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Abstract 
As a basic component of engineering fields such as aeronautics, astronautics 
and shipbuilding, panel structure has been widely used in engineering and 
scientific research. It is of great theoretical and practical significance to 
study the vibration of panels. The panel flutter problem has caused widely 
concerned by researchers at home and abroad during to the emergence of 
high-speed aircrafts. With regard to the eigenvalue problem of rectangular 
panels, it is generally believed that it is difficult to obtain a closed form eigen 
solution in the case of an adjacent boundaries clamped-supported or a free 
boundary that cannot be decoupled. Aiming at the problem, this paper stu-
dies the two-dimensional symmetric orthogonal laminated plate structure in 
the hypersonic flow in the thermal environment, and combines the first-order 
piston aerodynamic theory to study a high-precision separation variable me-
thod. Through this method, analytical solution to the closed form of the 
thermal flutter problem of rectangular panels can be obtained under any ho-
mogeneous boundary conditions. 
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1. Introduction 

Panel flutter is one kind of typical self-excited vibration in aero-elastics that can 
cause fatigue damage to the structure. This phenomenon was first observed in 
1940’s [1], and was clearly observed in experiments in 1950’s [2], Mei [3] gave a 
summary of which before 1999. Note that piston theory which was developed to 
approximate gas pressure by Lighthill [4] in 1953, Forsching [5] summarized 
three available conditions of using piston theory ω*2Ma2 >> 1, ω*2Ma >> 1, Ma2 >> 
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1, where ω* is the reduced frequency, Ma is the Mach number. Dowell [6] [7] 
gave a typical investigation on nonlinear panel flutter of 2D and three dimen-
sional (3D) isotropic and simply-supported panels. Impact on 3D panel flutter 
properties of different boundary conditions (SSSS, SCSC and SFSF) were inves-
tigated using the assumed mode method and finite element method in 2014 [8]. 
Yufeng Xing gave the overall assessment of closed-form solution methods for 
free vibrations of rectangular thin plate [9] 

With the increase of the flight speed of modern aircrafts, the Mach number 
can reach more than five Mach. Therefore, it is urgent to systematically give the 
flutter calculation results under all constraint boundaries of the two-dimensional 
plate model. At the same time, due to the increase of the Mach number, the aero-
dynamic thermal effect is also not negligible. Based on this, this paper studies a 
high-precision separation variable method based on two-dimensional symmetric 
orthogonal laminates, and obtains the exact solution of the two-dimensional panel 
thermal flutter problem under various homogeneous boundaries (SS, GG, CC, 
FF, GS, SG, SC, SF, GC, CG, GF and CF). The thermal flutter characteristics of 
two-dimensional panels are analyzed from the perspective of eigen roots. Finally, 
the research work on the eigenvalue problem of two-dimensional panel flutter is 
summarized. 

2. Establishment of Basic Equations 

Figure 1 is a two-dimensional symmetric orthotropic laminate model with a 
chord length of a,a thickness of h, and a plate density of ρm. The upper surface 
of the panel has airflow, and the airflow density, velocity and Mach number are 
respectively recorded as ρa, V, Ma. The temperature is evenly distributed when 
the panel reaches a steady state after being heated. The laminate is composed of 
five orthotropic and aeolotropic layers of equal thickness and uniform as shown 
in Figure 1(b). The two-dimensional panel model is of an infinite length in 

 

 
Figure 1. Two-dimensional panel subjected to aerodynamic loading over one surface. (a) Plate configuration; (b) Ply stacking 
sequence. 

https://doi.org/10.4236/jamp.2020.88118


L. T. Dai, Q. Z. Sun 
 

 
DOI: 10.4236/jamp.2020.88118 1527 Journal of Applied Mathematics and Physics 
 

spanwise, elements per spanwise unit length can be used in the process of analy-
sis The xy plane of cartesian coordinate system is established in the middle of the 
panel, and the origin point O is built in the corner point of the unit, as shown in 
Figure 1. 

Using the classical laminates theory, which satisfies the Kirchhoff hypothesis, 
for symmetric cross-ply composite laminates, the motion equation of the panel 
is 
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where D11 is the plate bending rigidity, N is the number of stacking layers, and 
( )kijQ  is the transformed reduced stiffness coefficient for the kth layer, and 
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Nx is the mid-plane compressive force per unit length, ( )T
xN  is the compres-

sive force caused by the temperature changes T∆  
( ) 2

2
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EE  is the equivalent elastic modulus and Eα  is the equivalent thermal ex-
pansion coefficient of the laminates. 

The supersonic unsteady aerodynamic force is calculated by the piston theory. 
The aerodynamic load can be expressed by the classical first-order piston theory, 
and when the Ma is large, it can be approximated as 

2 1
a

a
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                 (7) 

Then Equation (1) can be written as 
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In this paper, it is the exact eigensolution of Equation (7) that we need to ob-
tain. To solve the control partial differential equation, we need to meet the cor-
responding boundary conditions. The various classical boundary conditions are 
shown in Table 1. 
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Table 1. Classical boundary conditions. 

Boundary conditions x = 0 or a 
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2

20, 0ww
x

∂
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= =
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3

30, 0
x
w w

x
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w ∂
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32

2 30, 0x
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x x x

∂ ∂ ∂
∂

+
∂

= =
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3. Exact Frequency and Mode Functions 

In this section, the exact eigensolutions of 2D panel flutter are derived for the 
cases of SS, GG, CC, FF, SG, SC, SF, GC, GF and CF, in which SS and CC are the 
most used in previous analysis about 2D panel flutter, CF is rarely used, and the 
remaining are discussed for the first time. 

Let the deflection w be in the form of a separate variable as follows 

( ) ( e ,   ) ( ) itx t xw φ τ φ β ωΩ Ω = += =                 (9) 

The real part β of Ω represents amplitude variation, while imaginary part ω 
represents the frequency of principle vibration. If 0β ≥  the panel flutters. 
Substituting Equation (8) into Equation (7) yields homogenous characteristic 
equation. 
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from which we can solve flutter mode function and flutter frequency for differ-
ent boundary conditions. The flutter mode function or eigenfunction has the 
form as 

( ) eA λξφ ξ =                          (11) 

where λ is the eigenvalue with respect to x aη = . Substituting of Equation (10) 
into Equation (9) yields algebraic eigenvalue equation 
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That is 

4 2 0lR p kλ λ λ+ + =+                      (13) 

Then Equation (12) is the two-dimensional panel flutter Eigen algebraic equa-
tions, where R, pl and k are all nondimensional parameters, and pl is aerody-
namic coefficient, k is frequency prameter. 
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The parameter k in Equation (13) can also be written as 
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where ( )2
rs 11 ma D hω π ρ=  is the first-order natural frequency of SS panel 

without aerodynamic force, and aerodynamic damping coefficient ag  is 

a c
a

m rsh
a

g
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=                         (16) 

where ρa is the mass density of fluid, ac is the local velocity of sound. 
According to Ferrari’s method, the four characteristic roots of Equation (12) 

can be 
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And the general solution of the eigenfunction can be expressed as 
32 41
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Substitute Equation (8) and Equation (18) into the boundary conditions shown 
in Table 1 to determine frequency equations and the coefficients of ( )φ ξ , and 
the method to solve eigensolutions ( , )φΩ  is the same for different combination 
of boundary conditions, thus the case SS is taken as an example to show the so-
lution procedure. The boundary conditions in terms of ( )φ ξ  are 

(0) (1) 0, (0) (1) 0φ φ φ φ′′ ′′= = = =                  (19) 

Substitution Equation (18) into Equation (19) results in four homogeneous 
algebraic equations for undetermined coefficient A1, A2, A3 and A4 as 
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After substituting the eigenvalue expression Equation (17) into the above equ-
ation, the frequency equation and mode function coefficients of two-dimensional 
simply supported plates can be obtained: 
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Table 2 eigenvalue properties of different flutter types of all boundaries. 
 

Table 2. Eigenvalue properties of different flutter types. 

 
Coupled-mode Zero-frequency mode or static 

divergence  
Buckling 

Before flutter β ≤ 0, ω > 0 β ≤ 0, ω > 0 β ≤ 0, ω > 0 

Flutter state 
β1 = β2 = 0, ω1 = ω2 > 0 

βi < 0, ωi > 0, i > 2 
β1 = β2 = 0, ω1 = ω2 > 0 

βi < 0, ωi > 0, i > 2 
β1 = 0, βi≠1 < 0 
ω1 = 0, ωi≠1 > 0 

After flutter 
β1 = β2 > 0, ω1 = ω2 > 0 

βi < 0, ωi > 0, i > 2 
β1 = β2 > 0, ω1 = ω2 > 0 

βi < 0, ωi > 0, i > 2 
β1 > 0, βi≠1 < 0 
ω1 = 0, ωi≠1 > 0 

Frequency 
Ma↗ 
ω1↗ 

ω i≠1↘ 

Ma↗ 
ω1↗ 

ω i≠1↗then↘ 

Ma↗ 
ω↘ 

whenMa<Macr 
Nx↗ 
ω↘ 

Ma Macr ≤ Maf Macr ≤ Maf Macr = Maf 

Boundary 
conditions 

SS, CC, FF, GG, 
SC 

CF,SF,GF,CG,SG GC, GS 
SS, CC, FF, GG,  

SC, SF, CF, GF, GC, 
GS 

4. Numerical Analysis 

The equivalent elastic modulus of laminated plates is 

1 2(1 )E f fE E c E c= − +                      (23) 

The equivalent thermal expansion coefficient of laminated plates is 

1 1 2 2

1 2

(1 )
(1 )

f f
E

f f

E c E c
E c E c

α α
α

− +
=

− +
                   (24) 

And Table 3 shows the Parameters of the panel and supersonic flow. 
 

Table 3. Parameters of the panel and supersonic flow. 

Parameter Value Parameter Value 

E1 
E2 

21υ  
mρ  
1α  

9.1 GPa 
141 GPa 

0.3 
1600 kg/m3 

−0.07 × 10−6/˚C 

aρ  
a 
h 

fc  
2α  

1.205 kg/m3 
0.3 m 

0.002 m 
66% 

30 × 10−6/˚C 

4.1. Flutter Frequency and Flutter Type 

The relationship among β, ω and Ma can be obtained from solving Equation (21) 
for case SS as shown in Figure 2 and Figure 3. Figure 2 shows that β is a nega-
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tive constant when Ma < Macr = 6.9521, implying that the vibration of panel be-
fore flutter is damping vibration. 

It can be concluded from Figure 3 that ω1st and ω2nd get closer as Ma increases, 
and comes to an equal at Macr. Then two frequencies keep equivalence, β begins 
to rise till β = 0 when Ma = Maf = 6.9896. Due to the existence of aerodynamic 
damping, Maf > Macr. 

Above qualitative conclusions are for case SS, but they are also correct for the 
cases of CC, FF, GG and SC etc. and all the flutter types of these panels are 
coupled-mode as shown in Table 2. 

For panel GC, Figure 4 and Figure 5 show its flutter characteristic. The first 
two order frequencies never coincide as the Mach number increases. When Ma = 
Macr, ω1st = 0, then β = 0, when Ma = Maf, panel flutters, after this moment, panel 
flutter diverges, and this type of flutter is called zero-frequency flutter or static di-
vergence. GC and CG have different flutter type due to the asymmetry of system 

 

 
Figure 2. Relation between β and Ma for SS. 

 

 
Figure 3. Relation between ω and Ma for SS. 

https://doi.org/10.4236/jamp.2020.88118


L. T. Dai, Q. Z. Sun 
 

 
DOI: 10.4236/jamp.2020.88118 1532 Journal of Applied Mathematics and Physics 
 

 
Figure 4. Relation between β and Ma for GC. 

 

 
Figure 5. First two order frequencies for GC. 

 
stiffness, the former is couple-mode flutter while the latter is zero-frequency 
flutter. Besides, flutter can hardly happen for case CG while it is easy for case GC 
to have a zero-frequency flutter. The case GS and SG have the different flutter 
characteristics, Macr (GS) = 2.0025 while Macr (SG) = 51.1085. 

Figure 6 shows the relationship between temperature and the flutter boun-
dary under several typical boundary conditions of frequency coincidence flutter. 
When the temperature is lower than the critical buckling temperature (ΔTcr 
(CC) = 57.87˚C, ΔTcr (SS & GG) = 14.47˚C, ΔTcr (CF) = 3.6˚C), the flutter 
boundary can be obtained from the linearized model analysis proposed in this  
article. The stiffness of the system is reduced due to the temperature rises, so the 
flutter aerodynamic coefficient decreases. 

Temperature can affect the critical Mach number of the panel and flutter 
boundary. When it reaches the critical thermal buckling temperature, buckling  
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Figure 6. Flutter boundary versus temperature. 

 
Table 4. Contrast of Macr (SS) in different ΔT. 

ΔT Macr 

0˚C 6.9896 

ΔTcr 5.3934 

 
Table 5. Comparison between Galerkin’s method and exact solution. 

method 
Ma = 2 Flutter parameter 

β ω1st ω2nd ωf Maf error 

Galerkin’s third-order 64.02 650.73 2130.32 1773.44 7.18 2.69% 

Exact soultion 64.01 651.97 2130.66 1759.93 6.99  

 
will occur. And only the effective stiffness of the system is changed so as to affect 
the flutter boundary while no new flutter phenomenon occurs. 

4.2. Results Contrast 

We know that in the field of flutter theory analysis, the Galerkin’s method is 
widely used, so we use it to verify the method proposed in this paper furtherly. 

Table 4 shows the contrast of Macr in △T = 0 and ΔTcr in SS boundry. 
Table 5 lists the results of Galerkin’s method and exact solution in this paper. 

Generally, the third-order panel flutter calculation is more reasonable when us-
ing Galerkin’s method. When the third-order mode is selected, the calculation 
results of the Galerkin’s method coincide the results of this paper well. The rela-
tive error of the flutter frequency is 0.77%, and β, ω1st and ω2nd converge faster 
than Maf and ωf, the relative error of Maf is 2.69%. 

5. Summary 

In this paper, all possible exact eigen solutions of two-dimensional panel flutter 
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under any homogeneous boundaries are obtained by a unified method. When 
the critical point of the flutter is reached, the eigen root will become a complex 
number, so that the system vibrate diverges exponentially with time. And after 
the critical temperature, the linearized model is no longer suitable. This is be-
cause when structural buckling happens, the geometric nonlinear effect becomes 
the main factors that affect the inherent characteristics of structural vibration, 
linearization technique can no longer describe the buckling and post-buckling 
behavior of the structure. The buckling and post-buckling behavior of the struc-
ture is outside the scope of this paper. 

Although the research in this paper is based on two-dimensional panel and 
linear theory, the calculation results are still of great use for evaluating numerical 
methods. The solution steps can provide a reference for other similar stability 
problems such as three-dimensional panel flutter and wing flutter. 
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