents a single crossing and the probability of tunnelling through avoided 
crossing is the quantity of primary interests. This figure also shows the energy to 
be non-linear. The non-linearity may change the transition probability limit. 
When the system is driven slowly, it follows an adiabatic scenario; the resulting 
level crossing system is resumed by a three-state Landau-Zener problem. The in-
vestigation of the tunneling probability is done via dynamic matrix approach [52] 
[75]. In order to find the transition probability, we use the Hamiltonian (17). 

Considering 0

1
0
1

ψ
 − 
 =  
 
 

 being the static field function then, the energy and 

tunneling matrix are respectively given by 

( )
1

0

1

0 0
0 0
0 0

tε
− 

 =  
 
 





 and 
0

0 0

0

0 0
0

0 0
G

∆ 
 = ∆ ∆ 
 ∆ 

 

the master equation becomes 

,0
d ,
dt
ξψ ψ=                          (52) 

with the dynamic matrix being 

*

*

0 0
0 ,

0 0

a
a b

b
ξ

 
 = − 
 − 

                     (53) 
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where 

( )
2

0
1J exp d ,

2

t n

n n
n

i
a z v

i
β τ

τ τ
=+∞

=−∞−∞

 ∆
= + 

 
∑∫

   

( )
2

0
2J exp d ,

2

t n

n n
n

i
b z v

i
β τ

τ τ
=+∞

=−∞−∞

 ∆
= + 

 
∑∫

   

( )
2

0
0 2, 1 , .

2
k

kn
ep v n z

αβαββ
µ µ µ

= = − + Ω =
Ω

 



 
The analytical expression of MT  is obtained from the solution of: 

( )0 0
ˆexp ,MT Tψ ψ ξ ψ= =                    (54) 

where T̂  is the time ordering operator. With the help of Wick’s theorem and 
Dyson series [77] [78] [79] [80], we compute the latter equation and obtain 

11 12 13

21 22 23 0

31 32 33

,

M M M

M M M

M M M

T T T
T T T
T T T

ψ ψ
 
 

=  
 
 

                   (55) 

where 

( )( )( )00
11 00 01

00 1

1 1 exp ,MT
λ

λ λ
λ λ

= − − − +π
+  

( )( )
1
2

00
12 21 00 01

00 01

1 exp 2 ,M MT T i
λ

λ λ
λ λ

∗  
= = − − − + +

π
  

( )( )( )00 01
13 31 00 01

00 01

1 expM MT T
λ λ

λ λ
λ λ

∗= = − − +π
+  

( )( )22 00 01exp ,MT λ λπ= − +
 

( )( )
1
2

1
23 32 00 01

00 01

1 exp 2 ,M MT T i λ
λ λ

λ λ
∗  

= = − − − + +
π

  

( )( )( )01
33 00 01

00 01

1 1 exp ,MT
λ

λ λ
λ λ

= − − − +π
+  
( ) ( )* *

00 01, ,
ord ord

aa bbλ λπ π= =
 

and the symbol ord representing the mean time order. 

( )
22

1
00

0

J exp ,
2

n
n

iv
zλ

β

+∞

−∞

 
= − 

 
∑



                 (56) 

( )
22

2
11

0

J exp ,
2

n
n

iv
zλ

β

+∞

−∞

 
= − 

 
∑



                 (57) 

The field function of the system can now be written as 

11 12 13

21 22 23

31 32 33

1
0 ,
1

M M M

M M M

M M M

T T T
T T T
T T T

ψ
   − 
   =    
     

                  (58) 
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From the field vector (or transition matrix) above it is seen that the probable 
occupation varies with the initial occupied state; therefore, if the initial occupa-
tion is 1− , then the survival probability is given by the quantities 

( ) ( )( )( )
2

2 00
11 00 011 1

00 01

1 1 exp ,M
sP T

λ
λ λ

λ λ− −

 
= = − − − + + 

π


      (59) 

while the transition probabilities of the system are 

( )
( )( )( )

22 00
1 0 12 00 012

00 01

1 exp 2 ,MP T
λ

λ λ
λ λ

− = = − − +π
+



        (60) 

( )
( )( )( )22 00 01

1 1 13 00 012
00 01

1 exp ,MP T
λ λ

λ λ
λ λ

− = = − − +
+

π


        (61) 

When the system is prepared in such a way that the initial occupation is 0 , 
the survival probability is given by the quantities 

( ) ( )( )2

22 00 010 0 exp 2 ,M
sP T λ λ= = − +π


              (62) 

while the transition probabilities of the system are 

( )( )( )2 00
0 1 21 00 01

00 01

1 exp 2 ,MP T
λ

λ λ
λ λ− = = − − +π

+

         (63) 

( )( )( )2 1
0 1 23 00 01

00 01

1 exp 2 ,MP T λ
λ λ

λ λ
π= = − − +

+

         (64) 

The last case is the most relevant since for any central lobe, we have two rele-
vant lobes. The multi-crossing behaviour is obtained when the relaxation time v, 
which depends on the external capacitor, is large. In fact, the system carries in-
trinsically a multiple crossing behaviour. If the relaxation time v is small, the 
induced energy gap ( )nJ z  operates in a really small time interval; therefore 
fictitious crossings are not expected. However, if v is large, the induced energy 
gaps around 0n =  mean that ( ) ( ) ( ) ( )2 1 1 2, , , , ,J z J z J z J z− −   operate 
separately. Therefore, the system behaves at each of these points as if they where 
an anti-crossing (avoided crossing); the fictitious crossing are expected and the 
probability changes drastically [52] [75]. 

The survival probability as function of dimensionless time for different values 
of v is illustrated in Figure 9. 

Figure 9 shows the variation of the survival probability as a function of time 
for different values of v. It is observed that as v increases, we register a drastic 
change in the values of the probabilities. This phenomenon can easily be un-
derstood when the notion of fictitious crossings is introduced. In fact, for small 
relaxation time, the system does not have time to adapt to change before it faces 
the next crossing. Therefore each of the induced gap adds in complimentary 
manner and it results in a deep fall in survival probability at the effective cross-
ing point (see Figure 9(a), dotted black curve). 

In the case of large relaxation time, the system after facing the first crossing 
adapts to the change imposed, and saturates before it comes to the next crossing;  
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Figure 9. Survival probability (solid blue line) and transition probability (dotted-black 
line) versus dimensionless time (τ ) for a two-state configuration (constructive interfe-

rence) for parameters: (a) 0v = , 1.25v =  02 180eαβ
=

Ω π

; (b) 3v = , 5v = , 

02 180eαβ
=

Ω π

. 

 
each of the induced gaps adds separately and because of the phase accumulated 
after each of these crossing, the transition probabilities can be constructed or 
destroyed and the overall is the probability limit. From the energy time diagram, 
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the system presents only three crossings. For small relaxation those three cross-
ings occur at around 0t = ; this is justified by the single crossing observed on 
the diagram Figure 9(a) (dotted black curve). For large relaxation, additionally 
to the two crossings observed on energy curves, we have many other ones. Since 
they are not part of the energy diagram, they are known as fictitious crossings. 
Their appearance is conditioned by the relaxation time v and the effective gap 

( )nJ z∆ . Observing the solid blue line of Figure 9, we can count the number of 
crossings in the system; this is due to the fact that the gap ( )nJ z∆  decays as n 
increases. Therefore, when n is large, the gap vanishes and the probability satu-
rates. 

4.3. Multi-State System 

Here, we consider the same situation as previously (section 3.B) but, we take into 

consideration all relevant states. So 1 2

2 1a µβ 



 and the Hamiltonian of the 

system is labeled as in Equation (16) 

1 1m
m

H m m m m m m= + ∆ + + ∆ −∑ . 

The field vector of the system is given by: 

1 ,

l

l

l

C
C

C

ψ

−

− +

 
 
 =
 
 
 



                        (65) 

with l → +∞ ; we then have an infinite number of relevant states. The evalua-
tion of the dynamic matrix in this case is via: 

,0 0 .i Hψ ψ=                         (66) 

The transition amplitude mC  can be generalized as a single differential equa-
tion 

( )1 1 .m m m m mi C C C C+ −= + ∆ +

                   (67) 

with , ,m l l= −  , l → +∞ . Because of the infinite number of values taken by 
m, we can rewrite that equation in terms of 

( ),0 .mi J Jψ ψ ψ+ −= + ∆ +                    (68) 

where 

( ) ( )0
1 ,

2 2m
m t t+  

 
is the elements of the energy matrix ε  and so , ,m n m m nε δ=   and 

( ) ( )( )0 cos ,t t z tε β= − Ω Ω
 

( ) ( )( )2
0 0 cos ,t t z tε β= − Ω Ω

 
The term ( )J J+ −∆ +  represents the tunneling matrix. Here, 
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0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

,0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

J+

 
 
 
 
 

=  
 
 
 
 
 













      

                (69) 

is an upper triangular matrix while ( )tJ J− +=  is a lower triangular matrix with 
constant elements 1. Moreover, J+  and J−  are shifting operators acting on 
the k space. Taking that 

( )( )exp di t t Mψ ε= ∫  
Then Equation (69) is reduced as 

( ) ( )( )d .
d

M t J t J M
t
α β+ −= −                  (70) 

with 

( ) ( ) ( )1exp d d .
t t

m m
it t

i
τ τ τ

′

−−∞ −∞

∆  ′ ′Ξ = − 
 ∫ ∫

 

 
 

and 

( ) ( ) ( )1exp d d .
t t

m m
it t

i
τ τ τ

′

+−∞ −∞

∆  ′ ′ϒ = − 
 ∫ ∫

 

 
 

So the dynamics matrix is expressed by 

( ) ( ) .t J t Jξ + −= Ξ − ϒ                      (71) 

and the solution is obtained as: 

( )ˆ exp .M T Mξ −∞=                       (72) 

or 

( ) ( )( )ˆ exp .M T t J t J M+ − −∞= Ξ − ϒ                (73) 

from the above solution, the transition matrix is given by: 

( ) ( )( )ˆ exp .MT T t J t J M+ − −∞= Ξ − ϒ                (74) 

The solution is therefore being rewritten in terms of the state vector ψ  

( ) ( ) ( )( )ˆexp d exp .i t t T t J t J Mψ ε α β+ − −∞
 = ⋅ − 
 ∫


         (75) 

Taking into consideration that the operators J+  and J−  and m̂  obey to 
the following commutation relation: 

[ ]ˆ, .J m J± ±= ±                         (76) 

we use Dyson ordering or Magnus expansion to evaluate the transition matrix 
[50] [73] [81]; taking m km

k
M C δ−∞ = ∑ , then the elements of the field vector are: 
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( ) ( ) ( )
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0 0exp d 2 .

m k
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m k m k
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tikC C J t t
t

τ τ τ α β

−

−−∞

 Ξ   = +      ϒ  
∑ ∫



    (77) 

Taking that ( ) 0m mC δ−∞ =  then 

( ) ( ) ( )
( ) ( ) ( )

2

0exp d 2 .

l

t
m l

tiC J t t
t

τ τ τ α β
−∞

 Ξ   = +      ϒ  
∫


        (78) 

this gives us the generalized transition amplitude for an arbitrary state m  
where the probabilities are found as the square of modulus. 

5. Conclusions 

In this paper, we have studied a modified Josephson junction based circuit and 
the resulting Landau-Zener scenario. We show that the Josephson junction 
based circuit can be modeled as a multi-state system with crossing energy levels. 
The charging energy, the energy stored in the junction as well as the inductance 
is controllable parameters that condition the shape of the potential energy and 
therefore the state configuration of the system. The initial condition of the in-
ductive branch helps in designing constructive and destructive interferences. 
Through the relaxation parameter, constructive interference is obtained when 
µ  is an integer while destructive interference is obtained when µ  is not an 
integer. 

Therefore, playing on the initial condition of the coil, we can set the type of 
interference while, the value of the inductance controlled the energy gap as well 
as the frequency of probability oscillation. Moreover, the nonlinearity of energy 
levels modifies the transition probability and the derived adiabatic parameter 
helps to redefine The Landau-Zener probability. Therefore, the total population 
transfer as well as the complete blocking of the system is obtained in a permissi-
ble range of parameters only by changing the values of the inductance of the coil. 
Thus, the system models a controllable level-crossing system where the addi-
tional branches (inductive and capacitive) help to design the number of states, 
the type of interferometry as well as the control of state’s occupation. 
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