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Abstract 
The following fractional Klein-Gordon-Maxwell system is studied  
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 where ( )3 4,1p∈ , 

( ) p−∆  stands for the fractional Laplacian, 0ω >  is a constant, V is vanishing 
potential and K is a smooth function. Under some suitable conditions on K and 
f, we obtain a Palais-Smale sequence by using a weaker Ambrosetti-Rabinowitz 
condition and prove the ground state solution for this system by employing 
variational methods. In particular, this kind of problem is a vast range of ap-
plications and challenges.  
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1. Introduction 

In this paper, the following fractional Klein-Gordon-Maxwell system is consid-
ered 
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       (1.1) 

where ( )3 4,1p∈ , ( ) p−∆  denotes the fractional Laplacian operator, V is zero 
mass potential and K is a smooth function. When ( )2 0uω φ φ+ = , system (1.1) 
reduces to a fractional Schrödinger equation. The fractional Schrödinger equa-
tion was first proposed by Laskin [1] [2] as a result of expanding the Feynman 
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path integral from the Brownian-like to the Lévy-like quantum mechanical paths. 
This kind of problem can apply to various fields. For example, Li et al. [3] stud-
ied a class of fractional Schrödinger equation with potential vanishing at infinity 
by using variational methods and obtained a positive solution for this equation. 
For more results about fractional Schrödinger equation, please see [4] [5] [6] 
and the references therein.  

If 1p = , ( ) 2 2V x m ω= −  and ( ) ( ) 2qK x f u u u−= , system (1.1) reduces to 
a Klein-Gordon-Maxwell equation, which was first studied by Benci and 
Fortunato [7] as a model describing a nonlinear Klein-Gordon equation interact-
ing with an electromagnetic field with 4 6q< < . For more details on the physical 
aspects of this problem, we refer the readers to see [8] and references therein.  

When 2 4q< <  and 0 1
2
q mω< < − , D’Aprile and Mugnai [9] investigated 

the following system  

( )

( )

222 3

2 3

, ,

, ,

qu m u u u x

u x

ω φ φ

φ ω φ

−  −∆ + − + = ∈  
∆ = + ∈




        (1.2) 

they obtained some results which complete the results obtained in [7].  
In recent years, under various hypotheses on the potential ( )V x  and the 

nonlinearity ( )f u , the existence of positive, multiple, ground state solutions 
for Klein-Gordon-Maxwell systems or similar systems, has been widely studied 
in the literature. For example, Azzollini and Pomponio [10] first proved the 
existence of a ground state solution for system (1.2) when the nonlinearity is 
more general. He [11] first considered a Klein-Gordon-Maxwell system with 
non-constant potential. Li and Tang [12] improved the result of [11]. A non-
linear Klein-Gordon-Maxwell system with sign-changing potential was first 
considered by Ding and Li in [13]. They obtained infinitely many solutions by 
symmetric mountain pass theorem. Otherwise, there are many works about the 
nonhomogeneous Klein-Gordon-Maxwell system. Wang [14] proved that a non-
homogeneous Klein-Gordon-Maxwell system had two solutions. In [15], Gan et al. 
obtained two solutions for a type of nonhomogeneous Klein-Gordon-Maxwell 
system with sign-changing potential. Another example is [16], Miyagaki et al. in-
vestigated system (1.1) with fractional Laplacian and f satisfied the following type 
of Ambrosetti-Rabinowitz condition:  

(H4’) For all 0u > , There exists 4µ >  such that ( ) ( )0 F u f u uµ< ≤ , 
where ( ) ( )

0
d

u
F u f t t= ∫ .  

Inspired mainly by the aforementioned results, we find a ground state solution 
for (1.1) with potential vanishing at infinity. To show our result, we make the 
following assumptions first:  

(H1) ( )( )3 , 0,V C∈ +∞ , ( ) ( )( )3 3 , 0,K L C∞∈ +∞   and 

( )3K V L∞∈  ,                       (1.3) 

or for any ( )0,1p∈ , there exists ( )*2, 2 ps∈ , where ( )*2 6 3 2p p= − , such that 
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If condition (1.4) holds, we assume that  
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(H4) There exists 2µ > , such that ( ) ( ) 0f u u F uµ≥ >  for all 0u > . 
To the best of our knowledge, Ambrosetti-Rabinowitz condition (AR condi-

tion for short) plays an important role in proving the boundedness of 
Palais-Smale sequence (PS sequence for short). In recent years, there are many 
papers devoted to replacing (AR) condition with weaker condition. It is easy to 
see that (H4) is weaker than (H4’). In this paper, we obtain a (PS) sequence by 
using the weaker (AR) condition. Besides, it seems that there is only one work 
about the Klein-Gordon-Maxwell system involving fractional Laplacian. 

Theorem 1.1. Assume that ( )3 4,1p∈  and (H1)-(H4) hold. Then problem 
(1.1) admits a positive solution in E, where E is defined in Section 2. 

In this paper, the main difficulty is lack of compactness of Sobolev embedding 
in whole space because of the nonlocal term φ  and the fractional operator. To 
overcome this problem, we use the reduction method introduced by Caffarelli 
and Silvestre [17] and recover the compactness by the interaction of the behav-
iour of the potential and nonlinearity.  

This paper is organized as follows. In Section 2, some preliminary results are 
presented. In Section 3, we give the proof of main result. 

2. Preliminaries 

In this section, by the local reduction derived from Caffarelli and Silvestre [17], 
we first reformulate the nonlocal fractional system (1.1) into a local system, that is  
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where ( )1 2
1div py w− ∇  denotes the divergence of 1 2

1
py w− ∇  and  

( ) ( )1 2= 2 1p
pk p p− Γ − Γ  such that  
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where ( ) ( )2 2,0 :x w x wφ = =  , ( ) ( )1 1,0 :u x w x w= =  , and 
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is the outward normal derivative of 1w . Similar definition is given for 2w . 
For ( )3 4,1p∈  and 3:φ →  , the fractional Laplacian ( ) p−∆  of φ  is 

defined by  

( )( )( ) ( )( )2 3, ,pp z z z zϕ ϕ−∆ = ∈    

where   denotes the Fourier transform, that is 
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where j denotes the imaginary unit. When ϕ  is smooth enough, the ( ) p−∆  of 
ϕ  can be obtained by the following singular integral 
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where cα  is a normalization constant and . .PV  is the principle value. 
For any ( )3 4,1p∈ , ( )2 4pX +  and ( )3pH   are the completion of  

( )4
0C∞

+  and ( )3
0C∞  , and endowed with the norms  

( )2 4
21 2

1 2
: d d ,p

p
pXu k y u x y

+

−= ∇∫  

( )( )( ) ( )3 3

1 21 2 222: 2 d d ,p
p p

Hu z u z z u x = = −∆ 


π
∫ ∫

 
 

respectively. The Sobolev space ( ),2 4pD +  is defined by 
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Let E be defined by  
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       (2.2) 

then E is a Hilbert space. In the following, for convenience, for any u, let 
( ): ,0u u x= . 
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The functional associated to (2.1) is given by  
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which is of 1C  by (H1)-(H3). 
A vector 1w  is a weak solution of system (2.1) if ( )1 , 0w U′Φ =  for any 

U E∈ , i.e.  
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Lemma 2.1. [16] For every ( ) ( )2 4, pu x y X +∈  , there exists a unique 
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Furthermore, in the set ( ) ( ){ },0 : : ,0 0x u u x= ≡/ , we have 0uω φ− ≤ ≤  for 
0ω > . 

Let the weighted Banach space be  
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The following Proposition 2.2 comes from the arguments in [18]. 
Proposition 2.2. [18] Assume that (H1) holds. Then  
1)  q

KE L  is compact for all ( )*2, 2 pq∈ , provided that (1.3) holds;  
2)  s

KE L  is compact provided that (1.4) holds;  
3) If ku u  in E, then up to a subsequence  

( ) ( ) ( ) ( )3 3lim d d ;kk
K x F u x K x F u x

→∞
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4) If ku u  in E, then up to a subsequence  
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5) If ku u  in E, then up to a subsequence, for any z E∈ ,  

( ) ( ) ( ) ( )3 3lim d d .kk
K x f u z x K x f u z x

→∞
=∫ ∫  

 
 

Lemma 2.3. [16] If ( ) ( ), ,ku x y u x y  in E, as k →∞ , then passing to a 
subsequence if necessary, ( ) ( ), ,

ku ux y x yφ φ  weakly in ( ),2 4sD + , as 
k →∞ . 

Lemma 2.4. Assume that (H2) and (H3) hold. Then the functional Φ  satis-
fies  

1) There exists , 0β ρ >  such that ( )u βΦ ≥  if u ρ= ;  
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2) There exists { }0 \ 0u E∈  with u ρ>  such that ( )0 0uΦ ≤ .  
The proof of Lemma 2.4 is standard, so we omit the details here. 
From Lemma 2.4, there exists a ( )cPS  sequence { }ku E⊂  such that  

( ) ( ) ( )and 1 0, as ,k k ku c u u k′Φ → Φ + → → +∞       (2.6) 

where 
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3. Proof of Main Result 

Lemma 3.1. Assume that (H2)-(H4) hold. Then the ( )cPS  sequence { }ku E⊂  
given in (2.6) is bounded.  

Proof. Let { }ku E⊂  be a ( )cPS  sequence of Φ . Arguing indirectly, sup-
pose ku →∞  such that  

( ) ( ), 0, as ,k ku c u k′Φ → Φ → →∞               (3.1) 
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( )2 3L  , (2.2), (2.3), (2.4), (3.1) and Lemma 2.1, there are two cases to consider.  
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≥ − , which contradict 4µ ≥ . 

Case (2): ( )2,4µ ∈ . In this case, by (2.2), (2.3), (2.4), (3.1) and Lemma 2.1, 
one gets  
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then 0 1
2
µ

≥ − , which contradict 2µ > . 
If 0 0v ≠ , then { }1meas 0Ω > , where ( ){ }3
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From (3.2) and Fatou’s Lemma, we obtain  

( )
1

2
2 d , as .k

k
k

F u
v x k

uΩ
→ +∞ →∞∫







             (3.3) 

From (2.2), (2.3), (3.1), (3.3) and Lemma 2.1, we have  
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a contradiction. Hence, the boundedness of { }nu  in E is obtained. 
Proof of Theorem 1.1. Let { }ku  be a ( )cPS  sequence given in (2.6). It fol-

lows from Lemma 3.1 that { }ku  is bounded, passing to a subsequence, one can 
assume that there is u E∈  such that  

, weakly in , as .ku u E k →∞  

It suffices to show that ku u→ , as k →∞ . By Proposition 2.2, one has  
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By ( ) ( ), 1k k nu u o′Φ = , one gets  
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By Proposition 2.2, one obtains  
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From the proof of Lemma 2.3 in [16], we know that there exists a ( ),2 4pz D +∈   
such that  

{ }( )3in 0 as ,
k

r
u z L kφ × →∞                (3.5) 
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{ }( ) ( )3in 0 as , 2,6 3 2 ,
k

r
u locz L k r pφ × →∞ ∈ −         (3.6) 

and u zφ = . Hence, from Lemma 2.3, we obtain that 
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Otherwise, since ( ) ( ), 1u u o′Φ = , one has  

( ) ( ) ( )3 3
2 22 d d .u z zu x K x f u u xω= + +∫ ∫   

 
          (3.8) 

Hence, from (3.7) and (3.8), we have  
2 2lim ,kn

u u
→∞

=  

which shows that 

in , as .ku u E k→ →∞  

Hence, we conclude that  

( ) ( )and 0.u c u′Φ = Φ =  

Thus, u is a ground state solution for Φ . It follows from 0ku ≥  that 0u ≥ . 
Since there is a ( )cPS  sequence { }ku , we can obtain that u is positive from 
Lemma 2.1 by contradiction.  

4. Conclusion 

In this paper, we first reformulated the system (1.1) into a local system by using 
the local reduction. Then, we take advantage of the interaction of the behaviour 
of the potential and nonlinearity to recover the compactness. Meanwhile, we 
obtained a Palais-Smale sequence by using a weaker Ambrosetti-Rabinowitz 
condition. Finally, the existence of positive solution is proved by the mountain 
pass theorem. Obviously, the weaker Ambrosetti-Rabinowitz condition has been 
successfully applied to find the solution of the fractional Klein-Gordon-Maxwell 
system with potential vanishing at infinity. We hope that this result can be 
widely used in other systems.  

Acknowledgements 

The authors would like to thank the referees for their useful suggestions which 
have significantly improved the paper. 

Conflicts of Interest 

No potential conflict of interest was reported by the authors. 

Funding 

This work is supported by the National Natural Science Foundation of China (No. 
11961014, No. 61563013) and Guangxi Natural Science Foundation (2016 

https://doi.org/10.4236/jamp.2020.87101


C. L. Gan et al. 
 

 

DOI: 10.4236/jamp.2020.87101 1326 Journal of Applied Mathematics and Physics 
 

GXNSFAA380082, 2018GXNSFAA281021).  

References 
[1] Laskin, N. (2000) Fractional Quantum Mechanics and Lévy Path Integrals. Physics 

Letters A, 268, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2 

[2] Laskin, N. (2002) Fractional Schrödinger Equation. Physical Review E, 66, 56-108.  
https://doi.org/10.1103/PhysRevE.66.056108 

[3] Li, Q.Q., Teng, K.M. and Wu, X. (2017) Existence of Positive Solutions for a Class 
of Critical Fractional Schrödinger Equations with Potential Vanishing at Infinity. 
Mediterranean Journal of Mathematics, 14, 80.  
https://doi.org/10.1007/s00009-017-0846-5 

[4] Teng, K. (2015) Multiple Solutions for a Class of Fractional Schrödinger Equations 
in RN. Nonlinear Analysis, 21, 76-86. 

[5] Zhang, X., Zhang, B.L. and Repovš, D. (2016) Existence and Symmetry of Solutions 
for Critical Fractional Schrödinger Equations with Bounded Potentials. Nonlinear 
Analysis, 142, 48-68. https://doi.org/10.1016/j.na.2016.04.012 

[6] Wang, Z. and Zhou, H. (2016) Radial Sign-Changing Solution for Fractional Schrö-
dinger Equation. Discrete & Continuous Dynamical Systems, 36, 499-508.  
https://doi.org/10.3934/dcds.2016.36.499 

[7] Benci, V. and Fortunato, D. (2001) The Nonlinear Klein-Gordon Equation Coupled 
with the Maxwell Equations. Nonlinear Analysis, 47, 6065-6072.  
https://doi.org/10.1016/S0362-546X(01)00688-5 

[8] Benci, V. and Fortunato, D. (2002) Solitary Waves of the Nonlinear Klein-Gordon 
Equation Coupled with the Maxwell Equations. Reviews in Mathematical Physics, 
14, 409-420. https://doi.org/10.1142/S0129055X02001168 

[9] D’Aprile, T. and Mugnai, D. (2004) Solitary Waves of the Nonlinear Klein-Gordon- 
Maxwell and Schrödinger-Maxwell Equations. Proceedings of the Royal Society of 
Edinburgh Section A, 134, 893-906. https://doi.org/10.1017/S030821050000353X 

[10] Azzollini, A. and Pomponio, A. (2010) Ground State Solutions for the Nonlinear 
Klein-Gordon-Maxwell Equations. Topological Methods in Nonlinear Analysis, 35, 
33-42. 

[11] He, X.M. (2014) Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell 
System. Acta Applicandae Mathematicae, 130, 237-250.  
https://doi.org/10.1007/s10440-013-9845-0 

[12] Li, L. and Tang, C.L. (2014) Infinitely Many Solutions for a Nonlinear 
Klein-Gordon-Maxwell System. Nonlinear Analysis, 110, 157-169.  
https://doi.org/10.1016/j.na.2014.07.019 

[13] Ding, L. and Li, L. (2014) Infinitely Many Standing Wave Solutions for the Nonlin-
ear Klein-Gordon-Maxwell System with Sign-Changing Potential. Computers & 
Mathematics with Applications, 68, 589-595.  
https://doi.org/10.1016/j.camwa.2014.07.001 

[14] Wang, L.X. (2019) Two Solutions for a Nonhomogeneous Klein-Gordon-Maxwell 
System. Electronic Journal of Qualitative Theory of Differential Equations, 40, 1-12.  
https://doi.org/10.14232/ejqtde.2019.1.40 

[15] Gan, C.L., Xiao, T. and Zhang, Q.F. (2020) Improved Results of Nontrivial Solu-
tions for a Nonlinear Nonhomogeneous Klein-Gordon-Maxwell System Involving 
Sign-Changing Potential. Advances in Difference Equations, 167, 1-16.  
https://doi.org/10.1186/s13662-020-02634-9 

https://doi.org/10.4236/jamp.2020.87101
https://doi.org/10.1016/S0375-9601(00)00201-2
https://doi.org/10.1103/PhysRevE.66.056108
https://doi.org/10.1007/s00009-017-0846-5
https://doi.org/10.1016/j.na.2016.04.012
https://doi.org/10.3934/dcds.2016.36.499
https://doi.org/10.1016/S0362-546X(01)00688-5
https://doi.org/10.1142/S0129055X02001168
https://doi.org/10.1017/S030821050000353X
https://doi.org/10.1007/s10440-013-9845-0
https://doi.org/10.1016/j.na.2014.07.019
https://doi.org/10.1016/j.camwa.2014.07.001
https://doi.org/10.14232/ejqtde.2019.1.40
https://doi.org/10.1186/s13662-020-02634-9


C. L. Gan et al. 
 

 

DOI: 10.4236/jamp.2020.87101 1327 Journal of Applied Mathematics and Physics 
 

[16] Miyagaki, O.H., de Moura, E.L. and Ruviaro, R. (2019) Positive Ground State Solu-
tions for Quasicritical the Fractional Klein-Gordon-Maxwell System with Potential 
Vanishing at Infinity. Complex Variables and Elliptic Equations, 64, 315-329.  
https://doi.org/10.1080/17476933.2018.1434625 

[17] Caffarelli, L. and Silvestre, L. (2007) An Extension Problems Related to the Frac-
tional Laplacian. Communications in Partial Differential Equations, 32, 1245-1260.  
https://doi.org/10.1080/03605300600987306 

[18] Alves, C.O. and Souto, M.A.S. (2013) Existence of Solutions for a Class of Nonlinear 
Schrödinger Equations with Potential Vanishing at Infinity. Journal of Differential 
Equations, 254, 1977-1991. https://doi.org/10.1016/j.jde.2012.11.013 

 
 

https://doi.org/10.4236/jamp.2020.87101
https://doi.org/10.1080/17476933.2018.1434625
https://doi.org/10.1080/03605300600987306
https://doi.org/10.1016/j.jde.2012.11.013

	Existence Result for Fractional Klein-Gordon-Maxwell System with Quasicritical Potential Vanishing at Infinity
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	3. Proof of Main Result
	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	Funding
	References

