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Abstract 
In this paper, we propose a combination of discrete elements for the soil and 
finite elements for the fluid flow field inside the pore space to simulate the 
triggering of landslides. We give the details for the implementation of third 
order finite elements (“P2 with bubble”) together with polygonal discrete ele-
ments, which allows the formulation with a minimal number of degrees of 
freedom to save computer time and memory. We verify the implementation 
with several standard problems from computational fluid dynamics, as well as 
the decay of a granular step in a fluid as test case for complex flow. 
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1. Micromechanics of Landslides 

Landslides due to strong rain occur in rather confined areas, while the regions 
with the same soil and rain conditions are much larger. This means there must 
be additional triggers. But on the micromechanical level, the mechanisms on the 
grain scale, the flow inside the pore space and its restructuring are not yet un-
derstood. Sano [1] proposed a hydrodynamic scenario (how flow through neigh-
boring cavities sweeps a whole channel free to form a larger duct which allows 
vehement flow), but as a cause of landslides it does not seem very likely: The ca-
pacity of soil to preserve spaces which can be washed out without interference by 
granular dynamics is rather limited. A combined mechanism where the weight 
of the water induces shear bands in the soil which can then be washed out by the 
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flow looks much more plausible. Another possible effect which loosens up dense 
granular matter is “Reynolds dilatancy”, where external stresses (in the case of 
landslides, that may be the additional weight of water due to strong rains) loosen 
up the soil homogeneously. Any scenario has to obey the laws of physics for par-
ticles and grains, and must be verified accordingly. In this paper, we outline a re-
liable simulation method for particles in fluids in two dimensions. For 
three-dimensional simulations, the two-dimensional situation should be un-
derstood first. A verification by direct micromechanical simulation is preferable 
to experiments here, as it allows much better control over the initial state and 
enables us to examine the exact physical processes occurring anywhere at any 
time within the geometry. 

2. A Combined Simulation Method of Particles and Fluids 

As far as the choice between Eulerian (grid-based) and Lagrangian (particle-based) 
representations is concerned, for the micromechanical understanding of landslides, 
we chose a particle-based formulation for the soil, and finite elements for the 
fluid. A list of all symbols with explanations is given in Table 1. 

2.1. Choice of the Discrete Element Method 

For the discrete element method (DEM), often round particles are used, which 
cannot form heaps (see Figure 1) without unphysical twists (switching off the 
rotation or introducing an unphysically high coefficient of rolling friction). Also 
monodisperse particles, especially with negligible elongation, cannot model large 
granular slopes correctly, as the particles will allow crystal-like ordering which 
allows slipping along the “crystal axes” with minimal mechanical resistance. 
Usually, the most convenient choice to obtain physical behaviour is a distribu-
tion of polygons with varying number of corners which are inscribed into el-
lipses with a statistical variation of the length of the half axes. 

2.2. Choice of the Fluid Simulation Method 

We refrain from simulating the fluid with a particles-based method, because there 
are problems with the spatial resolution and shot noise would be introduced even 
in equilibrium flow. For the complicated pore space between polygonal particles, 
exact discretization is possible via a trigonal grid, so finite elements are the natural  

 

 
Figure 1. The polygonal particles (left) form stable heaps with fluctuations around a “straight” 
slope. Round particles need support on the sides to form heaps (center) and form a “rounded” 
slope nevertheless, or they may simply slide along the crystal axes (black lines) and roll away (right) 
when they have reached the smooth floor. 
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Table 1. List of symbols. 

Variable Description Variable Description 

A centroid of DEM particle contact overlap area ( )
ires …  residual at mesh node i, (p) for pressure, (u), (v) for respective 

velocities 
, ,A J  nodes of a finite element (index) 

eA  
area of a finite element S centroid of DEM particle contact overlap area A 

ga  
gravitational acceleration T transpose operator 

b distance from circle center to wall t time 

1 2,C C  
DEM particle center of mass t̂  

tangential direction unit vector 

d diameter U  velocity vector 

dl line integral 
0U  

maximum inflow velocity 

e finite element (index) u horizontal velocity 

entry…  
entries for the Jacobian J , ,

,
BC BC

BCTOP BCTOP

u v
u v  

velocity boundary conditions 

daF  
DEM damping force 

dragF  
fluid force acting on DEM particles v vertical velocity 

x horizontal position 

elF  
DEM elastic force Y Young’s modulus 

( ) ( ), ,A Jg g… …
  

coefficients for the element functions, (p) for 
pressure, (u), (v) for respective velocities 

y vertical position 

Γ  DEM particle boundary 

( ) ( ),i jg g… …

 
coefficient for the element function at node i or j, (p) 
for pressure, (u), (v) for respective velocities 

g∆  
step vector for one Newton-Raphson iteration 

A∆  change of A over τ  

1, ,ι ι−g g g  solution vector (entirety of all ( ) ( ),i jg g… … ), for 

current ι  or next 1ι +  Newton-Raphson iteration 
εζδ  

Kronecker delta 

,ε ζ  Cartesian direction (index) 

 
,i j  

 
mesh node (index), indexing variables  

η  dynamic viscosity 

, ,A Jθ θ  
third order FEM shape functions 

J  Jacobian of the Newton-Raphson, method ι  Newton-Raphson iteration step (index) 

k aspect ratio r/b λ  wall correction factor 

L…  
coefficients of the barycentric coordinate functions µ  friction coefficient 

charl  
characteristic length for DEM particle contact ν  kinematic viscosity 

1 2,l l  vector …SC  ρ  density 

1 2,m m  
DEM particle mass ,F Fρ η  

fluid properties (density. dynamic viscosity) 

redm  
DEM particle contact reduced mass ,P Pdρ  

particle properties (density, diameter) 

n̂  normal direction unit vector τ  timestep length 

n X−  value from X timesteps before (index) , ,A Fφ φ  
second order FEM shape functions 

P…  
polynomial order of a finite element ,i jφ φ  

second order (or bubble) FEM shape function at node i or j 

p normalized pressure 
2Pφ +  

second order finite element function with third order bubble 

actualp  
pressure , ,A Cψ ψ  

first order FEM shape functions 

q quadrature point (index) ,i jψ ψ  
first order FEM shape function at node i or j 

r radius 
1Pψ  

first order finite element function 

res  residual vector for the Newton-Raphson method 
qω  

quadrature weight of q 

Tω  
trial function 
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choice for modeling the fluid (Quadrilateral elements would have to be distorted 
so they offer no advantages in this case). The arbitrary connections of the pore 
space also require the use of unstructured grids (arbitrary connectivity between 
elements), though in practice we will generate the grid in the pore space with a 
constrained Delaunay triangulation, so the connections are limited. Desirable is 
a formulation with the minimum necessary degrees of freedom, as it is not 
possible to multiply lattice points near particle boundaries, which would also 
multiply the computational effort and the memory requirements. Other aspects 
of the simulation can also be determined as an optimal choice of minimal com-
putational cost, geometrical convenience and the implementation of the actual 
physical situation. 

3. Interaction between Discrete-Element Particles 

The particles in the discrete element method (DEM) interact via a “hard-particle, 
soft-contact” interaction (see Figure 2): The polygonal particle outlines are moved 
as rigid particles. The forces act on the centroid S of the overlap polygon, 
forces in normal direction are elastic and damping forces, Coulomb friction 
acts in tangential direction. The magnitude of the elastic force is computed 
from the overlap area A and the Young’s modulus Y (units [N/m] in two di-
mensions) 

el
char

AF Y
l

= ⋅ ,                         (1) 

with the characteristic length ( )1 2 1 24charl = +l l l l  from the vectors 1 2,l l  
connecting the particles’ centers of mass 1 2,C C  with S. This choice of the cha-
racteristic length charl  normalizes the sound velocity of a space-filling rectan-
gular packing to the continuum sound velocity with the same Young’s modulus  

 

 
Figure 2. The interaction of particles (centers of mass 1C  and 2C ) is separated into 

tangential direction t̂  (given by the intersection of the particle outlines) and normal di-
rection n̂ . The normal force is composed of the elastic force (proportional to the area A 
of the overlap polygon in dark shading) and the Young’s modulus Y as well as the damp-
ing force (proportional to the change of the overlap area). The numerical exact imple-
mentation of Coulomb friction (proportional to the normal force and the friction coeffi-
cient µ  acts in the tangential direction t̂ . The vectors 1 2,l l  between 1 2,C C  and the 
centroid S of the overlap polygon are used to compute the inverse characteristic length 

charl  as well as the torques on the particles. 

https://doi.org/10.4236/jamp.2020.89134


J. Mueller et al. 
 

 

DOI: 10.4236/jamp.2020.89134 1783 Journal of Applied Mathematics and Physics 
 

and density. The damping force is chosen in analogy to the linear oscillator 

1
da red

char

AF m Y
lτ

∆
= ⋅ ⋅ ⋅                      (2) 

proportional to A∆ , the area change for an integration timestep τ , with the 
reduced mass of the colliding particles ( )1 2 1 2redm m m m m= + . Additionally, 
there is a cutoff so that da elF F< . The solid friction is computed according to 
Krengel and Matuttis [2], where the static many body friction problem is dealt 
with “numerically exact” as unilateral constraint problem. The forces between 
the polygonal DEM-particles are surface forces and are therefore not central, so 
any torques acting on 1 2,C C  are computed with force arms 1 2,l l  and the sum 
of the forces (More details about interaction laws can be found in Matuttis and 
Chen [3]). 

4. FEM with Cubic Bubble 

An unstructured triangular grid for the fluid simulation still leaves choices for 
the actual finite elements used. Gresho and Sani [4] present a multitude of op-
tions with different order polynomials used as shape functions for the pressure 
and velocity representation, some of which are shown in Figure 3. As stated in 
Chapter 1, our fluid phase should obey the equations of motion for Newtonian 
fluids as closely as possible, which requires the use of the Navier-Stokes equation 
(NSE). This narrows down the choice of elements by the Ladyzhenskaya- 
Babuška-Brezzi (LBB) stability condition: It stipulates that the order of elements 
for the velocities must be one order higher than for the pressures, as the NSE al-
so contains the velocities in one higher order than the pressures [5]. According-
ly, the Taylor-Hood element (P2P1) with second order shape functions P2 for the 
velocities and first order shape functions P1 for the pressures had been used in 
previous simulations [6], but caused issues in case of high particle densities 
combined with higher flow velocities [7]. Second order elements (polynomials) 
model a flow field with constant curvature, while for complex flow between 
granular particles in close proximity (<particle diameter) which move at differ-
ent or even opposing velocities, the curvature of the flow field can vary. To take 
this into account, at least third order elements are necessary (see Figure 4). In-
stead increasing the number of elements between particles has not turned out to 
be practicable: Using e.g. two elements with different constant curvature side by 
side does not provide a more plausible flow field or increases the stability of the 
simulation [7]. Using 4 (or 5) elements would increase the number of mesh points 

 

 
Figure 3. Different triangular finite elements, defined by their polynomial order P. The 
P2

+ element is a combination of the second order P2 element and the bubble function (at 
node J) of the third order P3 element. 
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in two dimensions by a factor of 16 (or 25), which means an increase of the 
computational effort by over one order of magnitude, which is prohibitive. For 
all of these reasons, in this work, we will be exploring the possibilities of the 
P2

+P1 element, which adds a third order bubble to the second order shape func-
tions (Figure 3) and thus provides a linear variation in curvature without the 
need for a full third order P3 element, while still being LBB stable [4]. While the 
P3 looks attractive in theory, for our purposes it has no advantages over the 2P+  
element, as we are mostly concerned adapting to the curvature of the flow field. 
On the contrary, having to deal with 10 instead of 7 nodes per element would 
increase the computational effort and memory consumption by over 40 percent 
without leading to foreseeable advantages. 

4.1. Shape Functions 

The shape functions are handled in a barycentric coordinate system (local to each 
element) and must be derived from the Cartesian coordinates of the elements in 
the grid. Treating every single element separately, we apply a coordinate transfor-
mation to the Cartesian coordinates [ ][ ][ ]1 1 2 2 3 3, , ,x y x y x y  of the corners of the 
triangular element to get the coefficients of its barycentric coordinate functions. 
This works easiest via left division (MATLAB’s backslash-operator) 

0 0 0 1 1

2 2

3 3

1 1 0 0
1 0 1 0
1 0 0 1

A B C

Ax Bx Cx

Ay By Cy

L L L x y
L L L x y
L L L x y

     
     =     
        

 ,            (3) 

with the resulting coordinate functions also acting as the first order (affine) 
shape functions ψ…  so that we have 

0

0

0

A A Ax Ay

B B Bx By

C C Cx Cy

L L x L y

L L x L y

L L x L y

ψ

ψ

ψ

= + ⋅ + ⋅

= + ⋅ + ⋅

= + ⋅ + ⋅

                    (4) 

forming the basis of the first order (P1) finite element. Combined with scaling 
coefficients ( ) ( ), ,p p

A Cg g , they act as the element function 
 

 
Figure 4. Complex flow with varying curvature between moving particles (upper and lower hori-
zontal thick lines with arrows indicating the direction of motion). The varying curvature cannot be 
modeled with first and pure second order finite elements (left). A piecewise linear approximation 
(right) would need at least six to seven elements to properly represent the flow field. 
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( ) ( ) ( )
1

p p p
P A A B B C Cg g gψ ψ ψ ψ= + + ,                 (5) 

which represents the pressure p field over our element. Combinations of the af-
fine shape functions ψ…  from Equation (4) form the second order (quadratic) 
shape functions φ… . There are six in total with 

22 AA Aφ ψ ψ= ⋅ − ,                        (6) 

4D B Cφ ψ ψ= ⋅ ⋅  
and their respective permutations, forming the basis of the P2 finite element. To 
obtain the 2P+  element, we expand the P2 basis with the product of all ψ…  
from Equation (4) 

27J A B Cθ ψ ψ ψ= ⋅ ⋅ ⋅ ,                      (7) 

the third order (cubic) bubble shape function Jθ . Jθ  in combination with all 
the φ…  functions from Equation(6) and the coefficients ( ) ( ) ( ), ,,u u u

A F Jg g g , acts 
as the element function 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2
u u u u u u u u

P A A B B C C D D E E F F J Jg g g g g g gφ φ φ φ φ φ φ θ+ = + + + + + + .     (8) 

To treat velocity, a vector quantity, as scalar values, we are splitting it into its 
Cartesian components, horizontal velocity u and vertical velocity v. Accordingly, 
Equation (8) represents only the horizontal velocity field and an analogous equ-
ation ( )

2
v

Pφ +  for the vertical velocity field exists as well. In other words, a shape 
function can be seen as some sort of unit vector for the field amplitude at its as-
sociated node on a single finite element. 

4.2. Flow Equations 

The coefficients ( ), ,u v pg…  from Equations (5) and (8) scale the individual shape 
functions of an element in a way that allows the full element function ( )

2
u

Pφ + , 
( )

2
v

Pφ +  or 1Pψ  respectively to approximate the actual flow behaviour as closely 
as possible. The entirety of all ( ), ,u v pg…  is the unknown (solution vector) we need 
to solve our flow equations for. To calculate the flow velocities u and v we use 
the incompressible stationary Navier-Stokes equation for x and y directions 

2 2

2 2

d d d d d
d d d d d
u u p u uu v
x y x x y

ν
 

+ = − + + 
 

                (9) 

and 
2 2

2 2

d d d d d
d d d d d g

v v p v vu v a
x y y x y

ν
 

+ = − + + + 
 

.             (10) 

With the kinematic viscosity ν η ρ=  and the normalised pressure  
actualp p ρ=  obtained by normalizing the dynamic viscosity η  and the actual 

pressure actualp  with the density ρ . While rock has a sound velocity which is a 
multiple of that of water, the sound has to travel through the contacts between 
sand grains so there is much less material than in bulk rock. Thus, the sound ve-
locity of the granular phase is considerably below that of the fluid and the fluid 
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can therefore be treated as incompressible. The gravitational acceleration ga  is 
also an essential term in the vertical (y direction) Navier-Stokes equation, as the 
fluid simulation will later run with suspended particles, it is ga  which actually 
leads to the buoyancy force of the fluid acting on the particles. The pressure is 
calculated from the continuity equation 

d d 0
d d
u v
x y
+ = .                        (11) 

Equations (9)-(11) can now be adapted into their weak form by introducing 
the arbitrary trial function Tω  [8] so we get 

d dd d 1 d d d 0
d d d d d d d

T T
T

u u u u pu v
x x y y x y x

ω ω
ω

ν
  

+ + + + =  
  

∫∫          (12) 

for the horizontal velocity, 

d dd d 1 d d d 1 0
d d d d d d d

T T
T g T

v v v v pu v a
x x y y x y y

ω ω
ω ω

ν ν
  

+ + + + + ⋅ =  
  

∫∫      (13) 

for the vertical velocity and 

d d 0
d d T
u v
x y

ω
  

+ =  
  

∫∫                     (14) 

for the pressure. Instead of enforcing a spurious “=0” in the Equations (12)-(14), 
it is much more meaningful in a numerical implementation (i.e. with rounding 
and discretization errors) to demand that the right-hand side (the “residual” res) 
may be finite, but should be as small as possible. This transforms the problem 
from an equality problem (which may be unsolvable) to a much more managea-
ble optimization problem. Then we rewrite the continuum field equations into 
systems of coupled discrete equations at each node i and expand the trial func-
tion Tω  in terms of test functions with unknown prefactors. Moreover, in the 
Galerkin-FEM method, as test functions the shape functions iφ  from Equations 
(6) and (7) are used for velocity. This means iφ  can take the form of any of the 
six second order shape functions , ,A Fφ φ  or of the third order bubble func-
tion Jθ  depending on the position of node i in the triangle. In the same way 
the shape functions iψ  from Equation (4) are used as test functions for the 
pressure. 

As a rule, a shape function only exists on a single element and is associated to 
only one node of that element. As a node is usually connected to multiple ele-
ments, the combination of all associated shape functions (one for each con-
nected element) is the basis function (in the one-dimensional case this would 
e.g. be the infamous hat-function) [9]. In our case, the basis function of a node 
on the edge of a triangle (D, E, F see Figure 3) always consists of two shape 
functions as the node always connects two elements (except on the boundary). A 
node on a vertex (A, B, C) may connect an arbitrary number of elements (as we 
have an unstructured grid) and a “bubble”-node (J) exists only on a single ele-
ment. 
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For the Galerkin method, the same family of functions is used for the basis 
functions as well as for the test functions. As our further calculations are per-
formed element wise, we can instead use the single shape functions iφ  and iψ  
and obtain the identical results for the summation of the residuals on each node. 

Finally, to approximate the flow field and minimize the residual, an unknown 
prefactor precedes each test function. When discretizing Equations (12)-(14) for 
all nodes i, these coefficients must be determined, as they hold the information 
about the flow state at each individual node. In fact, these are the coefficients 

( )
ig …  from Equations (5) and (8), where (…) stands for the flow variables (u), (v) 

and (p) at every node i. This results in ( )u
T i igω φ= ⋅  respectively ( )v

T i igω φ= ⋅  in 
Equations (12) and (13) and ( )p

T i igω ψ= ⋅  in Equation (14) [8]. So by integrat-
ing Equations (12)-(14) on all nodes and numerically solving for all ( )

ig …  we 
obtain our FEM solution. 

As the computational effort for the exact spatial quadrature of Equations (12 - 
14) is prohibitive, we resort to approximation via Gauss quadrature. From the 
many possible approaches, we opted for the six-point quadrature formula by 
Gockenbach [10] with a degree of precision ( 4pdeg = ), as any methods with a 
higher degree of precision produced the same results but with considerably in-
creased CPU-time cost [11]. Using Equation (12) to calculate the equilibrium 
over a single mesh node i and rewriting it as a sum over all quadrature points q 
(with their quadrature weights qω ) of all connected mesh elements e (with their 
area eA ), gives as residual 

( )

( )

( ) ( )( )( )
( )

( ) ( )( )( )

( )( )
( )

( )( )
( ) ( )

( ) ( )( )( )

,

d dd d
d d d d

1 d d d
d d d

u u
i i i iu

i e qe q
q e q e

u
i i

q e q eq e

g q e g q eu ures A
x x y y

u u pu q e v q e g q e
x y x

φ φ
ω

φ
ν

 ⋅ ⋅
= ⋅ +



 
 + + + ⋅

    

∑
  (15) 

for the horizontal velocity on that node. The notation ( )q e  indicates that a 
given derivative is to be evaluated on the position of the current quadrature point 
q on the current element e. Time evolution is performed via the backward-difference 
formula of second order (BDF2) formulation provided by Gear [12] (see also 
Gresho & Sani [4]), so an additional term 

( )( ) ( )( ) ( )( )

( ) ( )( )( )

2

11
1 2

1

1 1

1

1 2
1 1

1 1

nn
n n

n

n n

un
i i

u q e u q e u q e

g q e

ττ
ττ τ

τ τν τ
τ τ

τ
φ

τ

−−
− −

−

− −

−

    +        + − + +      + +    

⋅ ⋅

  (16) 

is added in the sum of Equation(15). The length of the current timestep is de-
noted by τ , the index n X−  indicates values from previous timesteps. There 
are certain considerations for the use of the BDF2-solver: While it is A-stable 
(stiffly stable), so that it can ignore spurious fluctuations from timestep to time-
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step (which is an advantage with permanently changing grid geometries), it is 
also L-stable, which means that it will not damp out instabilities in the flow. This 
means that BDF2 is not expected to (and, in our experience, does indeed not) 
delay or suppress the development of vortices in e.g. the flow behind fixed bluff 
bodies when the flow speed is increased from Stokes flow to Reynolds numbers 
beyond 10. 

The residual of the vertical velocity is calculated analogously to Equations (15) 
and (16), however the gravity term 

( ) ( )( )1 v
g i ia g q eφ

ν
+ ⋅ ⋅ ⋅                     (17) 

must be added inside the summation. The pressure residual obtained from Equ-
ation (14) is accordingly 

( )

( ) ( )

( ) ( )( )( ),

d d
d d

p p
i e q i ie q

q e q e

u vres A g q e
x y

ω ψ
  
  = ⋅ + ⋅
    

∑ .       (18) 

In our incompressible Navier-Stokes equation, the pressures act as constraint 
forces for the constraint of incompressibility. In our choice of FEM, the pres-
sures are realized as Lagrange parameters for the BDF2 formulation [4]. They 
can vary non-smoothly between timesteps without additional relaxation or time 
evolution, as there is no time evolution equation for the pressures which would 
require a smooth variation. Any nodes on boundaries with prescribed values use 
the difference between the intended and actual flow parameters as their residual. 

4.3. Iteration within a Single Timestep 

Within a single timestep, Newton-Raphson iteration is used to minimize the re-
siduals. Deriving the residual Equations (15)-(18) for each flow variable gives us 
the entries for the Jacobian of the Newton-Raphson method [13]. As each equa-
tion can be derived by every flow variable (u, v, p) except for Equation (18) 
where the pressure derivative is trivial, this results in a total of eight different 
equations for Jacobian entries. Within a single element (with surface eA ), these 
equations link the flow states u,v and p of two nodes i and j together. They again 
can be evaluated via the same Gockenbach quadrature method as described 
above (We omit these equations in this section for brevity and list them in Ap-
pendix A of this article). All these entries are combined into the (sparse) Jaco-
bian J  via MATLAB’s sparse command. As we have largely different scales in 
the velocities and the size of the finite elements, we use a rescaling of the largest 
line and column elements of the Jacobian as preconditioning [6]. 

Using the Jacobian and the residual vector res  containing the residuals of all 
flow states at all nodes, the Newton-Raphson step vector g∆  for all of these 
flow states can be calculated as 

g = J res∆ .                        (19) 

By applying the Newton-Raphson step to the solution vector g  
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1 gι ι+ = −g g ∆ ,                        (20) 

we complete a full Newton-Raphson iteration ι . Depending on the size of the 
residual, we now continue with another iteration or advance to the next time-
step. 

As our simulations feature moving granular particles, the geometry will also 
vary over time. The mesh has to change slightly with every timestep to accom-
modate the position change of the particles and requires interpolation of the old 
flow values onto the nodes of the new mesh. Details regarding interpolation of a 
finite element containing a bubble function are described by Mueller et al. [11]. 
An overview over the grid generation by regular remeshing via constraint De-
launay triangulation at larger intervals and grid relaxation from timestep to 
timestep can be found in Ng et al. [14]. 

5. Coupling between Fluids and Particles 

The simplifying step from three-dimensional to two-dimensional particles means 
that the DEM-particles are effectively rods in three dimensions. When we as-
sume that these rods would have a rough surface as shown in Figure 5, we end 
up with a connected fluid space, which can be mimicked in two dimensions by 
using a larger “shadow” for the particle-particle interaction and a smaller par-
ticle “core” which is seen as boundary by the fluid. The width of the core can be 
adapted to simulate different porosities. 

To compute the particle-flow interactions based on hydrodynamic principles, 
we have to apply no-slip boundary conditions at the particle surfaces. Other ap-
proaches, such as immersed boundary conditions [15] violate the no-slip condi-
tion and will cause unphysical drag forces between particle and flow. In our ap-
proach, the actual force of the fluid on the particle is computed as 

( ) ( )( ){ }T ˆddragF p lεζδ η
Γ

= − + ∇ + ∇ ⋅∫ U U n ,            (21) 

where the values for the normalized pressure p and velocity vector U  are eva-
luated on the particle boundary Γ  from the values computed with the FEM. 
Further εζδ  is the Kronecker delta function dependent on the Cartesian direc-
tions ε  and ζ , n̂  is the normal to Γ  and T is the transpose operator. 

 

 
Figure 5. From left to right: Physical three-dimensional particles, three-dimensional 
rough rods, projection and “averaging” along the z-axis and discrimination into a core 
region (bold line, dark shading) for the particle-fluid interaction and shadow region (light 
shading) for the particle-particle interaction so the fluid space in the simulation is con-
nected. 
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The time evolution via the BDF2 predictor-corrector during a single timestep 
is the following: At the beginning of a new timestep, the new positions (which 
determine the new particle outlines and therefore the boundaries of the fluid) 
are computed in the predictor. The grid is then deformed according to the new 
particle positions and the flow velocities are interpolated onto the new grid. The 
possibility of interpolating from one timestep to the next with slightly changing 
meshes is owed to the stability of the (implicit) BDF integrator: For explicit in-
tegrators, the size of the timestep would probably have to be reduced considera-
bly. The reaction forces from the fluid are computed from the configuration ob-
tained from the predictor and the velocities (of the particles and the fluid) at the 
end of the timestep are determined with the corrector. 

6. Verification 

To verify the physical accuracy of our simulation code, especially in regard to 
fluid-solid interaction, we selected three test scenarios. These allow us to con-
firm that our code is not only providing the accuracy which is expected in the 
field of computational fluid dynamics, but also that it is capable of handling the 
specific demands posed by the simulation of granular media and that the conti-
nuous change of the mesh does not affect the stability or accuracy. 

6.1. Wall Correction Factor 

We recreated the simulation geometry from Richou et al. [16] to compare our 
results of the wall correction factor for a fixed two-dimensional circle (respec-
tively a circular cylinder) between two parallel walls. As our simulation is in-
tended to handle polygonal particles, it is impracticable to aim for an imple-
mentation of perfectly circular shapes here. Neither curved element outlines nor 
extremely small discretization would serve any purpose when our main goal is to 
verify whether the simulation reproduces reasonably well parameters with finite 
input accuracy. Thus we decided on a regular dodecagonal particle shape as de-
scribed in the simulations by Ng [6] as a rough approximation for the cylinder. 
In the simulations by Richou et al., the main parameters are the Reynolds num-
ber 

0F

F

r U
Re

ρ
η
⋅ ⋅

=                        (22) 

with fluid density Fρ , dynamic viscosity Fη  and maximum inflow velocity 

0U  and the aspect ratio 

k r b=                           (23) 

between cylinder size and wall distance b, which both depend heavily on the cy-
linder radius r. As can be seen in Figure 6, the radius of a regular dodecagon has 
visible variation which will lead to different results for Equations (22) and (23) 
for different particle orientations and effective radii. Accordingly we run our 
simulations with max 15.000 mmr = , ( )min max cos 12 14.489 mmr r= ⋅ π =  as well 
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as with the Sauter radius 14.658 mmequir A= π =  the radius of a circle with 
equivalent area 2

max3A r= ⋅ . In their simulations, Richou et al. used a Reynolds 
number of 42 10Re −= × . We set the parameters for our fluid to a density of 

31000 kg mFρ = , a dynamic viscosity of 500 Pa sFη = ⋅  and adjusted the 
maximum inflow velocity 0U  according to the radius to reproduce the same 
Reynolds number. The distance from the particle center to the in- and outflow 
boundaries is 375 mm. As in the work of Richou et al., we use a parabolic veloc-
ity profile to define both in- and outflow boundary conditions. The aspect ratio 
was selected as 0.125k =  with b again adjusted to match. Further, the dodeca-
gon can face the flow either with a corner “corner on”, or with a side “side on” 
(see Figure 6). As buoyancy was not computed in Richou et al. and the particle 
will not be moving (only the drag forces acting on it will be calculated), gravity 
was turned off for these simulations. 

We have simulated all cases at two different mesh resolutions, first with a thin 
layer ( max0.1 r⋅ ) of mesh elements around the particle and second with mesh 
elements of roughly the particle edge length (see Figure 7). As Table 2 shows, 
the results are in good agreement with the data by Richou et al. Deviations due 
to the various reference radii are to be expected as we do not have a circular par-
ticle and they are the strongest factor of influence. Effects due to the orientation 
are minor, although when a side of the dodecagon is facing the flow, the wall 
correction factor (and thus the fluid force) is slightly increased. An important 
finding is that the Mesh resolution, while having an effect, is by far not as pro-
nounced as the impact of different reference radii. So even our coarse mesh 
(particle size ≈ 20 elements) produces reliable results and should allow signifi-
cantly faster calculations than immersed solid methods where the particle size  

 

 
Figure 6. Different orientations of a dodecagonal particle: “corner on” (left) and “side 
on” (center), with the different radii minr  and maxr  of the dodecagon with the Sauter ra-
dius equir  (right) for comparison. 

 

 
Figure 7. From left to right: Mesh of the full simulation domain, with coarse and fine mesh (see Table 1.) around the particle. 
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Table 2. Wall correction factor λ  of a dodecagon for different orientations, reference 
lengths r and mesh resolutions. Relative error is calculated based on the value given by 
Richou et al. 10.6500refλ =  [16]. 

λ Orientation r b [mm] U0 [mm/s] Mesh Rel. Error [%] 

10.094 

10.114 

10.660 

10.694 

10.474 

10.505 

10.168 

10.218 

10.693 

10.782 

10.557 

10.593 

corner on  

side on  

corner on  

side on  

corner on  

side on 

corner on  

side on  

corner on  

side on  

corner on  

side on 

rmax 

rmax 

rmin 

rmin 

requi 

requi 

rmax 

rmax 

rmin 

rmin 

requi 

requi 

120.000 

120.000 

115.911 

115.911 

117.265 

117.265 

120.000 

120.000 

115.911 

115.911 

117.265 

117.265 

6.667 

6.667 

6.902 

6.902 

6.822 

6.822 

6.667 

6.667 

6.902 

6.902 

6.822 

6.822 

fine 

fine 

fine 

fine 

fine 

fine 

coarse 

coarse 

coarse 

coarse 

coarse 

coarse 

5.22 

5.03 

0.09 

0.41 

1.66 

1.36 

4.53 

4.06 

0.40 

0.73 

0.87 

0.53 

 
often is ≥100 elements [15]. This means that for our granular simulations in flu-
ids, the simulation results will not be distorted by a large grid size. The particle 
shape (which in general will follow a polydisperse size and shape distribution) 
will be the dominant effect. These results prove the physicality of the micro-
scopic model we use for the fluid-solid interaction as the data by Richou et al. 
had been experimentally verified by Taneda [17]. 

6.2. Cavity Flow 

For further verification, we recreated the simulation geometry from Kawahara 
[18] to simulate the flow inside a 1 m by 1 m cavity. The parameters for the fluid 
density 31000 kg mFρ =  and dynamic viscosity 10 Pa sFη = ⋅  were adopted 
from Kawahara. The boundary condition on the top (wall) of the fluid domain 
was set to a horizontal velocity of 1 m sBCTOPu = , 0 m sBCTOPv =  (parallel to 
the boundary), the remaining three sides were set to a no slip 0 m sBCu = , 

0 m sBCv =  boundary condition. 
Our results for flow field and pressure distribution shown in Figure 8 match the 

results given in [18] for P2b-P1 (different notation to 2 1P P+ ) to the point, where 
they are virtually indistinguishable. This is an indicator that our simulation code is 
not only qualitatively correct, but also quantitatively reliable and able produce re-
sults which are expected in the field of computational fluid dynamics. 

6.3. Granular Step 

To prove the capabilities of our simulation code concerning the challenges posed 
by granular media immersed in fluids, we created a simulation of a collapsing 
granular step inspired by the experiments performed by Rondon et al. [19]. The 
findings by Rondon indicated a two-dimensional behaviour of the collapse 
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process, which should allow for a valid recreation with our simulation code. The 
fluid with density 31000 kg mFρ =  and dynamic viscosity 0.023 Pa sFη = ⋅  
is contained in a rectangular box 70 cm wide and 15 cm tall. A rectangular sec-
tion of 4 cm by 2 cm in the bottom left contains 37 particles as the granular 
step. The particles are polygonal with six to eight edges, have a density of 

32500 kg mPρ =  and an average “shadow” diameter of , 4 mmP shadowd ≈ . The 
“core” diameter seen by the FEM is , ,0.75 3 mmP core P shadowd d= ≈ . To form the 
granular step, the rightmost column of particles is fixed in place while the re-
mainder of the step is filled by particles falling in via a dry DEM simulation. 
When the particles have settled, the FEM part of the simulation is added and the 
movement of the rightmost particles is unlocked. 

As seen in Figure 9, the simulation is able to compute the collapse without  
 

 
Figure 8. Flow field (left) and pressure (right) inside the cavity. These results match the ones generated by 
Kawahara [18]. 

 

 
Figure 9. Granular step in the initial configuration at t = 0 s (top) and fully collapsed at t 
= 0.35 s (bottom) when the particles have practically stopped moving. 
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issue, while the mesh size in the vicinity of the particles is for the most part 
roughly the same as the particle edge size (≈1.5 mm). To avoid additional com-
putational effort and unnecessary degrees of freedom, the mesh is coarsened in 
the region without particles as seen in Figure 10. This grading of the mesh will 
not have any adverse effects: On one hand, it will retain the original flow field 
(which would be modified by “cutting off” the fluid domain close to the par-
ticles) while on the other hand, the discretization error introduced by the larger 
elements is compensated by the vanishing of the flow velocity towards the 
boundaries (Reference runs for a single sinking particle have even shown that 
the use of a graded mesh gives more accurate results with respect to the symme-
try of the trajectory, compared to a fine mesh, because the rounding error due to 
the conditioning of the Jacobian is reduced [20]). 

The particles in our current simulation are still about one order of magnitude 
bigger than the ones used by Rondon et al., which means we are dealing with a 
simpler geometry. However this is ideal as a test scenario without sacrificing 
realism. Now that our simulation code has proven its capabilities the next step is 
to gradually reduce the particle size (thereby increasing the particle count) to 
create create a physically meaningful two-dimensional equivalent of the experi-
ments by Rondon et al. and investigate the effect of the packing density on the 
decay process and the geometry of the end configuration (similar to the simula-
tions by Ng [21]). 

7. Summary and Conclusions 

We have presented a simulation of DEM-particles in Fluids where the particles 
are coupled to the fluid with the full physical interaction (no slip) from compu-
tational fluid dynamics. The accuracy of the time evolution was verified via the 
wall correction factor. For the parameter range under investigation, no instabili-
ties develop, even when mesh elements bordering the particles are about 1/7th of 
the particle size. This is a result of the added third order bubble, which stabilizes 
the simulation for coarser meshes while at the same time guaranteeing a 
smoother velocity field even with large elements. As a result, less degrees of freedom  

 

 
Figure 10. Full simulation domain for the granular step. Top and right wall are placed far away from the particles to 
avoid influences from their boundary conditions. The mesh coarsens towards these empty boundaries to reduce 
computation times. The not ideal shape of triangles in the right upper and lower corner is an effect of the mesh re-
laxation and the number of prescribed grid points near the right wall. Nevertheless, there are no negative numerical 
ramifications for the solution from the triangle shape, as the velocity values at the boundary are set and the neigh-
boring computed values are few and of small magnitude. 
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are needed than those necessary for lower order elements, and the stability is 
improved compared do P2P1-elements [7]. In that respect, our simulation is “op-
timal”, as is will not be possible to reduce the degrees of freedom for the FEM 
further without jeopardizing the stability. As the computational effort is propor-
tional to the number of degrees of freedom, the speed (for a given number of 
granular particles in a given volume region) will also be optimal. 

Neither the accuracy nor the stability is negatively affected by the movement 
of the particles or the resulting subtle distortions of the mesh in every timestep; 
the particles come to a physical rest with a physical angle of repose and without 
any residual noise amplitude. With the current code, we can now move towards 
larger system sizes. 

There remain some “do’s and don’ts” concerning the combination of remesh-
ing, graded mesh and finite elements with bubble functions but a discussion of 
this would lead too far here and will be addressed in a further publication. 
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Appendix A—Entries for the Jacobian 

On each node i of every 2 1P P+  finite element e, the flow Equations (15)-(18) are 
derived by every flow state ( ),, u v

j j j ju v g φ= ⋅  or ( )p
j j jp g ψ= ⋅  at every node j 

of the same element [13]. By calculating the derivative only at each quadrature 
point q and summing them up with respect to the element area eA  and the 
quadrature weights qω , we are able to integrate (via Gauss quadrature [10]) 
over the element and obtain the following equations for the Jacobian entries: 

Horizontal velocity (Equation (15)) derived by horizontal velocity u 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( )
( ) ( )( ) ( ) ( )( )

,

d d d d

d d d d

d d1 d
d d d

u j u i

u u u u
j j i i j j i i

e qq

u u
j j j ju u

j j i i
q

entry

g q g q g q g q
A

x x y y

g q g qug q u q v q g q
x x y

φ φ φ φ
ω

φ φ
φ φ

ν

 ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ +



 ⋅ ⋅
 + ⋅ ⋅ + + ⋅      

∑  (A1) 

derived by vertical velocity v 

( ) ( )
( ) ( ) ( ) ( ),

1 d
d

v u
e q j j i iv j u i q

q

uentry A g q g q
y

ω φ φ
ν

 
 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
 

∑       (A2) 

and derived by pressure p 

( ) ( )

( ) ( )( ) ( ) ( ),

d1
d

p
j j u

e q i ip j u i q

g q
entry A g q

x

ψ
ω φ

ν

 ⋅
 = ⋅ ⋅ ⋅
  
 

∑ .       (A3) 

Vertical velocity (vertical analogous to Equation (15)) derived by horizontal 
velocity u 

( ) ( )
( ) ( ) ( ) ( ),

1 d
d

u v
e q j j i iu j v i q

q

uentry A g q g q
x

ω φ φ
ν
 

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  
 

∑ ,      (A4) 

derived by vertical velocity v 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( )
( ) ( )( ) ( ) ( )( )

,

d d d d

d d d d

d d1 d
d d d

v j v i

v v v v
j j i i j j i i

e qq

v v
j j j jv v

j j i i
q

entry

g q g q g q g q
A

x x y y

g q g qvg q u q v q g q
y x y

φ φ φ φ
ω

φ φ
φ φ

ν

 ⋅ ⋅ ⋅ ⋅
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


 ⋅ ⋅
 + ⋅ ⋅ + + ⋅      

∑  (A5) 

and derived by pressure p 

( ) ( )

( ) ( )( ) ( ) ( ),

d1
d

p
j j v

e q i ip j v i q

g q
entry A g q

y

ψ
ω φ

ν

 ⋅
 = ⋅ ⋅ ⋅
  
 

∑ .       (A6) 

Note that the gravity term of Equation (17) vanishes as it is not dependent on 
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any flow state. Pressure (Equation (18)) derived by horizontal velocity u 

( ) ( )

( ) ( )( ) ( ) ( ),

d

d

u
j j p

e q i iu j p i q

g q
entry A g q

x

φ
ω ψ

 ⋅
 = ⋅ ⋅ ⋅
  
 

∑         (A7) 

and derived by vertical velocity v 

( ) ( )

( ) ( )( ) ( ) ( ),

d

d

v
j j p

e q i iv j p i q

g q
entry A g q

y

φ
ω ψ

 ⋅
 = ⋅ ⋅ ⋅
  
 

∑ .       (A8) 

Equation (18) does not have any pressure dependencies of its own, so it va-
nishes when derived by pressure p. Note that any of the above equations involv-
ing pressure is only evaluated for nodes ,i j  which are part of the P1 element. 

Time evolution via BDF2 again requires an additional term which is Equation 
(16) derived by u for Equation (A1) or the vertical analogous of Equation (16) 
derived by v for Equation (A5) 

( ) ( )1

1

1 2
1

1

n
j j i j

n

g q g q

τ
τ

φ φ
ν ττ

τ

−

−

  
 + 
  + ⋅ ⋅     ⋅ +      

.             (A9) 

As the BDF2 formulation is only dependent on u or v respectively, the com-
ponent vanishes for all other derivatives. 
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