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Abstract

In this paper, we study the boundary value problem for an impulsive frac-
tional g-difference equation. Based on Banach’s contraction mapping princi-
ple, the existence and Hyers-Ulam stability of solutions for the equation
which we considered are obtained. At last, an illustrative example is given for
the main result.
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1. Introduction

The g-calculus or quantum calculus is an old subject that was initially developed
by Jackson [1]; basic definitions and properties of g-calculus can be found in [2].
The fractional g-calculus had its origin in the works by Al-Salam [3] and
Agarwal [4]. But the definitions mentioned above about g-calculus can’t be ap-
plied to impulse points t,,k € Z, such that t, (qt,t). In [5], the authors de-
fined the concepts of fractional g-calculus by defining a g-shifting operator
2D, (m)=gm+(1-g)a,macR. Using the g-shifting operator, the fractional
impulsive g-difference equation was defined. In paper [5] [6] [7], the authors
discussed the existence of solutions for the fractional impulsive g-difference
equation with Riemann-Liouville and Caputo fractional derivatives respectively.
Some other results about g-difference equations can be found in papers [8]-[16]
and the references cited therein. Dumitru Baleanu et al discussed the stability of
non-autonomous systems with the g-Caputo fractional derivatives in reference

[17]. However, the existence and stability of solutions for the fractional impul-
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sive g-difference have not been yet studied.
Motivated greatly by the above mentioned excellent works, in this paper we in-
vestigate the following fractional impulsive g-difference equation with g-integral

boundary conditions:
s DEx(t)=f(tx(t)), ted, I =[0.T], t=t,
AX(t ) ( )- (tk) o (X(t)) k=1.2,-m, 1)
m(0) +mx(T) = 3 1)

where ; Di* is the fractional g, -derivative of the Caputo type of order e
on J,, O<g <1, 0<q, <1, Jy=[0t], J,=[0t], k=12,---,m

9, €C(R,R), feC(JxR,R). I denotes the Riemann-Liouville g, -
fractional integral of order S >0 on J,,k=0,1,2,---,m and 7,7, 4 are

three constants.

2. Preliminaries on g-Calculus and Lemmas

Here we recall some definitions and fundamental results on fractional g-integral
and fractional g-derivative, for the full theory for which one is referred to [5] [6]
[7].

For gqe (0,1) , we define a g¢-shifting operator as ,®, (m) =qgm +(1—q)a .
The new power of ¢-shifting operator is defined as ,(n- m)go) =1,

q

k-1 _
L(n-m)! =T](n- @, (m)), keNU{0}, neR.If veR,then
i=0

fn-m)) nvﬁl_ iH

i=0 9 _ q)|+v(mj
n n

The g-derivative of a function f oninterval [a,b] is defined by

(D4 F)(1)= f(El):;)((fqa§t)),t¢a,(aqu)(a)=|im(aqu)(t).

t—a

The g-integral of a function f defined on the interval [a,b] is given by
(1)) =] F(s)ads=(1-q)(t- a)Zq f(a®, (1)) tefab]

Some results about operator _D, and can be found in references [5].

a~q a q
Let us define fractional g-derivative and g-integral on interval [a,b] and out-
line some of their properties [5] [6] [7].

Definition 1 [5] The fractional g-derivative of Riemann-Liouville type of or-

der v>0 oninterval [a,b] is defined by ( Dof)(t):f(t) and
(200 ))= (oDt £ )0 >0,

where /is the smallest integer greater than or equal to v .
Definition 2 [5] Let >0 and f be a function defined on [a,b]. The
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fractional g-integral of Riemann-Liouville type is given by (a Ig f )(t) =f(t)
and
a-1

(¢ )(t)— (a)j (t—ad)q(s))q f(s).d,s.a>0,te[a,b].

Lemma 1 [5] Let a,fe€R" and f be a continuous function on
[a,b],aZO. The Riemann-Liouville fractional g-integral has the following
semi-group property

NGl T () =15 AT () =177 1 (1),

Lemma 2 [5] Let f bea g-integrable function on [a,b]. Then the following

equality holds
D¢ Mg f(t)=f(t), for a>0,te[a,b].

gawq

Lemma 3 [5] Let a >0 and pbe a positive integer. Then for te[a,b] the
following equality holds

a0er =001 - S o)

T, (a+k-p+1)**

Definition 3 [7] The fractional g-derivative of Caputo type of order « >0
oninterval [a,b] isdefinedby $DJf (t)=f(t) and

(5D f)(t)= (107, DI f)(t),a >0,

where n is the smallest integer greater than or equalto « .
Lemma 4 [7] Let & >0 and nbe the smallest integer great than or equal to
o . Thenfor te[a,b] the following equality holds

k
IaCDa ﬂl(_)

DLH0= (- S G k(@)

3. Main Results

In this section, we will give the main results of this paper.

Let PC(J,R)={x:J —>R,x(t) is continuous everywhere except for some
t, atwhich X(t;) and X(tk‘) exist, and x(tk‘) =x(t, ).k =1,2,~~-,m} .
PC(J,R) is a Banach space with the norm

x| = sup{|x(t)| te J}.
First, for the sake of convenience, we introduce the following notations:

t (ti+l _ti )(qlo-l)

m
A= - Q, =0, Q = ,
771+772 :u; i # oj rqi (Ui +1)

where o, €{e;, 8,0, +f},0,€(01),i=012,---,m

To obtain our main results, we need the following lemma.

Lemma 5 Let 1) Q, #7,+7, and h(t)eC(J,R). Then for any teJ,,
0

DOI: 10.4236/jamp.2020.87107

1415 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2020.87107

M. Jiang, R. G. Huang

the solution of the following problem
¢ Dyx(t)=h(t),ted, cI=[0T] t=t,
slt)=x(6)- ) o () Az

’71X(0)+772X(T): :Ukz t Iqﬁkkx( k+1)

is given by

>Il—‘

i-1

{g /Ut,ln,t'w' |+1) Ty y, q,lh(|+1)>
+| { [2¢1( ( ))+]_:t aJh(Hl)j Uz@i(x(ti))}} (3)
S (x(0)+ 3 () 12,

Proof. Applying the operator  1.° on both sides of the first equation of (2)

o

for teJ, and using Lemma 4, we have
X(t) =x(t )+, 17 ().
Then we get for t=t, that
X(t) =x(t)+ 1 h (k). (@)
For teJ,,again taking the | I;' to (4) and using the above process, we get
x(t):x(t1 )+t1I;1h( ).
Applying the impulsive condition X(t; ) =X(t,)+ g, (x(t,)), we get
X(t) =x(ty)+ @ (X(t))+ , 1oh(t)+  1eh(t).
By the same way, for t e J,, we have
X(t) =x(t)+ @ (X () + @, (X(t))+ , 1oh(t)+ , 1gh(t)+ 12 (t).

Repeating the above process for teJ, < J,k=0,1,2,---,m, we get

k-

()= X(1)+ 20 (1)) + 3 1 6)+ 1200 ®

=0

iN

From (5), we find that

>
—~
—
~
Il
>
—~
—t
o
~—
+
D~
aS)
—_
>
—~
o
S~
~—
+
S
=
_
I
s
\_/
71—"
£ 3
=
/—\
v

i=1 i=0

From the boundary condition of (2), we get

X(to) :l{i(ﬂti I;i%h(tm)_’h 4 I;ih(tm))

A i=0

S (S b0 )5 it o e ()|

(6)

=1

Substituting (6) to (5), we obtain the solution (3). This completes the proof.
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We define an operator G:PC(J,R)— PC(J,R) as follows:

Gx(t) = i{i(ﬂn 1 (5,0)(t0) =12, 10 (5,%) (8.1)

i-1

+§{”{i¢i(x(ti))+ztj'$"f(S:X)(tM)JQ 17,6, (X (.))}} 7)

=1 i=0

3 () + 2 1T (60(00) 4, 12 F(50) ()

3

x
AR

N
o

Then, the existence of solutions of system (1) is equivalent to the problem of
fixed point of operator G in (7).

Theorem 1 Let f:JxR—>R and ¢ :R—>Rk=12--,m be continuous
functions. Assume that yZQ #1,+17, and the followmg conditions are sat-
isfied:

(H,) There exists a positive constant Z such that |¢Jk (X)- o (y)| <L|x-y]
foreach x,yeR and k=1,2,---,m

(H,) There exists a function M (t)eC (J : R+) such that

[F(tx)=f(Ly) <M (t)|x-y|,Vted, x,yeR.

(Hy) A<L1.
Then problem (1) has a unique solution on J, where M = sup|M (t)| and
tel

m

1 i .
A:XZ(;:MQWM +(7, +M)Q, +uM JZ:(:)Qanﬂi +ﬂL'Qﬂij

i=1
1 1
+X(“Q%+ﬁ° +772(2% )+ mL(an +1j.

Proof. The conclusion will follow once we have shown that the operator G
defined (7) is a construction with respect to a suitable normon PC(J,R).
For any functions X,y € PC(J,R), we have

() (1)~ (Gy)(t)
g%{i(mﬁ 1A ()= £ (5.9 (6) #0157 £ (5:%) = (5. 9)](8.0)

S Y PN o EC R O
*”2|<”i<x(ti>)—¢iw»lﬂ*g 0 (x(1)) -0 (v(1)

i=1
+Z oo |f (s,x)—f (s, y)|(ti+1)+ o am | f (s,x)—f (s, y)|(t)
i=0
By conditions (H,) and (H,), we get

(9%)(1)=(9) (1)
s%{i(#t,ﬁw&(mnx V) (ta) + 2 1 (M %= y])(5,0))

i=0

=1 J_

S S RIS ]|
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AN

m—

2Ly X 1 (M Xy () + 1 (M= Y) (8)

i=0

m i-1
g{%Z(,uMQWﬁi +17,Q,, +pLiQ, +uM Y Q, Q, +MQaiJ
=0

i=1

1 1
+X(ma0+ﬂ0+772§2 )+mL( 772+1J}||x y||

which implies that
9% =Gy] < Alx=y]-

Thus the operator G is a contraction in view of the condition (H,). By
Banach’s contraction mapping principle, the problem (1) has a unique solution
on J. This completes the proof.

In the following, we study the Hyers-Ulam stability of impulsive fractional
g-difference Equation (1). Let £>0,e >0 and J: [O,T] — R be a continuous

function. Consider the inequalities:
(1)~ f(tX(1)| <8(t)e,te I, I =[0T], t#t k=01-,m
A% (t, )~ (X (L)) <ee k =1.2,--,m, ®)

mX(0)+m,X(T)= ,ukz . I‘ﬁkf(tm).
=0

Now, we give out the definition of Hyers-Ulam stability of system (1).

Definition 4 System (1) is Hyers-Ulam stable with respect to system (8), if
there exists A; >0 such that

|X—%|< A

forall teJ, where X is the solution of (8), and X of the solution for system
(1).

Theorem 2 Assume f:JxR —> R satisty assumption (H,),
@ R—>R,i=12,---,m are continuous functions and satisfy assumption (H,)
and the condition (H,) holds, supd&(t)<1. Then the system (1) is Hyers-Ulam
stable with respect to system (8).tEJ

Proof. Let fk D:‘:Y(t) =f (t,Y(t))—i— g (t), k=0,1---,m and
AX(t ) = (X(t, ))+ 0,k =12,---,m. Consider the system

sDEX(t)=f(t,X(t))+g(t), ted, cI=[0T] t=t,

ek

AX() (())9"12 )
mX(0)+n,X(T)= quk X (t)-

Similarly to the system in Theorem 1, system (9) is equivalent to the following

integral equation in Lemma 5.
X(t)= ll\{i;‘(ﬂt LA (£ (5, %) +9(8))(tuy) =1 1 (f (s, %)+ g(s))(tm))
+i{”[i(¢1( (t; )) )+I1 ylo (F (3’7)+9(5))(ti+1)]9ﬂi

j=1 j=0
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n4@w@»+gﬂ}§x%wm»+g)

i=1 (10)

+Zt.|a.'( (%) +9(8))(ta) + 15 (F(£X)+9(1))

Now, we define the operator G as following

gx(t) = {i(ut, 128 (5,%) (b2) =7, g F(5:%) (t1))

i=0

S E b5 10010 g (D |

i=t i=

S0+ I ()12 1504600
=0x+G(t)
where
G(t):%{g(#n|;'+ﬂ'g(ti+1)_’721iI;ig(tm))
+.Zm;‘{ [Zg +Z‘ o9 (m))gﬂi _’729&} (12)
IS HEICREFLTD
Note that

||§x - _C’;y" =|lgx-gy|.

Then the existence of a solution of (1) implies the existence of a solution to (9),
it follows from Theorem 1 that G is a contraction. Thus there is a unique fixed
point X of G,and respectively X of G.

Since te [O T] and Supé(t) <1, we obtain

G
%{izm:(/ul' I:;'I ” g (t”l)_’]z i I;i 9 (ti+l))

|G[| = max

= max
ted

e+ 1800+ 1 ()
i=0
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Z +Zt,l”" (ta)+, lra(t)

1o _ i-1
S{Xz(maﬁﬂi +7729ai +'UEIQﬂi +HZQ“JQﬁi +Qai] 1)
i=1 i=0

1 1
+X('HQ“°% +11,Q,, )+ me(an +lj}g.

Then, we get
| =[o% - x| = [ox - x+ 6 ()] < 9% - -]

m i-1
aleose {50 om0, i, iS00, 00, | 09
j=0

1 1
+X(,uan+ﬂo +11,82,, )+ me(xnz +1j}g.

By condition (H,), we have

||Y—)?||S(l—A)_l{%zm:(yQaI%+772£2 + peQ, +,uZQ Q, +Q, J
(15)
+me 1}}8
A ~(1-) {%
Let - , then

i-1
( M 11, + peiQ +yZ})QaJQﬁi +Qaij
j=

772 +1

x| < Ae.

This completes the proof.

Remark 1 Note that (1) has a very general form, as special instances results
from (1), when, 7, =7, =1, 4 =0, (1) reduces to the antiperiodic boundary val-
ue problem of the impulsive fractional g-difference equation:

s DZx(t)=f(t,x(t)),ted, cI=[0T] t=t,
Ax(t) =x(t )= x(t) = o (x(t)), k=12,--,m
x(0)+x(T)=

4. Example
Consider the following boundary value problem:
o sin?t 2[x(t) N [ }
¢ D3x(t) = te tt,
(1) = t+501+|x(t| ),
1 k)+2|x .

AX(t, )=
(%)= 2000 L+[x(t,)|

8 1.(3) 12 2
0)+=x| === 1€2x(t, ).
()+6X(2J 2k jl;fl:;x( k+1)

|+%,tk =5

k=12, 16
5 (16)
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k+1
3k+2’

Corresponding to boundary value problem (1), one see that ¢, =

Csin’t 2[x(b)
2450 1+|x(t)|

k+1 3k+1 k
= 5 = » L=—, f ,
Ae=ieiy % ¥ 2 (6:x)
1 xz(tk)+2|x(tk |
7 ((4)) = 200

3
+—
4

. Through a simple calculation, we get

1+ [x(t, )
sin’t sint 1
f(t,x)-f(t,y)< —y[.M(t)= <1 _wm
£ (60~ 1 (ty)] s Sl yLM () =< o
1 1 1
|(/7k(X)_¢k(Y)|S200k|x—y|grm|x_y|’L:200’

A=1.7875>0,A=0.4873<1.

3
From Theorem 1, the problem (16) has a unique solution x on [O,E] Fur-

thermore, the solution x is Hyers-Ulam stable with respect to the following sys-
tem
kil sin?t 2[x(t) 3t

c DSkIZX t _ ]
hom e (© t2+501+|x(t)| 4

<5(t)et e[o,ﬂ\{g,tz},

2(t, )+ 2|x(t
X(t,)- 1 X (t)+ |X(k)|_£ SGg,thE,k:Lzr (17)
200k L+[x(t, )| 5 2
8 1 3 1 2 k+1
03] )

where ¢>0,6>0, sup 5(t)<1.

4

In this paper, we study the existence and Hyers-Ulam stability of solutions for

5. Conclusion

impulsive fractional g-difference equation. We obtain some results as following:
1) Using the g-shifting operator, the results of existence of solutions for impul-
sive fractional g¢-difference equation with g-integral boundary conditions are
obtained. 2) The Hyers-Ulam stability of the nonlinear impulsive fractional

g-difference equations was obtained.
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