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Abstract 
Differential equations of electromagnetic and similar physical fields are gen-
erally solved via antiderivative Green’s functions involving integration over a 
region and its boundary. Research on the Kasner metric reveals a variable 
boundary deemed inappropriate for standard anti-derivatives, suggesting the 
need for an alternative solution technique. In this work I derive such a solu-
tion and prove its existence, based on circulation equations in which the curl 
of the field is induced by source current density and possibly changes in asso-
ciated fields. We present an anti-curl operator that is believed novel and we 
prove that it solves for the field without integration required. 
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1. Introduction 

Nonlinear field equations are generally impossible of solution—the few existing 
(Schwarzschild, Kerr) being well-known. These known solutions are static and 
expressed in spherical coordinates with boundaries at infinity. The Kasner solu-
tion, treated by Vishwakarma [1], is dynamic with dynamic boundaries and does 
not fit well into the static approach. Even physical interpretation of the exact so-
lution has been largely nonexistent. For this reason an alternative approach was 
sought. The goals of this approach were:  

1) A linear formulation that avoids the nonlinearity of Einstein’s field equa-
tions.  

2) A “boundaryless” solution, eliminating the usual anti-derivative-based ap-
proach.  

3) A physical interpretation that makes sense of the new solution, and  
4) An existence proof for the new solution technique.  
This paper primarily treats the last problem. 
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2. Relevant Mathematical Background 

Physicists are familiar with Maxwell’s vector-based equations describing electric 
and magnetic fields, E  and B  respectively, in terms of changes over space 
and time, based on differential operators ∇  and t∂  and sources of the fields 
Most are familiar with the tensor formulation: 
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0
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x z y

y z x

z y x

E E E
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F
E B B
E B B

µν

− − −
−

=
−

−

                  (1) 

where 

F A Aµν µ ν ν µ= ∂ − ∂ , ( )0 0n n nE A A= − ∂ − ∂ , = ×B A∇         (2) 

A growing number of physicists are familiar with Hestenes’ geometric algebra 
[2] derived from Clifford and Grassmann algebras, in which every entity has 
both an algebraic and a geometric interpretation. For classical 3D physics the 
entities consists of scalars, vectors, bivectors, and trivectors/pseudoscalars. In 
this formulation the electromagnetic field is a multivector [3], 

( ) ( ) ( ), , ,F t t i t= +x E x B x                    (3) 

where E  is the usual electric field vector and the magnetic field is a bivector, a 
directed 2D-planar entity representing rotation of one vector into another, and i 
is the pseudoscalar or dual operator that maps bivector B  into its vector dual. 

Magnetic field vectors do not behave like vectors under reflection, they are not 
really vectors; axial vectors are not encoded in vector space formalism [4]. 
However such behavior is encoded in bivector formalism, therefore the geome-
tric algebra function better represents electromagnetic fields. A key geometric 
algebra entity is the geometric product of two vectors, u  and v : 

= ⋅ + ∧uv u v u v                        (4) 

where outer product ∧u v  does not exist in vector calculus but is dual [5] of 
the cross product 

i∧ = ×u v u v                         (5) 

If we let the first vector in Equation (4) be the vector derivative ∇  we obtain 

= ⋅ + ∧f f f∇ ∇ ∇                      (6) 

where f∇  is the gradient, ⋅ f∇  is the divergence, and ∧ f∇  is the curl of 
f . Hence in geometric calculus we have the unique relation 

gradient = divergence + curl 

which has no analog in vector calculus. Relevant identities for the outer product 
are: 

( ) 0∧ ∧ =f∇ ∇ —curl of a curl is zero 

( ) 0∧ =f∇ ∇ —curl of gradient of scalar field is zero      (7) 

( ) 0⋅ ⋅ =f∇ ∇ —divergence of a divergence is zero 
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Geometric calculus generalizes vector calculus and Cartan’s calculus of diffe-
rential forms. The elementary combination of inner and outer products,  

= ⋅ + ∧uv u v u v  cannot be expressed with differential forms [6]; such limita-
tions are addressed by extending the formalism with the theory of fiber bundles. 
Forms are insufficient for most applications and must be supplemented by other 
algebraic systems such as matrices or tensors. In geometric calculus spinors, 
tensors, linear transformations and differential forms are developed in a unified 
mathematical system. Forms have no analog of = ⋅ + ∧f f f∇ ∇ ∇  wherein 
⋅ f∇  and ∧ f∇  are two distinct parts of the single fundamental quantity, 

coderivative f∇ , that makes it possible to reduce Maxwell’s eqns to a single 
equation: 

=F J∇ .                          (8) 

When = ∂f f∇  it can be directly solved for f , whereas ⋅ f∇  and ∧ f∇  
cannot, because each is only part of the derivative of f∇ . Finally, geometric 
calculus, whose fundamental theorem on m-dimensional manifolds  

1d dm m

M M

x F xF−

∂

∂ =∫ ∫                      (9) 

provides a unified mathematical tool for physics; Equation (9) subsumes Gauss’s 
theorem, Stoke’s theorem, Green’s theorem, and the Cauchy integral formula, as 
well as generalizing vector calculus. Although the results of this paper are in-
tended to augment geometric calculus, we will limit our proofs to vector calculus. 
Arthur’s geometric algebra treatment of Maxwell’s equations provides a (3 + 1)D 
formulation of 3-space vector and 1-time scalar in detail, and then develops the 
4D formulation in which time is promoted from scalar to vector. 

3. Biot-Savart Inverse Operator and Laplacian 

Much of the literature on the use of Biot-Savart operators and Green’s func-
tion-based inverse operation deals with the scalar Laplacian in the Poisson equa-
tion, 

φ ρ∆ =                            (10) 

where Laplacian ∆ = ⋅∇ ∇ . The inverse operator yields 

( ) ( ) ( )
3

1 3d
4

y
x x y

x y
ρ

φ ρ−

ℜ
 = ∆ = −π ∫               (11) 

where ∆  has right inverse 1− ∆   with integral kernel ( ) ( )( ), ,x y A d x yφ =  
depending on the distance only. In [7] the right inverse for the Laplace operator 
on forms is constructed and proved based on an integral kernal determined by 
function A which they prove to always exist. They further show that a right in-
verse 1−∆  of the Laplacian operator on differential forms provides a right in-
verse to the Cartan differential d and co-differential *d  simultaneously. The 
formalism yields a Biot-Savart operator motivated by the analogy of the equa-
tions with Maxwell equations for a magnetic field B  caused by stationary cur-
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rent J. For Laplacian * *dd d d∆ = +  they derive 1−∆  as an integral kernal de-
termined by function A. 

4. Real Physical Field Solutions 

Real physical fields are sourced by distributions or current flows. The differential 
equation describing field dependence on source current density has the form 

∂ =f j                            (12) 

which is formally solved via the inverse differential operator 
1−= ∂f j .                          (13) 

The inverse operation 1−∂  is satisfied by the existence of the Green’s function 
anti-derivative method of solution for physical field equations. The Dirac delta 
distribution-based technique provides field solutions in terms of boundary con-
ditions. If i is the unit pseudo-vector and M is an m-dimensional smooth 
oriented vector manifold with piecewise smooth boundary M∂  then 

( )
( ) ( ) ( ) ( ) ( ) ( )1 , d , d

1 m
M M

g x x X x f x g x x S x f x
i ∂

 
′ ′ ′ ′ ′ ′ ′= ∂ + 

−  
∫ ∫f    (14) 

where Green’s function ( ) ( )
3,

g
g x x

′−
′ =

′−

x x

x x
. This is the general solution cor-

responding to anti-derivative 1−∂  for equation ∂ =f j . Explicitly, values of 
∂ f  at interior points of M are determined by values of f  on boundary M∂ , 
as well as by values of f  inside M.  

5. Discrete Operator 
It is the purpose of this paper to establish the discrete operator analog of the an-
ti-derivative-based 1

M M

−

∂

∂ ⇒ +∫ ∫ . In place of integrating over every point in 

the region, as well as all points in the boundary of the manifold, the preferred 

formulation would be 1

1 0 0
0 1 0
0 0 1

−∂ ∂ ⇒ .  

Consider two situations; the electric field E  induced by a static charge den-
sity ( )ρ x  and the magnetic field B  induced by moving charge density ( )ρ x v . 
We consider each separately: 

ρ= ⋅ + ∧ =E E E∇ ∇ ∇                     (15) 

If B  is not changing, 0∧ =E∇  and ρ⋅ =E∇ , hence 1ρ−=E ∇  where 
1−∇  is an integral (anti-derivative) operator determined by a Green’s function. 

An interesting case [8] is for ( )ρ x  with 2D symmetry in 2D region ℜ  with 
boundary ∂ℜ : 

( ) ( ) ( )2 d1 1d
2 2

x x
x

i
ρ

ℜ ∂ℜ

′ ′
′= +

′− π′π −∫ ∫
E x

E x
x x x x





            (16) 
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In the absence of sources the first integral vanishes and the field within ℜ  is 
given by the line integral of its value over the boundary ∂ℜ , which can be seen 
to be the Cauchy integral formula after suitable change of variables. 

We next consider the coderivative of the magnetic field 

ρ= ⋅ + ∧ =B B B v∇ ∇ ∇ .                    (17) 

With gauge field A  and = ×B A∇  and vector identity 0⋅ × =A∇ ∇ , this 
reduces to × =B j∇ , the prototype equation for our theorem and proof. This 
choice is compatible with the universal equation describing the field circulation 
induced by source current density: 

× =f j∇                           (18) 

where source current density ρ=j v  with 3q rρ = , q is source charge and 
v  is flow velocity.  

“The [geometric algebra] vector derivative ∇  actually has an inverse, in 
complete contrast to traditional 3D vector analysis where only the gradient has a 
definite inverse and the curl and divergence do not.” 

Despite this definite statement, we search for a solution of the form symboli-
cally represented as 

( )
=

×
jf

∇
.                         (19) 

To derive this solution we need to show that the inverse curl operator exists: 

( ) ( )
1 1−× ≡

×
∇

∇
.                       (20) 

The remainder of this paper establishes the existence of the inverse curl oper-
ator. 

6. The Uncurl Operator Theorem 

Theorem I ( ) ( )1 1− −∃ × ∋ × = ⇒ = ×f j f j∇ ∇ ∇   
There is an anti-curl operator ( ) 1−×∇  with inverse curl property such that, 

applied to differential equation × =f j∇  solves for field vector ( ) 1−= ×f j∇ . 
Our purpose in this paper is to present a 3 3× -operator-based inverse ( ) 1−×∇  

which will allow solution at specific field points r  distant from the source cur-
rent density. The solution is generally simpler, more intuitive, and avoids inte-
gration over boundaries of the vector manifold. It also allows mathematical solu-
tions in situations with undefined or dynamic boundaries as seen in the Kasner 
metric-based exact solution to Einstein’s field equations of general relativity [9]. 

Of course any way of finding a good solution is legitimate; typically guessing 
based on intuition or analogy, however contained within the beauty of mathe-
matical physics is the fact that the physical world often suggests the answer. In 
the case of electrodynamic fields we know the relation of the field to the source 
current density. We know that = ×f r j , with unit scale factor, therefore we 
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solve × =f j∇  for f  by operating with anti-curl operator ( ) 1−×∇  on both 
sides of  

( ) ( ) ( )1 1− −× × = ×f j∇ ∇ ∇ .                   (21) 

Given 
= ×f r j  

we have the suggested association ( ) ( )1−× = ×r∇ . We will prove that use of 
radial operator ( )×r  in place of inverse curl operator ( ) 1−×∇  satisfies Equa-
tion (21) above. 

In the theorem ( ) ( ) ( )1 1− −× × = ×f j∇ ∇ ∇  where 3 3 3, ,yx zjj j
r r r

 
=  
 

j  we sti-

pulate that the source current density 3s rρ =  is defined using the same vo-
lume radius r = r  as is used in the inverse curl operator ( )×r . This is not an 

arbitrary condition but is implied by the physics ( ) ( ) 3r= ×B r r j  and is seen 
to be compatible with the Green’s function-based anti-derivative  

( ) ( )
3,

g
g x x

′−
′ =

′−

x x

x x
. Physically this traces to Birkhoff’s theorem, a generaliza-

tion of Newton’s Shell theorem in which the source inside an isotropic homoge-
neous spherical shell can be treated as concentrated at the center of the shell and 
all source outside the shell can be ignored as its contributions cancel. 

Hypothesis: The inverse curl operator ( ) 1−×∇  is the radius operator ( )×r . 
The plan of our proof is to prove that ( ) ( ) ( )1 1− −× × = ×f j∇ ∇ ∇  where 

( ) ( )1−× = ×r∇ . We explicitly expand the expression to obtain the terms 
× ×r f∇ , where we replace the source current density j  with the completely 

equivalent momentum density 3 3 3, ,px py pz
r r r

 =  
 

p . Here and in the following, 

the expression xjjx ≡  and xppx ≡ . 

× × = = ×r f f r p∇                       (22) 

The expansion of this equation is below: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 3 2 2 2 3

5 5 5 5 5 5
2 2 2 2 2 22 2 2 2 2 2

3 2 2 2 2 3

5 5 5 5 5 5
2 2 2 2 2 22 2 2 2 2 2

3 2 2 3 2 2

5 5 5 5 5 5
2 2 2 2 2 22 2 2 2 2 2

3 2 3 22 2

,

,

pzx y pzy pyx z pyy z pzyz pyz

r r r r r r

pzx pzxy pxx z pxy z pzxz pxz

r r r r r r

pyx pxx y pyxy pxy pyxz pxyz

r r r r r r

pzy pyz

r r




+ − − + −



− − + + − +




− + − + − 



= −
( ) ( ) ( ) ( )3 2 3 2 3 2 3 22 2 2 2

, ,pzx pxz pyx pxy

r r r r

 
 − + − 
  
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Proposition: Terms on the left-hand side of × × =r f f∇  are organized in-
to three expressions, the x-, y-, and z-components of the field vector f  where 

= ×f r j  and p  is the source current density 3 3 3, ,px py pz
r r r

 =  
 

p  that rep-

laces current density j  for consistency with other problems. 

lemma 1. ( ) ( )x x× × = ×r f r p∇  
We regroup the terms in the x-component of the left hand side as follows: 

2 2 2 2

5 5 5 5 3

pzyx pzyy pzyz pzyr pzy
r r r r r

   
+ + = =   

   
.            (23) 

Similarly we regroup the remaining terms in the x-component of the left hand 
side as follows: 

2 2 2 2

5 5 5 5 3

pyzx pyzy pyzz pyzr pyz
r r r r r

   
− + + = − = −   
   

.          (24) 

Grouping these two terms we see that they are equal to the x-component of 
the right hand side: 

( ) ( )3 3 3 3 xx x

pzy pyz pzy pyz
r r r r

   × × = − = − = × =   
   

r f r p f∇       (25) 

and similarly for y- and z-components. The inverse curl operator ( ) 1−×∇  is ra-
dius operator ( )×r . 

Theorem II 

( ) ( )( ) ( ) ( )1 1 1       − − −∃ × ∋ × × = ⇒ × = ⇔ = × ∧ ⊥j j f j f j r j∇ ∇ ∇ ∇ ∇  

There is an anti-curl operator ( ) 1−×∇  with inverse curl property such that, 
applied to source current density j  satisfies differential equation × =f j∇  
when field vector ( ) 1−= ×f j∇  and r  is perpendicular to j , ⊥r j .  

As before we substitute the momentum density  

3 3 3 3 3 3, , , ,yx zpp ppx py pz
r r r r r r

  = ≡   
   

p  for current density j  with no mathemati-

cal effect.  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

3 2 5 2 5 2 5 2 5 22 2 2 2 2

2 2

3 2 5 2 5 2 5 2 5 22 2 2 2 2

2 2

3 2 5 2 5 2 5 2 5 22 2 2 2 2

2 3  3 3  3

2 3 3  3  3

2 3 3 3  3  

px pyx y pxy pzx z pxz

r r r r r

py pyx pxx y pzy z pyz

r r r r r

pz pzx pzy pxx z pyy z

r r r r r

−
 
 
 
 
 
 × × = =
 
 
 
 


− + − +

− + − − +

− + + −




−



r p p∇    (26) 

Proposition: The terms on the left-hand side of × × =r p p∇  can be orga-

nized into three terms, 2− p , 3+ p , and ( ) 23 r− ⋅r p r  where p  is the source 

current density 3 3 3, ,px py pz
r r r

 =  
 

p . 
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lemma 1. ( )( )( ) ( )( ) 12 −− ∈ × × ≡ × ×p r p p∇ ∇ ∇  
By visual inspection, the first column contains terms  

3 3 3

2 2 2, , 2px py pz
r r r

− − −  ≡ − 
 

p . 

lemma 2. 3+ ∈ × ×p r p∇  

After removing the 2− p  terms we find terms of the form 
2

5

3pxy
r

 plus 

2

5

3pxz
r

 but the 
2

5

3pxx
r

 term is missing; therefore we add and subtract 
2

5

3pxx
r

 

to the x-component terms. Combining these three positive terms we substitute 
2 2 2 2x y z r+ + =  and obtain ( )2 5 33 3pxr r px r= . The same procedure ap-

plied to the y- and z-components leads to 

3 3 3

3 3 3, , 3px py pz
r r r

  = + 
 

p .                   (27) 

lemma 3. The remaining terms in the x-component are 

( )
5 5 5 2

33 3 3 xpyxy pzxz pxxx
r r r r

− ⋅
− − − =

p r
              (28) 

The y- and z-component terms similarly yield 
( )

2

3y
r

− ⋅p r
 and 

( )
2

3z
r

− ⋅p r
. 

Summing these three terms we obtain 

( )
2

3
r

− ⋅r p r
.                         (29) 

lemma 4. The result of the above steps yields ⊥r p : We have obtained equa-
tion 

( )
2

3
2 3 0

r
⋅

− + − = ⇔ ⋅ =
r p r

p p p p r                (30) 

which is true if and only if 
( )

2

3
0

r
⋅

− =
r p r

. By definition 0≠p  since this term 

represents the source current density or momentum density that induces a cir-
culation in the field in question. As source current density does not have mean-
ing at a point, distance from this nonexistent point cannot be zero hence 0≠r . 
The remaining possibility is 0⋅ =p r , whence ⊥r p . 

From Theorem I ( ) ( )1−× = ×r∇  therefore ( )( ) 1−× × =p p∇ ∇  implies  

( )( )× × =r p p∇  iff ⊥r p . Thus if we define = ×f r p  we obtain × =f p∇ .  

7. Results 

We hypothesized the existence of an exact un-curl operator, ( ) 1−×∇  which 
solves the field equation × =f p∇  yielding ( ) 1−= ×f p∇  and we have shown 
that this matches the known solution = ×f r p . Operators require operands to 
operate upon; equivalence relations are summarized 
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( ) ( )1
1 0 0
0 1 0
0 0 1

−
 
 × × ⇒  
 
 

f f∇ ∇                   (31) 

( )( ) 1
1 0 0
0 1 0
0 0 1

−
 
 × × ⇒  
 
 

p p∇ ∇                   (32) 

We proved these operator relations in terms of the field equations: 

( )× × =r f f∇ ,     ( )× × =r p p∇ .             (33) 

Discussion of Results 

The inverse operation on field equations typically derives an anti-derivative- 
based solution for the field based on integrals of the field derivative for every 
point within the bounded region and an integral evaluating all points on the 
boundary of the region. Contrast the two solutions for the magnetic field at r  
from a source current; the Biot-Savart law [10] for a steady current J  inside a 
region 3Ω ⊂ℜ , where Ω  could represent a curve, surface, or volume; the 
magnetic field associated to J  is 

( ) = ×B r r j  versus ( ) ( ) 3 dJ x r
Ω

′− ′= ×
′−

∫
r rB r
r r

.        (34) 

If we wish to integrate over a length of current path, the anti-derivative is pre-
ferable. The inverse operation on field equations derived herein is significantly 
simpler and derives the value of the field at a point a distance r  from source 
current density. Much effort has been spent on generalizing Green’s function 
results in curved space; nevertheless; there exist gravitomagnetic problems in 
metric space wherein the boundary varies dynamically, and flat space is a realis-
tic assumption. The anti-curl operator enables new approaches to the physics of 
fields that are effectively unobtainable using Green’s function-based anti-derivative 
inverses.  
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