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Abstract 
In this paper, coupled nonlinear Schrödinger equations with variable coeffi-
cients are studied, which can be used to describe the interaction among the 
modes in nonlinear optics and Bose-Einstein condensation. Some novel 
bright-dark solitons and dark-dark solitons are obtained by modified Sine- 
Gordon equation method. Moreover, some figures are provided to illustrate 
how the soliton solutions propagation is determined by the different values of 
the variable group velocity dispersion terms, which can be used to model 
various phenomena. 
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1. Introduction 

In nonlinear optics, the coupled nonlinear Schrödinger (CNLS) equations are 
often used to describe propagation of optical soliton in birefringence fibers, mul-
timode fibers and optical fiber arrays. Many researchers have studied the CNLS 
equation with constant coefficient. In recent years, a number of methods are 
used to solve the coupled integrable nonlinear models, such as Hirota bilinear 
method [1] [2] [3], Painlev analysis method [4], Function expansion method [5] 
and direct perturbation method [6] and so on. However, the evolutions of vector 
solitons for CNLS equation with constant coefficients are not dependent on any 
controllable parameters. With the development of modern science, people need 
to manage and control soliton propagation, which will make solitons into prac-
tical information carriers. Therefore, variable coefficient equation has more prac-
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tical significance. 
In this paper, we will consider the following coupled nonlinear Schrödinger 

equation with variable coefficients (VCNLS) [7]: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2 2
1 1 1 1 2 2 1 1

2 2
2 2 1 1 2 2 2 2

0,

0.

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

+ + + + =

+ + + + =

t xx

t xx

i a t b t b t v t

i a t b t b t v t
         (1) 

where 1ψ  and 2ψ  are complex envelopes of the propagating beam of the two 
modes, and x, t are the spatial coordinate and retarded time respectively. The 
coefficients ( )a t  represent the group velocity dispersion; ( )1b t , ( )2b t  mean 
nonlinear interactions and ( )v t  means external potential. Finding exact solu-
tions of VCNLS, especially soliton solutions [8] [9] have been a subject of great 
interest to mathematicians and physicists. Han [7] constructed an explicit trans-
formation, which maps VCNLS to the classical CNLS, and obtains Bright-Dark 
solitons for VCNLS. Exact traveling wave and soliton solutions of the VCNLS 
equation have been obtained by Zhong [10] using homogeneous balance prin-
ciple and the F-expansion technique. Yu and Yang [11] presented the similarity 
transformations for this system. Because of the complexity of VCNLS form, it is 
difficult to solve it directly, so the study of this kind of soliton solutions is not so 
extensive. 

The paper is organized as follows. Section 2 describes the modified Sine-Gordon 
equation method [12]. In Section 3, we have applied the method to the VCNLS, 
and derive some bright-dark solitons and dark-dark solitons. Section 4 is de-
voted to analysis of shape changing exhibited by these soliton solutions when 
variable coefficients are altered. In the last section, Section 5, conclusion is pre-
sented. 

2. The Method 

Let us consider a form of a nonlinear partial differential equation  

 ( ) ( ) ( ) ( )
2

1 22, , , , , , , , , 0,
ψ ψ ψ ∂ ∂ ∂

= 
∂ ∂ ∂ 



k k k
kH x t a t b t b t v t

x t x
         (2) 

where ( )a t , ( )kb t  and ( )v t  are arbitrary functions in t and 1,2=k . In the 
following, we offer the main steps of this method: 

Step 1: Use the following assumptions:  

 
( ) ( ) ( )( )

( ) ( ) ( )( )
1 1

2 2

, e ,

, e .

α θ

α θ

ψ ζ

ψ ζ

−

−

=

=

i x t

i x t

x t U

x t U
                      (3) 

where ( )1 ζU  and ( )2 ζU  are the new dependant functions, ( )( )ζ µ λ= −x t  
is the new independent variable, ( )λ t  is an arbitrary function of t and µ  and 
α  are the frequency and the width of the soliton respectively. 

Step 2: Collect the coeffients of ( )1 ζU  and ( )2 ζU  and their derivatives, 
and then assume the imaginary part is equal to zero. 

Step 3: Take the coefficient of the largest linear term as the normalization 
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coefficient. 
Step 4: The derivatives and powers of ( )1 ζU  and ( )2 ζU  are equal to the 

term multiplied by a constant, so the arbitrary functions will be determined, and 
the Equation (2) is transformed into the following nonlinear ordinary differen-
tial system. 

( ) ( ) ( )( ), , , 0ζ ζ ζ′ ′′ =i i i iQ U U U                     (4) 

Step 5: Use the solutions of the Sine-Gordon equation [13] [14] by assuming 
that  

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

1
1 0

1

1
2 0

1

cos sin cos ,

cos sin cos .

ξ ξ ξ ξ

ξ ξ ξ ξ

−

=

−

=

 = × + + 

 = × + + 

∑

∑

n
i

i i
i
m

j
j j

j

U w B w A w A

U w E w D w D
      (5) 

where iA , iB , iD , iE , 0A  and 0D  are arbitrary constants and n and m are 
determined by balancing the most dispersive term and the greatest nonlinear 
term in Equation (4), and  

 ( ) ( )( )sinξ ξ′ =w w                          (6) 

and  

( )( ) ( ) ( )( ) ( )sin sech or cos tanhξ ξ ξ ξ= =w w             (7) 

Step 6: Equating the coefficients of ( )( )sin ξi w  and ( )( )cos ξi w  to zero 
and an algebraic system for the constant iA , iB , iD , iE , 0A  and 0D  are 
obtained, by solving them with a Maple program and back-substituting into Eq-
uation (5) and Equation (3) via Equation (7), novel soliton solutions are ob-
tained for the system of Equation (2). 

Advantages of the method: The Sine-Gordon equation method has limita-
tions and is suitable for some constant coefficient systems, but modified Sine- 
Gordon equation method is applicable to systems with variable coefficients con-
taining imaginary parts. As a result, some spanking new solutions might be ori-
ginated via this method and this method can use computational software like 
Maple or Mathematica to reduce the amount of computation. 

3. Exact Solutions for VCNLS 

By substituting the assumptions in Equation (3) into Equation (1), we obtain  

 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

2 2
1 1 1

2 2
1 1 2 2 1 1

2 2
2 2 2

2 2
1 1 2 2 2 2

2

0,

2

0.

µ ξ µ α λ ξ θ α ξ

ξ ξ ξ ξ

µ ξ µ α λ ξ θ α ξ

ξ ξ ξ ξ

′′ ′ ′ ′+ − + −

+ + + =

′′ ′ ′ ′+ − + −

+ + + =

a t U i a t U a t U

b t U b t U U v t U

a t U i a t U a t U

b t U b t U U v t U

       (8) 

to make Equation (8) real, the terms ( )1 ξ′U  and ( )2 ξ′U  must be eliminated, 
so according to Step 2, we get ( ) ( ) 02 dλ α λ= +∫t a t t , and then follow Step 3, 
that is, take the coefficients of ( )1 ξ′′U  and ( )2 ξ′′U  as the normalized coeffi-
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cients, and we get  

 ( ) ( ) ( )2 2
1 0dθ µ α θ= + +∫t c a t t                       (9) 

( ) ( ) 02 dλ α λ= +∫t a t t                          (10) 

( ) ( )2
1 2µ=b t c a t                            (11) 

( ) ( )2
2 3µ=b t c a t                            (12) 

( ) ( )2
4µ=v t c a t                            (13) 

where 1c , 2c , 3c  and 4c  are constants and 0λ  and 0θ  is an integration 
constant. Therefore,  

 ( )( )2 dξ µ α= − ∫x a t t                         (14) 

And, Equation (8) can be simplified as follows  

 
( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

2 2
1 1 1 2 1 3 2 1 4 1

2 2
2 1 2 2 1 3 2 2 4 2

0,

0.

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

′′ + + + + =

′′ + + + + =

U c U c U c U U c U

U c U c U c U U c U
      (15) 

By balancing the dispersive and nonlinear terms in Equation (15) we get 
2 2+ = +m m m  and 2 2+ = +n n n , i.e. 1= =m n , so according to Step 5, we 

assume that  

 
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1 1 1 0

2 1 1 0

sin cos ,

sin cos .

ξ ξ ξ

ξ ξ ξ

= + +

= + +

U B w A w A

U E w D w D
            (16) 

Substituting Equation (16) and the necessary derivatives into Equation (15) 
using Equation (6), applying trigonometric identities and collecting the coeffi-
cients of ( )( )sin ξw  and ( )( )cos ξw  that are containing independent combi-
nations to zero, and we obtain the following independent parametric equations: 

( )( )sin ξw :  
2 2

1 1 4 1 2 1 0 3 1 0 3 1 0 03 2 0+ + + + =c B c B c B A c B D c E D A          (17) 

( )( )cos ξw :  
2 2 3 2

1 1 4 1 2 1 0 3 1 0 3 1 0 0 2 1 3 1 13 2 0+ + + + + + =c A c A c A A c A D c D D A c A c A D   (18) 

( )( )3sin ξw :  
3 2

1 2 1 3 1 1 0− + + =B c B c B E                    (19) 

( )( ) ( )( )2sin cosξ ξw w :  
2 2

1 2 1 1 3 1 1 3 1 1 13 2 0+ + + =B c B A c B D c A E D             (20) 

( )( ) ( )( )2sin cosξ ξw w :  
2 2 3 2

1 2 1 1 3 1 1 3 1 1 1 2 1 3 1 12 3 2 0− + + + − − =A c A B c A E c E D B c A c A D     (21) 

( )( )2sin ξw :  
2 2

2 0 1 3 0 1 3 1 0 13 2 0+ + =c A B c A E c E D B              (22) 

( )( ) ( )( )sin cosξ ξw w :  
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2 1 1 0 3 1 0 1 3 1 1 0 3 0 1 16 2 2 2 0+ + + =c B A A c D D B c A E D c A E D        (23) 

( )( )2cos ξw :  
2 2

2 0 1 3 1 1 0 3 0 13 2 0+ + =c A A c A D D c A D                (24) 

constants: 
3 2

1 0 4 0 2 0 3 0 0 0+ + + =c A c A c A c A D                 (25) 

Solving Equations (17)-(25), we obtain the following cases and solutions using 
Equation (7). 

Case 1: When 0 1 2 3 4 12
1

20, , 0, 2= = = − = = − +A B c c c c
A

, we get the following 

bright-dark solitons: 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( )( )( )

( ) ( )( )( )

2 2
1 1 1 0

2 1 1 0

2 2
1 0

, tanh 2 d exp d ,

, sech 2 d tanh 2 d

exp d .

ψ µ α α µ α θ

ψ µ α µ α

α µ α θ

= − − + +

 = − + − + 

× − + +

∫ ∫

∫ ∫

∫

x t A x a t t i x c a t t

x t E x a t t D x a t t D

i x c a t t

(26) 

where 1A , 1D , 1E  and 1c  are arbitrary constants. 

Case 2: When 0 1 0 1 3 4 12
1

20, ,= = = = = − = −A B D E c c c
D

, we get the following 

dark-dark solitons: 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

2 2
1 1 1 0

2 2
2 1 1 0

, tanh 2 d exp d ,

, tanh 2 d exp d .

ψ µ α α µ α θ

ψ µ α α µ α θ

= − − + +

= − − + +

∫ ∫

∫ ∫

x t A x a t t i x c a t t

x t D x a t t i x c a t t
(27) 

where 1A , 1D , 1c  and 2c  are arbitrary constants. 

Case 3: When 0 1 0 1 2 3 4 12 2
1 1

2 20, , ,= = = = = − = − = −A A D E c c c c
B D

, we get the 

following bright-dark solitons: 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

2 2
1 1 1 0

2 2
2 1 1 0

, sech 2 d exp d ,

, tanh 2 d exp d .

ψ µ α α µ α θ

ψ µ α α µ α θ

= − − + +

= − − + +

∫ ∫

∫ ∫

x t B x a t t i x c a t t

x t D x a t t i x c a t t
(28) 

where 1B , 1D , and 1c  are arbitrary constants. 

Case 4: When 4 1 4 1
0 1 0 1 2 32 2

1 1

2
0, ,

+ + −
= = = = = − = −

c c c cA B D D c c
A E

, we get 

the following dark-bright solitons: 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( )

( ) ( )( )( )

2 2
1 1 1 0

2 1 0

2 2
1 0

, tanh 2 d exp d ,

, sech 2 d

exp d .

ψ µ α α µ α θ

ψ µ α

α µ α θ

= − − + +

 = − + 

× − + +

∫ ∫

∫

∫

x t A x a t t i x c a t t

x t E x a t t D

i x c a t t

(29) 

where 1A , 1E , 1c  and 4c  are arbitrary constants. 
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4. Physical Application 

In this segment, we will illustrate the figure and designate the acquired solutions 
to the VCNLS equations. The solutions (26)-(29) come in terms of hyperbolic 
function. Next, we study the evolution behavior of the dark-bright soliton solu-
tions given by Equation (26), the bright-dark soliton solutions given by Equation 
(28), and interaction of the two solutions given by Equation (28), illustrated in 
the figures. 

In Figure 1, we shows the soliton solutions evolution of Equation (26) with 
different variable coefficients 1, t, t2, sin(t). Figure 1(a) and Figure 1(e) depict 
the result with ( ) 1=a t , which shows a dark bell-shaped soliton and a singular 
soliton. When ( ) =a t t , we obtain a parabolic cubic soliton, as shown in (b) and 
(f). When ( ) 2=a t t , we obtain a cubic soliton, as shown in (c) and (g). Periodi-
cal-oscillating soliton is obtained when we choose ( ) ( )sin=a t t  as depicted in 
(d) and (h). 

In Figure 2, we shows the soliton solution evolutionis of Equation (28) with 
different variable coefficients 1, t, t2, sin(t). Figure 2(a) and Figure 2(e) depict 
the result with ( ) 1=a t , which shows a bright bell-shaped solition and a dark 
bell-shaped soliton. When ( ) =a t t , we obtain a parabolic cubic soliton, as 
shown in (b) and (f). When ( ) 2=a t t , we obtain a cubic soliton, as shown in (c) 
and (g). Periodical-oscillating soliton is obtained when we choose ( ) ( )sin=a t t  
as depicted in (d) and (h). 

In Figure 3, we can obtain the similar results. Figure 3 demonstrates that  
 

 
Figure 1. Evolution of dark-bright soliton solutions of Equation (26), plotted for different values of ( )a t . (a) ( ) 1a t = ; (b) 

( )a t t= ; (c) ( ) 2a t t= ; (d) ( ) ( )sina t t= ; (e) ( ) 1a t = ; (f) ( )a t t= ; (g) ( ) 2a t t= ; (h) ( ) ( )sina t t= . 
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Figure 2. Evolution of bright-dark soliton solution of Equation (28), plotted for different values of ( )a t . (a) ( ) 1a t = ; (b) 

( )a t t= ; (c) ( ) 2a t t= ; (d) ( ) ( )sina t t= ; (e) ( ) 1a t = ; (f) ( )a t t= ; (g) ( ) 2a t t= ; (h) ( ) ( )sina t t= .  

 

 
Figure 3. Evolution and interaction of Equation (28) with the same parameters as Figure 2. (a) ( ) 1a t = ; (b) ( )a t t= ; (c) 

( ) 2a t t= ; (d) ( ) ( )sina t t= .  

 
each soliton shape keeps invariant after interaction, which denotes that the inte-
raction is elasticwe. We can see that the solitons show a periodic property but 
the solitons are not symmetrical in the t direction, and have the bell-shaped, pa-
rabolic, cubic or periodical-oscillating shapes. 

5. Conclusion 

In this paper, we have obtained some bright-dark soliton solutions and dark-dark 
soliton solutions of the coupled nonlinear Schrödinger equation with variable 
coefficients, using modified Sine-Gordon equation method. Then, we have dis-
cussed the effects of ( )a t , which is the group velocity dispersion. For bright-dark 
soliton solutions 26 and 28, we have chosen ( )a t  as the constant, linear, qua-
dratic and trigonometric functions, respectively, and the bell-shaped, parabolic, 
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cubic and quasi-parabolic solitons have been obtained correspondingly, as 
shown in Figure 1 and Figure 2, and found that the propagation of the soliton 
solutions is determined by this value. We also investigated the evolution and in-
teraction between the two solutions, and obtained that each solution shape keeps 
invariant after interaction and a periodic property in the t  direction, as pre-
sented in Figure 3. The results show that modified sine-Gordon method gives 
soliton solutions for variable coefficients systems directly, without difficult cal-
culations and also could be applied to many coupled nonlinear models. 
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