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Abstract

It will be shown that finding solutions from the Poisson and Klein-
Gordon equations under Neumann conditions are equivalent to solv-
ing an integral equation, which can be treated as a generalized
two-dimensional moment problem over a domain that is considered
rectangular. The method consists to solve the integral equation nu-
merically using the two-dimensional inverse moments problem tech-
niques. We illustrate the different cases with examples.

Keywords

Equation in Poisson Partial Derivatives, Klein-Gordon
Equation, Integral Equations, Generalized Moment Problem

1. Introduction
You want to find w(z, t) such that

Wae + Wy = R(x,t) or Wy —wy = R(z,t)
with R(z,t) known about a D domain where

o D={(z,t);a1 <z <b,az <t <ba}

o D={(z,t);a1 <z <by,t>as}
The underlying space is L?(D). Under the conditions

wx(al,t) = k‘l (t) wx(bl,t) = k‘g(t)

= hl (t) wt(m, bg) = hg(t)
w(zx, az) = s1(t) w(x, by) = sa(t)

The problem has been largely studied and solved with differen-
t methods such as the method of finite differences [1-4] to name a
few.

wi(z, az)
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The objective of this work is to show that we can solve the problem
using the techniques of inverse moments problem. We focus the study
on the numerical approximation.

We want to present a an alternative method to solve a Poisson e-
quation under Neumann conditions using techniques of generalized
inverse moment problem, independently of other commonly used ex-
isting methods: finite difference method, Galerkin method, among
many others. The interest is not to compare with the existing meth-
ods, but to present a different method to my novel criteria, and the
one that I have already applied in other cases of partial differential
equations under other conditions, for example the Poisson equation
under Cauchy conditions or from Dirichlet. It turns out that a change
in conditions implies a different approach. This is a significant change
in the problem statement for its resolution.

The generalized moments problem [5-7] is to find a function f(z)
about a domain Q C R? that satisfies the sequence of equations

s = / gi() f(x)dx €N (2)

where N is the set of the natural numbers, (g;(x)) is a given sequence
of functions in L?(f2) linearly independent known and the succession
of real numbers {u;}ien is known data. The problem of Hausdorff
moments [5-7], is to find a function f(x) en (a,b) such that

b
Hi:/ 2 f(x)dr ieN (3)

In this case g;(x) = z* with i belonging to the set N.

If the integration interval is (0, 00) we have the problem of Stieltjes
moments; if the integration interval is (—oo, c0) we have the problem of
Hamburger moments [5-7]. The moments problem is an ill-conditioned
problem in the sense that there may be no solution and if there is no
continuous dependence on the given data [5-7]. There are several
methods to build regularized solutions. One of them is the truncated
expansion method [5]. This method is to approximate (2) with the
finite moments problem

i :/Qgi(m)f(x)dw i=1,2,..,n (4)

where it is considered as approximate solution of f(z) to p,(z) =
Z?:o Xi¢i(z), and the functions {¢;(z)};=1, . result of orthonormal-
ize (g1, g2, ..., gn) being A; the coefficients based on the data ;. In the
subspace generated by (g1, g2, ..., gn) the solution is stable. If neN is
chosen in an appropriate way then the solution of (6) it approaches
the solution of the original problem (2).

In the case where the data p; are inaccurate the convergence theo-
rems should be applied and error estimates for the regularized solution
(p. 19 a 30 de [5]).

2. Resolution of the Poisson Equation
We consider

Weo + we = R(z, 1) (5)
We take as an auxiliary function

u(m,r,x,t) = cos (Tz) et
1
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If the D domain is bounded the conditions are:

ww(al,t) = kl (t) ww(bl, t) = k?g(t)
wy(z,a2) = hi(z)  wi(z,b2) = ho(x) (6)

If the region D is not bounded the conditions are:
wy(ay,t) = k1 (t) wy (b1, t) = ka(t) we(x,a2) = hy(z)  (7)
We define the vector field
F* = (Fy(w), Fa(w)) = (wa, wy)
Since div(F*) = R(x,t) we have to:

//udwF*dA //uth

In addition, as udiv(F*) = div(uF™*) — F*.Vu, so

// udiv(F*)dA:// div(uF*)dA—/ F* VudA

where Vu = (ug, uy).

And

Integrating by parts.

b2 b1
// Fiu,dA = / Frugdzdt
D az ay

b2
_/ (w(by, t)ugz(m,r, b1, t) — wla, t)u,(m,r, a1,t)) dt

// WlgrdA

Ug (M, 7, by, t) = —e " Dgen (mbl) M _ g
by by

mm )mﬂ' 0

g (m,ra1,t) = —e "t gen [ —q; | — =
x( s 1y U1y ) bl 1 bl -
al=

Analogously

b2 b1
// FrudA = Frudadt
D az

ax

by
:/ (w(zx,bo)us(m,r,x, be) — w(x, az)u(m,r,x,as)) dx

1

*// 'LUUttdA
D

If m € N y a; =0 then

// F*.VudA
D

—/ (w(z, ba)us(m, r,x,be) — w(x, az)us(m,r,x,as)) dx

// uma:""“tt A
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where

//D WUy + Uy )dA = //D wu (— (T)z + (t+ 1)2> dA

On the other hand,

/ (uF™*).nds
c
by

by
= —/ u(m,r, ag)wt(x,ag)dac/ u(m,r, z, be)w(x, by)dx

ai

ba
—|—/ w(m,r, by, t)wy (b, t)dt
a

/ u(m,r, a1, t)wy(a, t)dt = G(m,r)

/ / wR(z,)dA = G(m, 7)

—/ (w(zx, bo)ug(m,r, x,bs) — w(x,as)ug(m,r, x,as))dx

() e
//D wu (— (TZZT>2 +(r+ 1)2> dA

= —/ (w(z, ba)us(m, r,x,be) — w(x, ag)ut(m,r,z,as)) dx
ai

— G(m,r) + / /D uR(z,t)dA = p(m, )

: _ (m,r)
S

If the equation is from Klein-Gordon, it is taken

F* = (Fy(w), Fy(w)) = (wg, —w)

. _ “(m,r)
) //D e (— (TZ;TD)Q —(t+ 1)2>

where, in ¢*(m,r) we have to G(m,r) is different.
To solve this integral equation we give integer values to m and 7:

m=20,1,2,..ny — 1; r=1,2,...,n9

p(m,r)

(— (TZT)Q +(t+ 1)2)

= Hmr (8)
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We interpret (8) as a moments problem of two-dimensional gener-
alized. p,(z,t) is the numerical approximation with the truncated
expansion method for w(z,t) with

n=ni.ne

Hpo(x,t) = u(m,r,z,t) m=0,1,2,.n1 —1; r=1,2,....,n9

3. Solution of the Generalized Moments
Problem

We can apply the detailed truncated expansion method in [7] and
generalized in [8] and [9] to find an approximation p,(x,t) for the
corresponding finite problem with ¢ = 0,1,2,....,n, where n is the
number of moments ;. We consider the basis ¢;(z,t) i =0,1,2,....,n
obtained by applying the Gram-Schmidt orthonormalization process
on H;(z,t) 1 =0,1,2,...,n. We approximate the solution w(x,t) with
[7] and generalized in [8] y [9]:

pr(x,t) = Z)\i(bi(ac,t) donde \; = ZCij,uj 1=0,1,2,...,n
i=0

§=0
And the coefficients C;; verify

i—1

Cy = [ S p e Lol )

2 kj
& x|

lgs(z,t)| " 1<i<mni1<j<i

The terms of the diagonal are
Cii = || i (z, t)||" i=0,1,..,n.

The proof of the following theorem is in [9,10]. In [10] the demonstra-
tion is made for by finite. If by = oo instead of taking the Legendre
polynomials we take the Laguerre polynomials. En [11] the demon-
stration is made for the one-dimensional case.

This Theorem gives a measure about the accuracy of the approxi-
mation.

3.1. Theorem

Let {u;}7— be a set of real numbers and suppose that f(x,t) €
L2 ((a1,b1) % (ag,be)) for two positive numbers ¢ and M verify:

n
=0

bo by
[ (= a2+ b - aa)? )dnde < 02 (9)

b2 bl
/ / |f(a, )| dedt

2
< min {HCCTH e? 4 LQ; 1=0,1, ,n}
i 8(i+1)

bo by
/ Hi(z,t) f(z, t)dadt — p;| < e*
a2 a

then
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where C' it is a triangular matrix with elements C;; (1 <7 <mn;1 <
j <) and

by by ) M?2
/@ / pult) — f(a.t) dedt < | OCT|| 2 + Sy 0
If by it is not finite then (9) change by
ba by
/az / (xf? + tf)dxdt < M? (11)

And it must be fulfilled that
t'f(z,t) — 0 if t—> 00 VieN

3.2. Numerical Examples

3.2.1. Example 1

We consider the equation
Wey + Wy = —3cos(2x)Cosech(w)Senh(t) en (0,2) % (0,2)

senh(t)
senh(m)’

We take n = 9 moments and is approaching w(z,t) where the ac-
curacy is

whose solution is: w(z,t) = cos(2x)

2 2
/ / (po(z,t) — w(x,t))?dtdr = 0.0415341
0 0

In Figure 1 the graphics of: pg(x,t) (color magenta) yw(z,t) (color
celeste) are superimposed.

Figure 1. py(z,t) and w(z,t) for example 1.

3.2.2. Example 2

We consider the equation

W + Wy =0 en (0,1) x (0,00)
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whose solution is: sen(z)e .
We take n = 9 moments and is approaching w(z,t) where the ac-

curacy is

1 e3¢}
/ / (po(z,t) — w(x,t))?dtdr = 0.0193919
0 0

In Figure 2 the graphics of: pg(z,t) (color magenta) yw(zx,t) (color
celeste) are superimposed.

Figure 2. po(z,t) and w(z,t) for example 2.

3.2.3. Example 3

We consider the equation

Wey — Wy = —8e3tHT en (0,1) % (0,2)

Figure 3. po(z,t) and w(z,t) for example 3.
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whose solution is: e3¢,
We take n = 9 moments and is approaching w(z,t) where the ac-

curacy is

1 2
/ / (po(z,t) — w(x,t))?dtdr = 0.0552525
0 0

In Figure 3: pg(z,t) (color magenta) yw(z,t) (color celeste) are
superimposed.

4. Conclusions

An equation in partial Poisson derivatives of the form wg, + wy =
R(z,t) or from Klein-Gordon w,, — wy = R(x,t) where the unknown
function w(x,t) is defined in D = (0,b1) X (ag,b2) or D = (0,b1) x
(ag,00) under Neumann’s conditions can be solved numerically by
applying inverse moment problem techniques.

1. First the partial derivatives equation is written as an integral

equation
// wudA = w(zmw)
D (_ (mﬂ

ma) o (r 1)2>

2. To solve this integral equation we give integer values to m and

T
m=20,1,2,..n7 — 1; r=1,2,...,n9
then
// w(x7t)Hmr(fE7t)dA = (P(ZL,T) = lmr
D mm
() o)
by

We have a problem of two-dimensional generalized moments.
pn(x,t) is a numerical approximation with the truncated ex-
pansion method for w(z,t), where n = ny.ng Hpe(z,t) =
ulm,r,z,t) m=0,1,2,..n1; r =1,2,...,na.
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