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Abstract 
We obtain the quantized momentum eigenvalues, nP , and the momentum 
eigenstates for the space-like Schrödinger equation, the Feinberg-Horodecki 
equation, with the general potential which is constructed by the temporal 
counterpart of the spatial form of these potentials. The present work is illu-
strated with two special cases of the general form: time-dependent Wei-Hua 
Oscillator and time-dependent Manning-Rosen potential. We also plot the 
variations of the general molecular potential with its two special cases and 
their momentum states for few quantized states against the screening para-
meter. 
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1. Introduction 

Any physical phenomenon in nature is usually characterized by solving differen-
tial equations. The time-dependent Schrödinger equation represents an example 
that describes quantum-mechanical phenomena, in which it dictates the dynam-
ics of a quantum system. Solving this differential equation by means of any me-
thod results in the eigenvalues and eigenfunctions of that Schrödinger quantum 
system. However, solving time-dependent Schrödinger equation analytically is 
not easy except when the time-dependent potentials are constant, linear and 
quadratic functions of the coordinates [1] [2] [3] [4]. The Feinberg-Horodecki 
(FH) equation is a space-like counterpart of the Schrödinger equation which was 
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derived by Horodecki [5] from the relativistic Feinberg equation [6]. This equa-
tion has been demonstrated in the possibility of describing biological systems [7] 
[8] in terms of the time-like supersymmetric quantum mechanics [9]. The 
space-like solutions of the FH equation can be employed to test its relevance in 
different areas of science including physics, biology and medicine. Molski con-
structed the space-like coherent states of a time-dependent Morse oscillator [7] 
and an-harmonic oscillator [8] on the basis of the FH quantal equation to mi-
nimize the uncertainty in the time-energy relation and showed that the results 
are useful for interpreting the formation of the specific growth patterns during 
the crystallization process and the growth in biological systems. 

Recently, Bera and Sil found the exact solutions of the FH equation for the 
time-dependent Wei-Hua oscillator and Manning-Rosen potentials by the Niki-
forov-Uvarov (NU) method [10]. In 1957, Deng and Fan [11] proposed a poten-
tial model for diatomic molecules named as the Deng-Fan oscillator potential. 
This potential is also known as general Morse potential [12] [13] whose analyti-
cal expressions for energy levels and wave functions have been derived [11] [12] 
[13] [14] and related to the Manning-Rosen potential [15] [16] (also called Eck-
art potential by some authors, [17] [18] [19] is anharmonic potential). It obeys 
the correct physical boundary conditions at t = 0 and 1. The space-like 
Deng-Fan potential is qualitatively similar to the Morse potential but has the 
correct asymptotic behavior when the inter-nuclear distance goes to zero [11] 
and used to describe ro-vibrational energy levels for the diatomic molecules and 
electromagnetic transitions [20] [21] [22]. The exact momentum state solutions 
of the FH equation with the rotating time-dependent Deng-Fan oscillator poten-
tial are presented within the framework of the generalized parametric NU me-
thod. The energy eigenvalues and corresponding wave functions are obtained in 
a closed form [23]. The Deng-Fan potential was also studied with relativistic 
Klien-Gordon equation, where the eigenvalues and the normalized wave func-
tions of spinless particles were obtained [24]. 

Recently, Altug and Sever have studied the FH equation with time-dependent 
Pöschl-Teller potential and found its space-like coherent states [25]. We also 
studied the solutions of FH equation for time-dependent mass (TDM) harmonic 
oscillator quantum system. A certain interaction is applied to a time-dependent 
mass m(t) to provide a particular spectrum of stationary energy. The spectrum 
related to the Harmonic oscillator potential acting on the TDM stationary state 
energies is found [26]. The exact solutions of FH equation under time-dependent 
Tietz-Wei Diatomic molecular potential have been obtained. In particular, the 
quantized momentum eigenvalues and corresponding wave functions are found 
in the framework of supersymmetric quantum mechanics [27]. The spectra of 
general molecular potential (GMP) are obtained using the asymptotic iteration 
method within the framework of non-relativistic quantum mechanics. The vi-
brational partition function is calculated in closed form and used to obtain 
thermodynamic functions [28]. 

In new work, we have obtained the quantized momentum solution of the FH 
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equation with combined Kratzer plus screened Coulomb potential using NU 
method. We constructed three special cases of this general form; the time-dependent 
modified Kratzer potential, the time-dependent screened Coulomb potential and 
the time-dependent Coulomb potential [29]. And very recently, we solved FH 
equation with the time-dependent screened Kratzer-Hellmann potential model 
[30]. In both, we obtained the approximated eigensolutions of momentum states 
and wave functions by means of the NU method. 

The motivation of this work is to apply the Nikiforov-Uvarov method [31] [32] 
for the general potential having a certain time-dependence. The momentum ei-
genvalues, nP , of the FH equation and the space-like coherent eigenvectors are 
obtained. The rest of this work is organized as follows: the NU method is briefly 
introduced in Section 2. The exact solution of the FH equation for the 
time-dependent general molecular potential is solved to obtain its quantized 
momentum states and eigenfunctions in Section 3. We generate the solutions of 
a few special potentials mainly found from our general form solution in Section 
4. Finally we present our discussions and conclusions. 

2. Exact Solutions of the FH Equation for the  
Time-Dependent General Potential 

The Nikiforov-Uvarov (NU) method (see Appendix A) will be applied to find 
the exact solutions of FH equation for the general molecular potential then the 
eigenvalues and eigenfunctions of two special cases are produced from the re-
sults. 

The time-dependent of the general potential is given by [33]  

( )
( ) ( )
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where , , ,A B C D  and α  are adjustable real potential parameters. q  and q 
are dimensionless parameters. et  is the equilibrium time point. The parameters 
of the potential must satisfy the condition 

1 ln 0eq t
α

+ ≤  to avoid singularity. If 
the general potential is substituted in FH equation, one obtains  
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Now, let ( )e et ts q α− −= , where ( )0, e ets q α∈ , we get  
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2
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After comparing Equation (3) with Equation (37), one obtains  

( ) 1 ,s sτ = −                            (7) 

( ) ( )1s s sσ = −                           (8) 

and 

( ) 2 2
1 3 2 .s s sσ γ γ γ= − − +                      (9) 

When these values are substituted in equation  

( )
2

,
2 2

s kσ τ σ τ σ σ
′ ′− − Π = ± − + 

 

 

               (10) 

(see [31] [32]), one gets 

( ) ( )2 2
2 3 1

1 .
2 4
ss k s k sγ γ γ Π = − ± − − + + + 

 
           (11) 

As mentioned in the NU method, the discriminant under the square root, in 
Equation (11), has to be zero, so that the expression of ( )sΠ  becomes the 
square root of a polynomial of the first degree. This condition can be written as  

( )2 2
2 3 1

1 0.
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After solving this equation, we get  
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Then, for our purpose we assume that  

( )2 2
3 1 2
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4
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                (14) 

Arranging this equation and solving it to get an expression for k which is giv-
en by the following,  

2
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1 12 2 ,
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where the expression between the parentheses is given by  
22
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where the parameters in this equation must be selected to let R be real and the 
results have physical meanings. If we substitute k−  into Equation (11) we get a 
possible expression for ( )sΠ , which is given by  

( ) ( )1 1 ,ss s
R

γΠ = − −                      (17) 
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this solution satisfies the condition that the derivative of ( )sτ  is negative. 
Therefore, the expression of ( )sτ  which satisfies these conditions can be writ-
ten as  

( ) 1 1
11 2 2 .s s s
R

τ γ γ = − + − + 
 

                  (18) 

Now, substituting the values of ( )sτ−′ , ( )sσ ′′ , ( )s−Π  and k−  into Equa-
tions (40) and (41), we obtain  

2
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and  

1
2 2 .n n n n
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                   (20) 

Now, from Equations (19) and (20), we get the eigenvalues of the quantized 
momentum as  
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(21) 

Due to the NU method used in getting the eigenvalues, the polynomial solu-
tions of the hypergeometric function ( )ny s  depend on the weight function 

( )sρ  which can be determined using NU procedure to get  

( ) ( )1
2 12 1 .Rs s sγρ −= −                     (22) 

Substituting the result of ( )sρ  into equation ny  (see [29]), we get an ex-
pression for the wave functions as  
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where nA  is the normalization constant. Solving Equation (23) gives the final 
form of the wave function in terms of the Jacobi polynomial ( ),

nP α β  as follows,  
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Substituting Equations (24) and (25) in Equation (38), one obtains,  
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where nB  is the normalization constant.  
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3. Special Cases 

Several potentials were proposed to obtain information about diatomic and po-
lyatomic molecules structures. These potentials are represented by Rosen-Morse 
or Trigonometric Pöschl-Teller potentials which are used for some vibrations of 
some polyatomic molecules such as NH3 and SO2 [28]. The Tietz-Wei diatomic 
molecular potential was proposed as an inter-molecular potential and is consi-
dered as one of the best potential models which describes the vibrational energy 
of diatomic molecules [34] [35] [36] [37]. In addition, Manning-Rosen and 
Wei-Hua potentials have been proposed for diatomic molecule structure [16] 
[36] and are discussed here as special cases of the general potential.  

3.1. Time-Dependent Wei-Hua Oscillator 

A four-parameter potential function was introduced for bond-stretching vibra-
tion of diatomic molecules. It may fit the experimental RKR (Rydberg-Klein-Rees) 
curve more closely than the Morse function, especially when the potential do-
main extends to near the dissociation limit. The corresponding Schrödinger eq-
uation was solved exactly for zero total angular momentum and approximately 
for nonzero total angular momentum [16]. To get the Wei-Hua potential from 
the general form of the diatomic molecules potential, parameters with values 

0A B= = , and 1C D= =  are chosen and substituted in (1) to reduce the gen-
eral form to the special case [36],  

( )
( )
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                     (27) 

And by substituting the constants ( 0A B= = , and 1C D= = ), which reduces 
the general molecular formula into Wei-Hua formula, in (21) we get the eigen-
values of the time-dependent HF equation with Wei-Hua potential. The result is 
as follows  
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with 
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where α , q  and q must be selected to make R be real. To determine the ei-
genfunctions associated with the Wei-Hua potential, the same parameters were 
substituted in (4) which results in  

( ) ( )( ) ( )( )( ) ( )( )( )11
1 22 , 1

e 1 e 1 2 e ,e e et t t t t tR R
n n ns B q q P q

γγα α αψ
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https://doi.org/10.4236/jamp.2020.87109


M. Farout et al. 
 

 

DOI: 10.4236/jamp.2020.87109 1440 Journal of Applied Mathematics and Physics 
 

where 
2

2 2
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2 1 4 1 1
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which agrees with the result obtained in [10].  

3.2. Time-Dependent Manning-Rosen Potential 

This potential is used as a mathematical model in describing diatomic molecular 
vibrations. It is also employed in several branches of physics in studying their 
bound states and scattering properties. It is well known that Schrödinger equa-
tion can be solved exactly for this potential for s-wave i.e., 0l = . But, for arbi-
trary l-states, i.e., l is not equal to 0, the Schrödinger equation cannot be solved 
exactly. Therefore, the Schrödinger equation is solved numerically or approx-
imately using approximation schemes. Some authors used the approximation 
scheme proposed by Greene and Aldrich [38] [39] [40] to study analytically the 

0l ≠  bound states or scattering states of the Schrödinger or even relativistic 
wave equations for Manning-Rosen potential. We calculate and find its quan-
tized momentum states and normalized wave functions [16]. 

By choosing the values of the parameters to be 0A C= = , 1q = , 2
0B V α=  

and ( )( )2 2
01qD Vα β β= − + , and by substituting them in Equation (1) the 

general potential is reduced to give the Manning-Rosen potential [16],  
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− + − +
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and by substituting the values of , , ,A C B q  and 2qD  in Equation (21) gives 
the eigenvalues of the FH time dependent equation. The eigenvalues are given by 
the relation,  
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where 
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1 1 2 11 .
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                   (34) 

To determine the eigenfunctions associated with the Manning-Rosen poten-
tial, the same parameters were substituted in (4) which results in  

( ) ( )( ) ( )( )( ) ( )( )( )11
1 22 , 1

e 1 e 1 2 e ,e e et t t t t tR R
n n ns B q q P q

γγα α αψ
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where 
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( )2 2
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1

22 1
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12

omc v
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R R
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αγ
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These results agree completely with that obtained in [10]. 

4. Numerical Results and Discussion 

To illustrate the physical meaning of our investigation, we plot some figures of 
the potentials and the corresponding momentum obtained in each case versus 
time or the screening parameter by choosing suitable potential parameters. Fig-
ure 1 shows a plot of the general molecular potential against the oscillating time 
for various values of the screening parameter α . For higher values of time, the 
potential tends to be constant when α  takes larger values. In Figure 2, we 
examine the variations in the FH quantized momentum, for various states, 
against the screening parameter α . It is noted that as α  increases, the mo-
mentum of the system increases from the negative region to the positive region. 
Obviously, the momentums for higher states are close to each other in positive 
region near 0.5α = . In Figure 3, it is seen that the quantized momentum of the 
system decreases monotonically as the potential strength parameter B becomes 
negative. Therefore, when state n increases, the momentum decreases from posi-
tive region to negative region for higher values of α . This behavior is opposite 
to Figure 2, when potential strength parameter B is taken to positive. 

Figure 4 shows the variation of the time-dependent Wei-Hua potential for 
diatomic molecules, when potential strength parameters 0A B= = , against time 
for two values of q. It is clear that decay is fast when 0q >  whereas, decay is 
slow when 0q < . 
 

 
Figure 1. The general potential for diatomic molecules. 1cµ = = = , 0.6A B q= = = , 
and 1C D q= = = . 
 

 
Figure 2. The FH quantized momentum eigenvalues of the general potential for diatomic 
molecules. 1cµ = = = , 0.6A B q= = = , and 1C D q= = = . 
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Figure 5 plots the quantized momentum states versus the screening parame-
ter α  for 0q < . This indicates that momentum decreases monotonically in 
the negative region when state increases and hence momentum states scatter 
away with increasing α . A reverse behavior is shown in Figure 6 when the 
quantized momentum states are plotted against α  for 0q > . The momentum 
state increases as n increases in positive region (up to 0.3α = ). Figure 2 and 
Figure 6 indicate that the general potential has a limited number of quantized 
momentum states for this potential well and hence there is a restriction range for 
the parameter alpha. Obviously, from Figure 2 and Figure 6, to increase the 
number of the quantized momentum states we need to decrease the range of the 
parameter alpha. 

Figure 7 shows the time-dependent Manning-Rosen potential for diatomic 
molecules against oscillating time for two values of screening parameter α . It 
increases with increasing values of α  but the potential remains in the negative 
region (bound). In Figure 8, we show the behavior of the quantized momentum 
states against α  for the time-dependent intermolecular Manning-Rosen po-
tential. When the potential strength parameter 0 0V > , an increase in state n 
results in a monotonic decrease in momentum, as α  increases. Figure 9, a case  
 

 
Figure 3. The FH quantized momentum eigenvalues of the general potential for diatomic 
molecules. 1cµ = = = , 0.6A q= = , 0.6B = −  and 1C D q= = = . 
 

 
Figure 4. The Wei-Hua potential for diatomic molecules. 1cµ = = = , 0A B= = , 

0.01α = , and 1C D q= = = . 
 

 
Figure 5. The FH quantized momentum eigenvalues of the Wei-Hua potential for 
diatomic molecules. 1cµ = = = , 0.6q = − , 0A B= =  and 1C D q= = = . 
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Figure 6. The FH quantized momentum eigenvalues of the Wei-Hua potential for 
diatomic molecules. 1cµ = = = , 0.6q = , 0A B= =  and 1C D q= = = . 
 

 
Figure 7. The Manning-Rosen potential for diatomic molecules. 1cµ = = = , 

0A C= = , 0 2.5V = , 5β = , and 1q q= = . 

 

 
Figure 8. The FH quantized momentum eigenvalues of the Manning-Rosen potential for 
diatomic molecules. 1cµ = = = , 0A C= = , 0 2.5V = , 5β = , and 1q q= = . 

 

 
Figure 9. The FH quantized momentum eigenvalues of the Manning-Rosen potential for 
diatomic molecules. 1cµ = = = , 0A C= = , 0 2.5V = − , 5β = , and 1q q= = . 

 
in which 0 0V < , shows the same behavior as in Figure 8, but momentum is 
strongly more negative than before. Figure 8 and Figure 9 show that there are 
so many quantized momentum states for the Manning-Rosen potential well and 
hence no restriction is being placed on the value of alpha. 

5. Conclusion 

We solved the Feinberg-Horodecki (FH) equation for the time-dependent gen-
eral molecular potential via Nikiforov-Uvarov (NU) method. We got the exact 
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quantized momentum eigenvalues solution of the FH equation. It is therefore, 
worth mentioning that the method is elegant and powerful. Our results can be 
applied in biophysics and other branches of physics. In this paper, we have ap-
plied our result for the Wei-Hua and the Manning-Rosen potentials, as special 
cases of the general molecular potential, for quantized momentum eigenvalues. 
We find that our analytical results are in good agreement with other findings in 
literature. The quantized momentum eigenvalues and their corresponding ei-
genfunctions are obtained exactly for the two exactly solvable problems. We 
have shown the behaviors of the general molecular potential as well as the two 
special cases, namely, Wei-Hua and manning-Rosen potentials against screening 
parameters. Further, taking spectroscopic values for the potential parameters, we 
plotted the quantized momentum of few states against the screening parameter 
for diatomic molecules. Our results are good agreements with the energy bound 
states. 

Acknowledgements 

We thank the Editor and the referees for their valuable comments. This research 
is funded by Winter School in High Energy Physics in Palestine (WISHEPP). 
This generous support is greatly appreciated.  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Park, T.J. (2002) Exactly Solvable Time-Dependent Problems: Potentials of Mono-

tonously Decreasing Function of Time. Bulletin of the Korean Chemical Society, 23, 
1733-1736. https://doi.org/10.5012/bkcs.2002.23.12.1733 

[2] Vorobeichik, I., Lefebvre, R. and Moiseyev, N. (1998) Field-Induced Barrier Trans-
parency. Europhysics Letters, 41, 111-116.  
https://doi.org/10.1209/epl/i1998-00117-6 

[3] Shen, J.Q. (2003) Solutions of the Schrödinger Equation for the Time-Dependent 
Linear Potential. 

[4] Feng, M. (2001) Complete Solution of the Schrödinger Equation for the 
Time-Dependent Linear Potential. Physical Review A, 64, Article ID: 034101.  
https://doi.org/10.1103/PhysRevA.64.034101 

[5] Horodecki, R. (1988) Inference for a Hazard Rate Change Point. Il Nuovo Cimento 
B (1971-1996), 102, 27-32. https://doi.org/10.1007/BF02728791 

[6] Feinberg, G. (1967) On Testing for a Constant Hazard against a Change-Point Al-
ternative. Physical Review, 159, 1089-1105.  
https://doi.org/10.1103/PhysRev.159.1089 

[7] Molski, M. (2006) Space-Like Coherent States of Time-Dependent Morse Oscillator. 
The European Physical Journal D—Atomic, Molecular, Optical and Plasma Physics, 
40, 411-416. https://doi.org/10.1140/epjd/e2006-00182-3 

[8] Molski, M. (2010) Biosupersymmetry. Biosystems, 100, 47-54.  

https://doi.org/10.4236/jamp.2020.87109
https://doi.org/10.5012/bkcs.2002.23.12.1733
https://doi.org/10.1209/epl/i1998-00117-6
https://doi.org/10.1103/PhysRevA.64.034101
https://doi.org/10.1007/BF02728791
https://doi.org/10.1103/PhysRev.159.1089
https://doi.org/10.1140/epjd/e2006-00182-3


M. Farout et al. 
 

 

DOI: 10.4236/jamp.2020.87109 1445 Journal of Applied Mathematics and Physics 
 

https://doi.org/10.1016/j.biosystems.2010.01.001 

[9] Witten, E. (1981) Dynamical Breaking of Supersymmetry. Nuclear Physics B, 188, 
513-554. https://doi.org/10.1016/0550-3213(81)90006-7 

[10] Bera, P.K. and Sil, T. (2013) Exact Solutions of Feinberg-Horodecki Equation for 
Time-Dependent Anharmonic Oscillator. Pramana, 80, 31-39.  
https://doi.org/10.1007/s12043-012-0358-6 

[11] Deng, Z.H. and Fan, Y.P. (1957) A Potential Function of Diatomic Molecules. 
Journal of Shandong University (Natural Science), 1, 11. 

[12] Rong, Z., Kjaergaard, H.G. and Sage, M.L. (2003) Comparison of the Morse and 
Deng-Fan Potentials for XH Bonds in Small Molecules. Molecular Physics, 101, 
2285-2294. https://doi.org/10.1080/0026897031000137706 

[13] Mesa, A.D.S., Quesne, C. and Smirnov, Y.F. (1998) Generalized Morse Potential: 
Symmetry and Satellite Potentials. Journal of Physics A: Mathematical and General, 
31, 321. https://doi.org/10.1088/0305-4470/31/1/028 

[14] Wang, P.Q., Zhang, L.H., Jia, C.S. and Liu, J.Y. (2012) Equivalence of the Three 
Empirical Potential Energy Models for Diatomic Molecules. Journal of Molecular 
Spectroscopy, 274, 5-8. https://doi.org/10.1016/j.jms.2012.03.005 

[15] Infeld, L. and Hull, T.E. (1951) The Factorization Method. Reviews of Modern 
Physics, 23, 21. https://doi.org/10.1103/RevModPhys.23.21 

[16] Manning, M.F. and Rosen, N. (1933) A Potential Function for the Vibrations of Di-
atomic Molecules. Physical Review, 44, 951-954. 

[17] Dabrowska, J.W., Khare, A. and Sukhatme, U.P. (1988) Explicit Wavefunctions for 
Shape-Invariant Potentials by Operator Techniques. Journal of Physics A: Mathe-
matical and General, 21, L195-L200. https://doi.org/10.1088/0305-4470/21/4/002 

[18] Cooper, F., Khare, A. and Sukhatme, U. (1995) Supersymmetry and Quantum Me-
chanics. Physics Reports, 251, 267-385.  
https://doi.org/10.1016/0370-1573(94)00080-M 

[19] Zhang, X.C., Liu, Q.W., Jia, C.S. and Wang, L.Z. (2005) Bound States of the Dirac 
Equation with Vector and Scalar Scarf-Type Potentials. Physics Letters A, 340, 
59-69. https://doi.org/10.1016/j.physleta.2005.04.011 

[20] Dong, S.H. and Gu, X.Y. (2008) Arbitrary l State Solutions of the Schrödinger Equa-
tion with the Deng-Fan Molecular Potential. Journal of Physics: Conference Series, 
96, Article ID: 012109. https://doi.org/10.1088/1742-6596/96/1/012109 

[21] Hamzavi, M., Ikhdair, S.M. and Thylwe, K.E. (2013) Equivalence of the Empirical 
Shifted Deng-Fan Oscillator Potential for Diatomic Molecules. Journal of Mathe-
matical Chemistry, 51, 227-238. https://doi.org/10.1007/s10910-012-0075-x 

[22] Oluwadare, O.J., Oyewumi, K.J., Akoshile, C.O. and Babalola, O.A. (2012) Ap-
proximate Analytical Solutions of the Relativistic Equations with the Deng-Fan 
Molecular Potential Including a Pekeris-Type Approximation to the (Pseudo or) 
Centrifugal Term. Physica Scripta, 86, Article ID: 035002.  
https://doi.org/10.1088/0031-8949/86/03/035002 

[23] Hamzavi, M., Ikhdair, S.M. and Amirfakhrian, M. (2013) Exact Solutions of Fein-
berg-Horodecki Equation for Time-Dependent Deng-Fan Molecular Potential. 
Theoretical and Applied Physics, 7, 40-43. https://doi.org/10.1186/2251-7235-7-40 

[24] Dong, S.H. (2011) Relativistic Treatment of Spinless Particles Subject to a Rotating 
Deng-Fan Oscillator. Communications in Theoretical Physics, 55, 969.  
https://doi.org/10.1088/0253-6102/55/6/05 

[25] Arda, A. and Sever, R. (2017) Feinberg-Horodecki Equation with Pöschl-Teller Po-

https://doi.org/10.4236/jamp.2020.87109
https://doi.org/10.1016/j.biosystems.2010.01.001
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1007/s12043-012-0358-6
https://doi.org/10.1080/0026897031000137706
https://doi.org/10.1088/0305-4470/31/1/028
https://doi.org/10.1016/j.jms.2012.03.005
https://doi.org/10.1103/RevModPhys.23.21
https://doi.org/10.1088/0305-4470/21/4/002
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/j.physleta.2005.04.011
https://doi.org/10.1088/1742-6596/96/1/012109
https://doi.org/10.1007/s10910-012-0075-x
https://doi.org/10.1088/0031-8949/86/03/035002
https://doi.org/10.1186/2251-7235-7-40
https://doi.org/10.1088/0253-6102/55/6/05


M. Farout et al. 
 

 

DOI: 10.4236/jamp.2020.87109 1446 Journal of Applied Mathematics and Physics 
 

tential: Space-Like Coherent States. Zeitschrift für Naturforschung A, 72, 541-545.  
https://doi.org/10.1515/zna-2017-0053 

[26] Eshghi, M., Sever, R. and Ikhdair, S.M. (2016) Exact Analytical Approach to Diffe-
rential Equations with Variable Coefficients. The European Physical Journal Plus, 
131, 223-229. https://doi.org/10.1140/epjp/i2016-16386-9 

[27] Ojonubah, J.O. and Onate, C.A. (2016) Exact Solutions of Feinberg-Horodecki Eq-
uation for Time-Dependent Tietz-Wei Diatomic Molecular Potential. The African 
Review of Physics, 10, 453-456. 

[28] Ikot, A.N., Chukwuocha, E.O., Onyeaju, M.C., Onate, C.A., Ita, B.I. and Udoh, M.E. 
(2018) Thermodynamics Properties of Diatomic Molecules with General Molecular 
Potential. Pramana, 90, 22. https://doi.org/10.1007/s12043-017-1510-0 

[29] Farout, M., Sever, R. and Ikhdair, S.M. (2020) Approximate Solution to the 
Time-Dependent Kratzer plus Screened Coulomb Potential in the Fein-
berg-Horodecki Equation. Chinese Physics B, 29, Article ID: 060303.  
https://doi.org/10.1088/1674-1056/ab8379 

[30] Farout, M. and Ikhdair, S.M. (2020) Momentum Eigensolutions of Fein-
berg-Horodecki Equation with Time-Dependent Screened Kratzer-Hellmann Po-
tential. Journal of Applied Mathematics and Physics, 8, 1207-1221.  
https://doi.org/10.4236/jamp.2020.87091 

[31] Nikiforov, A.F. and Uvarov, V.B. (1988) Special Functions of Mathematical Physics. 
Vol. 205, Birkhäuser, Basel. https://doi.org/10.1007/978-1-4757-1595-8 

[32] Zhang, M.C., Sun, G.H. and Dong, S.H. (2010) Exactly Complete Solutions of the 
Schrödinger Equation with a Spherically Harmonic Oscillatory Ring-Shaped Poten-
tial. Physics Letters A, 374, 704-708. https://doi.org/10.1016/j.physleta.2009.11.072 

[33] Yanar, H., Aydoǧdu, O. and Salti, M. (2016) Modelling of Diatomic Molecules. Mo-
lecular Physics, 114, 3134-3142. https://doi.org/10.1080/00268976.2016.1220645 

[34] Pöschl, G. and Teller, E. (1933) Bemerkungen zur Quantenmechanik des anhar-
monischen Oszillators. Zeitschrift für Physik, 83, 143-151.  
https://doi.org/10.1007/BF01331132 

[35] Falaye, B.J., Oyewumi, K.J., Ikhdair, S.M. and Hamzavi, M. (2014) Eigensolution 
Techniques, Their Applications and Fisher’s Information Entropy of the Tietz-Wei 
Diatomic Molecular Model. Physica Scripta, 89, Article ID: 115204.  
https://doi.org/10.1088/0031-8949/89/11/115204 

[36] Hua, W. (1990) Four-Parameter Exactly Solvable Potential for Diatomic Molecules. 
Physical Review A, 42, 2524. https://doi.org/10.1103/PhysRevA.42.2524 

[37] Tietz, T. (1963) Potential-Energy Function for Diatomic Molecules. The Journal of 
Chemical Physics, 38, 3036-3037. https://doi.org/10.1063/1.1733648 

[38] Greene, R.L. and Aldrich, C. (1976) Variational Wave Functions for a Screened 
Coulomb Potential. Physical Review A, 14, 2363.  
https://doi.org/10.1103/PhysRevA.14.2363 

[39] Wei, G.F., Zhen, Z.Z. and Dong, S.H. (2009) The Relativistic Bound and Scattering 
States of the Manning-Rosen Potential with an Improved New Approximate 
Scheme to the Centrifugal Term. Central European Journal of Physics, 7, 175-183.  
https://doi.org/10.2478/s11534-008-0143-9 

[40] Wei, G.F. and Dong, S.H. (2008) Approximately Analytical Solutions of the Man-
ning-Rosen Potential with the Spin-Orbit Coupling Term and Spin Symmetry. 
Physics Letters A, 373, 49-53. https://doi.org/10.1016/j.physleta.2008.10.064  

 

https://doi.org/10.4236/jamp.2020.87109
https://doi.org/10.1515/zna-2017-0053
https://doi.org/10.1140/epjp/i2016-16386-9
https://doi.org/10.1007/s12043-017-1510-0
https://doi.org/10.1088/1674-1056/ab8379
https://doi.org/10.4236/jamp.2020.87091
https://doi.org/10.1007/978-1-4757-1595-8
https://doi.org/10.1016/j.physleta.2009.11.072
https://doi.org/10.1080/00268976.2016.1220645
https://doi.org/10.1007/BF01331132
https://doi.org/10.1088/0031-8949/89/11/115204
https://doi.org/10.1103/PhysRevA.42.2524
https://doi.org/10.1063/1.1733648
https://doi.org/10.1103/PhysRevA.14.2363
https://doi.org/10.2478/s11534-008-0143-9
https://doi.org/10.1016/j.physleta.2008.10.064


M. Farout et al. 
 

 

DOI: 10.4236/jamp.2020.87109 1447 Journal of Applied Mathematics and Physics 
 

Appendix A: Nikiforov-Uvarov Method 

In this section, we are briefly reviewing the Nikiforov-Uvarov (NU) method [29]. 
Here we introduce the main points leaving the details into [31] [32]. The NU 
method is usually employed in reduction of the given second-order differential, 
which we are dealing with, into a general form of a hypergeometric type by using 
an appropriate coordinate transformation, ( )s s r= , into the following standard 
form:  

( ) ( )
( ) ( ) ( )

( )
( )2 0,n n n

s s
s s s

s s
τ σ

ψ ψ ψ
σ σ

′′ ′+ + =
 

               (37) 

where ( )sσ  and ( )sσ  are polynomials, of second-degree or less, and ( )sτ  
is a first-degree polynomial. The wave function takes the form,  

( ) ( ) ( ) ,n n ns s y sψ φ=                       (38) 

which transforms Equation (37) into a hypergeometric of the form  

( ) ( ) ( ) ( ) ( ) 0,n n ns y s s y s y sσ τ λ′′ ′+ + =                (39) 

where λ  in Equation (39) is a parameter defined as,  

( ) ( ) ( )
1

,
2n

n n
n s sλ λ τ σ

−
′ ′′= = − −                  (40) 

and λ  in Equation (39) is also defined as,  

( ) ,n k sλ λ ′= = +Π                       (41) 

These two definitions are exploited to calculate the eigenvalues of the system. 
More details are left to the reader in Ref. [29] [30] [31]. 
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