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Abstract 

We obtain an approximate value of the quantized momentum eigenvalues, 

nP , together with the space-like coherent eigenvectors for the space-like 
counterpart of the Schrödinger equation, the Feinberg-Horodecki equation, 
with a screened Kratzer-Hellmann potential which is constructed by the 
temporal counterpart of the spatial form of this potential. In addition, we got 
exact eigenvalues of the momentum and the eigenstates by solving Fein-
berg-Horodecki equation with Kratzer potential. The present work is illu-
strated with three special cases of the screened Kratzer-Hellman potential: the 
time-dependent screened Kratzer potential, time-dependent Hellmann po-
tential and, the time-dependent screened Coulomb potential. 
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1. Introduction 

Momentum is one notion of the most unmeasured physical quantity. The scien-
tific meaning and the conceptual generality of momentum only appearing after 
extensive efforts were made to calculate it since the beginning of the 19th century. 
That work culminated lately in deriving a second-order differential equation 
which has shown the recent essential status momentum has in quantum me-
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chanics. Nowadays, momentum calculations are pushing these foundations to 
new extremes by probing smaller energies and smaller length scales, where 
quantum mechanics appears to play a dominating role. 

Any physical phenomenon in nature is usually characterized by solving 
second-order differential equations. The time-dependent Schrödinger equation 
is considered as an example that describes quantum-mechanical phenomena, in 
which it dictates the dynamics of a quantum system. The solution of this diffe-
rential equation is carried out by means of any method results in the eigenvalues 
and eigenfunctions of that quantum system. However, the solution of 
time-dependent Schrödinger equation analytically is not easy except when the 
time-dependent potentials are constant, linear, and quadratic functions of the 
coordinates [1] [2] [3] [4]. The Feinberg-Horodecki (FH) equation is a space-like 
counterpart of the Schrödinger equation which was found by Horodecki [5] 
from the relativistic Feinberg equation [6]. The space-like solutions of the (FH) 
equation can be employed to test its relevance in different areas of sciences in-
cluding physics, biology and medicine [7] [8] [9]. Molski constructed the 
space-like bound states of a time-dependent form of Morse oscillator [7] and 
anharmonic oscillators [8] on the basis of the FH equation to minimize the un-
certainty in the time-energy relation and showed that the results are useful for 
interpreting the formation of the specific growth patterns during crystallization 
process and biological growth. Hamzavi et al. [10] obtained the exact bound 
state solutions of the FH equation with rotating time-dependent Deng-Fan os-
cillator potential by using parametric Nikiforov-Uvarov (NU) method. Moreo-
ver, Eshghi et al. [11] solved FH equation for time-dependent mass distribution 
(TDM) harmonic oscillator quantum system with a certain interaction applied 
to a mass distribution ( )m t  to provide a particular spectrum of stationary 
energies. Also, the spectrum of harmonic oscillator potential ( )V t  acting on 
TDM ( )m t  oscillator was obtained. 

In a non-relativistic case, the NU method was employed to obtain the bound 
state solutions of arbitrary angular momentum Schrödinger equation with the 
modified Kratzer potential which was also widely used in studying atomic phys-
ics, molecular physics and quantum chemistry [12]. On the other hand, the fac-
torization method was used to obtain the solution of the non-central modified 
Kratzer potential for the diatomic molecules [13]. The exact solutions of the 
Schrödinger equation with modified Kratzer and corrected Morse potentials 
with position-dependent mass were also obtained [14]. A particle's coherent 
states in Kratzer potentials are constructed by solving Feynman’s path integral 
[15]. Further, the exact solution of the Schrödinger equation for the modified 
Kratzer potential plus a ring-shaped potential was solved [16]. 

Besides, in the relativistic scale, approximate solutions of the D-dimensional 
Klein-Gordon equation are obtained for the scalar and vector general Kratzer 
potential for any l by using the ansatz method and the solutions of the Dirac eq-
uation with equal scalar and vector ring-shaped modified Kratzer potential were 
found by means of the NU method [17] [18]. 
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At the level of applications, many authors have studied the modified 
Morse-Kratzer potential for alkali hydrides [19], and the effect of modified Kratzer 
potential on the confinement of an exciton in a quantum dot [20]. Further, an 
analysis of the applications of the modified Kratzer potential, the bound states of 
two special cases of the interactions and this approximation was used to obtain 
the solution of the Schrödinger equation for the Morse potential [21]. 

Recently, a superposition of modified Kratzer potential plus screened Cou-
lomb potential was suggested to study diatomic molecules [22]. Edet et al. have 
obtained an approximate solution of the Schrödinger equation for the modified 
Kratzer potential plus screened Coulomb potential model, within the framework 
of NU method. They obtained bound state energy eigenvalues for N2, CO, NO, 
and CH diatomic molecules for various vibrational and rotational quantum 
numbers. Three special cases were considered by changing the potential para-
meters, resulting in the form of the modified Kratzer potential, the screened 
Coulomb potential, and the standard Coulomb potential [22]. Further, Okorie et 
al. have solved the Schrödinger equation with the modified Kratzer plus 
screened Coulomb potential using the modified factorization method. They have 
used an approximation proposed by Greene-Aldrich with a suitable transforma-
tion scheme to obtain the energy eigenvalues equation and the corresponding 
energy eigenstates for CO, NO, and N2 diatomic molecules. They have used the 
energy eigenvalues of the modified Kratzer plus screened Coulomb potential to 
obtain the vibrational partition functions and other thermodynamic functions 
for the selected diatomic molecules [23]. 

In a new work, we have obtained the quantized momentum solution of the FH 
equation with combined Kratzer plus screened Coulomb potential using NU me-
thod. We constructed three special cases of this general form; the time-dependent 
modified Kratzer potential, the time-dependent screened Coulomb potential and 
the time-dependent Coulomb potential [24]. 

Very recently, the Hellmann potential [25] [26] is considered as a combina-
tion of Coulomb plus Yukawa potentials [27]. In this regard, many authors have 
extended their works to study the screened Kratzer and Hellmann potential 
(SKHP). Osobonye et al. [27] have obtained the eigenvalues and eigenfunctions 
of the Schrödinger equation with newly proposed SKHP via the conventional 
NU method. 

The aim of this work is to apply the NU method [28] for a system of screened 
Kratzer potential plus Hellmann potential having a certain time-dependence. 
The momentum eigenvalues, nP , of the FH equation and the space-like cohe-
rent eigenvectors are obtained. The rest of the present work is organized as fol-
lows: the NU method is briefly reviewed in Section 2. An approximate eigenso-
lution of the FH equation with the time-dependent screened Kratzer and Hell-
mann potential (SKHP) model is given in Section 3. We calculate the momen-
tum states together with eigenvectors of FH equation. Further, the solutions of a 
few special potentials which are mainly found from our general molecular solu-
tion are presented in Section 4. Finally, we give our conclusions in Section 5. 
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2. Methodology 

The Nikiforov-Uvarov (NU) [28] method was discussed in details in [24] [29] 
[30]. Here we will mention the main points to remind the reader with the main 
idea in NU method. NU is usually used to reduce the second-order differential 
equation, we aim to solve, into a general form of a hypergeometric type, using a 
suitable coordinate transformation ( )s s r= . The form we aim to solve is:  

( ) ( )
( ) ( ) ( )

( )
( )2 0,n n n

s s
s s s

s s
τ σ

ψ ψ ψ
σ σ

′′ ′+ + =
 

              (1) 

where ( )sσ  and ( )sσ  are polynomials, restricted to be at most second-degree, 
and ( )sτ  is required to be a first-degree polynomial. The wave function can be 
assumed to be of the form, 

( ) ( ) ( ) ,n n ns s y sψ φ=                       (2) 

this transforms Equation (1) into a hypergeometric equation of a form  

( ) ( ) ( ) ( ) ( ) 0,n n ns y s s y s y sσ τ λ′′ ′+ + =                (3) 

where 

( ) ( ) ( )
( )

,n

n

s
s s

s
φ

σ
φ

= Π
′

                      (4) 

( ) ( ) ( )2 ,s s n sτ τ= + Π                      (5) 

and λ  is a parameter defined as, 

( ) ( ) ( )
1

,
2n

n n
n s sλ λ τ σ

−
′ ′′= = − −                (6) 

0,1,2,n =  , and ( )sτ  must be a polynomial with a negative first derivative to 
produce a solution, with a physical meaning, for Equation (3). For more details 
you can refer to [24]. 

To get the eigenvalues of the system, λ  defined in Equation (6) can be used 
with  

( ) ,n k sλ λ ′= = +Π                       (7) 

3. Feinberg-Horodecki Equation with Time-Dependent  
Screened Kratzer-Hellmann Potential 

The NU method is used to find the approximate solutions of FH equation for the 
screened Kratzer-Hellmann potential, then the eigenvalues and eigenfunctions 
of three special cases are produced from the results. 

The time-dependent screened Kratzer-Hellmann potential (SKHP) is given by 
[27]  

( ) 0 1 2
2e e ,t tV V VV t

t t t
α α− = + + 

 
                  (8) 

where 0V , 1V , and 2V  are adjustable real potential parameters, and α  is di-
mensionless screening parameter. The time-dependent potential may represent a 
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growing system biological or physical [7] [8]. This potential is considered as a 
general case of five special cases: 

1) Hellmann potential when 2 0V =  which is defined as [25] 

( ) 0 1e ,tV VV t
t t

α−= +                       (9) 

2) Screened Kratzer potential when 1 0V =  which is defined as [31] 

( ) 0 2
2 e ,tV VV t

t t
α− = + 

 
                    (10) 

3) Kratzer potential when 1 0V α= =  which is defined as [32] 

( ) 0 2
2 ,

V VV t
t t

 = + 
 

                     (11) 

4) Yukawa or Screened Coulomb potential when 1 2 0V V= = , which is de-
fined as [33] 

( ) 0 e ,tV
V t

t
α−=                        (12) 

and 5) Coulomb potential when 1 2 0V V α= = = , which is defined as [34] 

( ) 0 .
V

V t
t

=                          (13) 

If the SKHP potential is substituted in FH equation, one obtains 

( ) ( )
2 2

0 1 2
2 2 2

d e e .
2 d

t t
n n n

V V V t cP t
t tmc t t

α α ψ ψ−  − + + + =  
  



       (14) 

Using the approximation [35] [36] defined as 

1 ,
1 e tt α

α
−≈

−
                       (15) 

then, let ( )e ts α−= , where ( )0,1s∈ , we get 

( ) ( ) ( )
( )

( )
2 2
1 3 2

22

1 0,
1 1

n n n
s sss s s

s s s s
γ γ γ

ψ ψ ψ
− − +−′′ ′+ + =

− −
        (16) 

where 

( )
2

2
1 12 2

2 ,n
mc V cPγ α
α

= −


                   (17) 

( )
2

2 02 2

2 ,n
mc V cPγ α
α

= +


                   (18) 

( )
2

2
3 0 1 22 2

2 2 .n
mc V V V cPγ α α α
α

= − − + +


             (19) 

Comparing Equation (16) with Equation (1), one obtains ( ) 1s sτ = − , 
( ) ( )1s s sσ = − , and ( ) 2 2

1 3 2s s sσ γ γ γ= − − + . 

By substituting these values in ( )
2

2 2
s kσ τ σ τ σ σ

′ ′− − Π = ± − + 
 

 

 , one ob-

tains 
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( ) ( )2 2
2 3 1

1 .
2 4
ss k s k sγ γ γ Π = − ± − − + + + 

 
         (20) 

To find the form of ( )sΠ  that makes the solution has a physical meaning, 
the discriminant under the square root, in Equation (20), must be zero, so that 
the expression of ( )sΠ  becomes the square root of a polynomial of the first 
degree. This condition can be written as  

( )2 2
2 3 1

1 0.
4

k s k sγ γ γ − − + + + = 
 

               (21) 

Solving this equation, one gets  

( ) ( )2 2
3 3 1 2

2

14
4

.
12
4

k k k
s

k

γ γ γ γ

γ

 − + ± + − − − 
 =

 − − 
 

          (22) 

Then, for our purpose we propose that  

( )2 2
3 1 2

14 0.
4

k kγ γ γ + − − − = 
 

                (23) 

Arranging this equation and solving it, we get an expression for k which is de-
fined as, 

2
3 1 1

1 12 2 ,
2

k γ γ γ
η±
 

= − − ± − 
 

                 (24) 

where the expression between the parentheses is given by  
2

2
2

21 1 1 ,
2 4

mc V
η
= + +



                    (25) 

where 
2

2
2

2 1 0
4

mc V
+ ≥



. 

If we substitute the form of k−  into Equation (20) we get a possible expres-
sion for ( )sΠ , which is given by  

( ) 1 1
1 ,s sγ γ
η−

 
Π = − + 

 
                    (26) 

this solution satisfies the condition that the derivative of ( )sτ  is negative. 
Therefore, the expression of ( )sτ  which satisfies these conditions can be writ-
ten as  

( ) 1 1
11 2 2 .s s sτ γ γ
η

 
= − + − + 

 
                 (27) 

Now, substituting the values of ( )sτ−′ , ( )sσ ′′ , ( )s−Π  and k−  into Equa-
tions (6) and (7), we obtain  

( ) ( )
2

0 1 12

2 1 1 2 ,n
mc V Vλ γ

ηα
−

= + − +


                (28) 

and 
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2
1

12 .n n nλ λ γ
η
 

= = + + 
 

                    (29) 

Now, solving Equations (28) and (29), one obtains the eigenvalues of the quan-
tized momentum which is defined as, 

( )
22

0 1 222 2

1 2

2 2 1
1 .

2 12
n

mc V V V n n
P V

c mc n

α
η ηααα

η

    + + + + +  
   = −    +      



     (30) 

Due to the NU method used in getting the eigenvalues, the polynomial solutions 
of the hypergeometric function ( )ny s  depend on the weight function ( )sρ  
which can be determined by solving ( ) ( ) ( ) ( ) ( ) 0s s s s sσ ρ σ τ ρ′ + − =    to get  

( ) ( ) 21 1 .lls s sρ = −                       (31) 

where 1 12l γ=  and 2
2 1l
η

= − . 

Substituting ( )sρ  into ( ) ( ) ( ) ( )d
d

n
nn

n n

A
y s s s

s s
σ ρ

ρ
 =   , we get an expres-

sion for the wave functions as  

( ) ( ) ( )2 21 1
d1 1 ,
d

n
l n ll n l

n n ny s A s s s s
s

− +− + = − −             (32) 

where nA  is the normalization constant. Solving Equation (32) gives the final 
form of the wave function in terms of the Jacobi polynomial ( ),

nP α β  as follows, 

( ) ( ) ( )1 2,! 1 2 .l l
n n ny s A n P s= −                   (33) 

Now, substituting ( )s−Π  and ( )sσ  into Equation (4) then solving it we ob-
tain  

( ) ( )1
1

1 .n s s sγ ηφ = −                      (34) 

Substituting equations (33) and (34) in Equation (2), and using ( )e ts α−=  one 
obtains,  

( ) ( ) ( )1
1

21 2 , 1
e 1 e 1 2e ,t t t

n n ns B P
γ

ηαγ α αηψ
 

− − − − = − −          (35) 

where nB  is the normalization constant and 1
η

 is defined as in Equation (25). 

4. Special Cases 

4.1. Time-Dependent Hellmann Potential 

To get the Hellman potential from the SKHP form, as mentioned above, see 
Equation (9). If we substitute 2 0V =  in (30) we get the eigenvalues of the 
time-dependent HF equation with Hellmann potential. The result is as follow,  

( ) ( )
( )

22

2 2 0 12

1 2

2 2 11 .
2 12n

mc V V n n
P V

c nmc
α αα

  
 + + + + 
  = −
 + 

    



        (36) 
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To determine the eigenfunctions associated with the modified Kratzer poten-
tial, the same parameters were substituted in (17) which results in  

( ) ( ) ( ) ( )11 2 ,1e 1 e 1 2e ,t t t
n n ns B P γαγ α αψ − − −= − −             (37) 

where 

( ) ( )
( )

2

2 0 12

1 2 2

2 2 12 ,
2 1

mc V V n nmc
n

αγ
α

 
+ + + + 

 =
+ 

 
 





            (38) 

and ( ) ( )12 ,1 1 2e t
nP γ α−−  is the Jacobi polynomial. 

4.2. Time-Dependent Screened Kratzer Potential 

As mentioned above, the screened Kratzer-Hellmann potential can be reduced to 
screened Kratzer by setting 1 0V = . Therefore, by substituting 1 0V =  in Equa-
tion (30), it gives the eigenvalues of the FH time-dependent equation with 
screened Kratzer potential. These eigenvalues are given by the relation,  

( )
22

0 222 2

2

2 2 1
1 .

2 12
n

mc V V n n
P

c mc n

α
η ηαα

η

    + + + +  
   = −    +      



       (39) 

where 
2

2
2

21 1 1 .
2 4

mc V
η
= + +



                     (40) 

To determine the eigenfunctions associated with the screening Kratzer poten-
tial, the same parameters were substituted in (35) and (17) which results in 

( ) ( ) ( )1
1

21 2 , 1
e 1 e 1 2e ,t t t

n n ns B P
γ

ηαγ α αηψ
 

− − − − = − −            (41) 

and 
3

1 2 2

2 nmc P
iγ

α
=



                        (42) 

4.3. Time-Dependent Modified Kratzer Potential 

The SKHP can be reduced to modified Kratzer potential by substituting 

1 0V α= =  in Equation (8) or substituting 0α =  in the screened Kratzer po-
tential. Therefore, to get the quantized momentum of the FH equation with the 
modified Kratzer potential, one can substitute 0α =  in Equation (39). The re-
sult is given by 

2

2
0

2

21 2 ,
12

n
VmcP

c
n

η

  
  
−  =     +      



                 (43) 
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where 1
η

 is defined as in Equation (40). This result is exactly the same result as 
in a previous work [24], where 0V  was substituted 2 e et D . 

4.4. Time-Dependent Screened Coulomb Potential 

The SKHP can be reduced to screened Coulomb potential, as mentioned above, 
by substituting 1 2 0V V= = . Therefore, by the substitution of these values in 
Equation (30), we obtain the eigenvalues of time-dependent FH equation with 
screened Coulomb potential which is given by,  

( ) ( )
( )

22

2 2 02

2

2 2 11 ,
2 12n

mc V n n
P

c nmc
α α

  
 + + + 
  = −
 + 

    



            (44) 

which is the same result that we got in a previous work [24]. The eigenfunctions 
associated with the screened Coulomb potential is defined by substituting the 
same parameters in (35) and (17) which results in  

( ) ( ) ( ) ( )11 2 ,1e 1 e 1 2e ,t t t
n n ns B P γαγ α αψ − − −= − −             (45) 

and 

( ) ( )
( )

2

2 02

1 2 2

2 2 12 .
2 1

mc V n nmc
n

αγ
α

 
+ + + 

 =
+ 

 
 





             (46) 

If 0α =  is substituted in (44), one gets the quantized momentum for the FH 
equation with Coulomb potential. The result is given by  

( )

2 2
0

22
,

2 1
n

mc V
P

n
−

=
+

                      (47) 

which is the same result that we got in [24].  

5. Results and Discussion 

Now, to study the effect of the intermolecular interaction potentials on the 
quantized momentum states, we present a few numerical results by taking vari-
ous screening parameter α  values for five different molecules; namely, I2, TiH, 
ScN, H2 and CuLi. In choosing appropriate values of potential parameters of 
various diatomic molecules, see Table 1, we study the effect of time-dependent 
screening Kratzer potential in Feinberg-Horodecki equation. We calculate the 
FH quantized momentum states by changing the values of screening parameter 
α . The energy of the molecules is strongly bound together and hence their cor-
responding quantized momentum states are shifted to the negative region as 
displayed in Table 2. These results appear to be appropriate with the screened 
Kratzer potential, see Figure 1, since it is an attractive potential. 

In addition, we study the effect of time-dependent Hellmann potential in 
Feinberg-Horodecki equation. We compute the FH quantized momentum states  
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Figure 1. The screened Kratzer-Hellmann potential for diatomic molecules. 

 
Table 1. Spectroscopic parameters of the various diatomic molecules [23] [37]. 

Molecule De (eV) te (time unit) μ (a.m.u) 

TiH 2.05 1.781 0.987371 

ScN 4.56 1.768 10.682771 

H2 4.7446 0.7416 0.50391 

CuLi 1.74 2.310 6.259494 

I2 1.58179 2.6620 63.452235 

 
Table 2. FH quantized momentum eigenvalues (eV/c) of the screened Kratzer potential 
(SKP) for diatomic molecules. The values of the parameters used are defined in Table 1, 
and 0 3 eVV = − , 1 0 eVV = , 2 10 eVV = . 

SKP α n = 0 n = 1 n = 2 n = 3 

I2 0.001 −0.382998564 −0.363610557 −0.345650694 −0.328982080 

 0.01 −0.364335155 −0.344962250 −0.327017880 −0.310365149 

 0.1 −0.203339870 −0.185477225 −0.169082120 −0.154017659 

 1.0 −1.157267601 −1.290430915 −1.428962341 −1.572724983 

TiH 0.001 −0.386226660 −0.249403938 −0.173991739 −0.128064754 

 0.01 −0.370009486 −0.233302525 −0.158031152 −0.112270061 

 0.1 −0.226967331 −0.101836412 −0.040647740 −0.011476005 

 1.0 −0.709504293 −1.741977703 −3.089059016 −4.718822923 

ScN 0.001 −1.072492035 −0.961920092 −0.867548609 −0.786360699 

 0.01 −1.036586258 −0.926057079 −0.831730677 −0.750590166 

 0.1 −0.711151001 −0.604898248 −0.515079953 −0.438679231 

 1.0 −0.819049236 −1.140439095 −1.501431558 −1.899009739 

H2 0.001 −0.644495629 −0.303438242 −0.175331183 −0.113740718 

 0.01 −0.628780486 −0.287855565 −0.159930087 −0.098570319 

 0.1 −0.482297309 −0.154618931 −0.044851587 −0.006561545 

 1.0 −0.084290853 −1.081266746 −2.787312809 −5.055995309 

CuLi 0.001 −0.394473035 −0.332591591 −0.284143245 −0.245503715 

 0.01 −0.376637860 −0.314803045 −0.266405282 −0.227820289 

 0.1 −0.220977375 −0.163805462 −0.120466000 −0.087334707 

 1.0 −0.933498922 −1.342617140 −1.805107747 −2.317346460 
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by changing the values of screening parameter α . The quantized momentum 
states are shifted to the positive region as given in Table 3, which is coherent 
with a repulsive potential as shown in Figure 1. 

Finally, we study the time-dependent screened Kratzer-Hellmann oscillatory 
potential and investigate its behavior with changing values of screening parame-
ter α  as displayed in Table 4. It is noteworthy to mention that when α  takes 
small values, the effect of screening Kratzer is observed to be more dominant as 
the momentum states are seen shifted to the negative region since the molecules 
energy is strongly bound. However, as the values of α  tends to rise up, the in-
teraction between molecules decreases and the Hellmann effect is clearly appar-
ent and thereby momentum states shift to the positive region due to repulsive 
dominant Hellmann potential part. 
 
Table 3. FH quantized momentum eigenvalues (eV/c) of the Hellmann potential (HP) for 
diatomic molecules. The values of the parameters used are defined in Table 1. Whereas, 

0 3 eVV = , 1 5 eVV =  and 2 0 eVV = . 

HP α n = 0 n = 1 n = 2 n = 3 

I2 0.001 0.004210728 0.004210722 0.004210712 0.004210698 

 0.01 0.042107102 0.042106511 0.042105526 0.042104147 

 0.1 0.421053294 0.420994194 0.420895695 0.420757796 

 1.0 4.208759954 4.202849996 4.193000067 4.179210167 

TiH 0.001 0.003650923 0.003650544 0.003649911 0.003649024 

 0.01 0.036497840 0.036459860 0.036396561 0.036307942 

 0.1 0.363839012 0.360041047 0.353711107 0.344849189 

 1.0 3.524451184 3.144654734 2.511660652 1.625468937 

ScN 0.001 0.008062068 0.008062033 0.008061975 0.008061893 

 0.01 0.080619630 0.080616120 0.080610269 0.080602078 

 0.1 0.806090989 0.805739957 0.805154902 0.804335827 

 1.0 8.050378916 8.015275664 7.956770245 7.874862657 

H2 0.001 0.003518347 0.003517603 0.003516363 0.003514626 

 0.01 0.035161148 0.035086730 0.034962699 0.034789057 

 0.1 0.349378934 0.341937129 0.329534121 0.312169909 

 1.0 3.270535191 2.526354682 1.286053835 −0.450367352 

CuLi 0.001 0.004019380 0.004019320 0.004019220 0.004019080 

 0.01 0.040192003 0.040186012 0.040176027 0.040162049 

 0.1 0.401740303 0.401141213 0.400142730 0.398744854 

 1.0 3.999430335 3.939521339 3.839673012 3.699885356 
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Table 4. FH quantized momentum eigenvalues (eV/c) of the screened Kratzer-Hellmann 
potential for diatomic molecules. The values of the parameters used are defined in Table 
1, whereas 0 3 eVV = − , 1 5 eVV =  and 2 10 eVV = . 

SKHP α n = 0 n = 1 n = 2 n = 3 

I2 0.001 −0.378787834 −0.359399827 −0.341439964 −0.324771350 

 0.01 −0.322227856 −0.302854951 −0.284910581 −0.268257849 

 0.1 0.217733124 0.235595769 0.251990874 0.267055335 

 1.0 3.053462339 2.920299025 2.781767599 2.638004956 

TiH 0.001 −0.382575610 −0.245752888 −0.170340689 −0.124413704 

 0.01 −0.333498986 −0.196792025 −0.121520652 −0.075759561 

 0.1 0.138137669 0.263268588 0.324457260 0.353628995 

 1.0 2.941545707 1.909072297 0.561990984 −1.067772923 

ScN 0.001 −1.064429955 −0.953858012 −0.859486529 −0.778298619 

 0.01 −0.955965458 −0.845436279 −0.751109877 −0.669969366 

 0.1 0.095056999 0.201309752 0.291128047 0.367528769 

 1.0 7.243030764 6.921640905 6.560648442 6.163070261 

H2 0.001 −0.640977033 −0.299919647 −0.171812588 −0.110222123 

 0.01 −0.593594532 −0.252669611 −0.124744134 −0.063384366 

 0.1 −0.130437773 0.197240605 0.307007949 0.345297991 

 1.0 3.434304507 2.437328614 0.731282551 −1.537399949 

CuLi 0.001 −0.390453635 −0.328572191 −0.280123845 −0.241484315 

 0.01 −0.336443860 −0.274609045 −0.226211282 −0.187626289 

 0.1 0.180962625 0.238134538 0.281474000 0.314605293 

 1.0 3.085901078 2.676782860 2.214292253 1.702053540 

6. Conclusions 

We solved the Feinberg-Horodecki equation for the time-dependent screened 
Kratzer-Hellmann potential via the Nikiforov-Uvarov method. We got the ap-
proximate quantized momentum eigenvalues solution of the FH equation. Ob-
viously, if one substitutes ct r=  and n ncP E= , the Feinberg-Horodecki equa-
tion reduces to Schrodinger equation. 

This is obvious from our results, in particular, for the time-dependent Cou-
lomb potential where particles are strongly bound together and so the quantized 
momentum states. We derived this result for the oscillatory Coulomb case as 
well as for the oscillatory Kratzer potential in our recent work [24] and also in 
this work. In short, the energy for Coulomb and Kratzer is bound (negative) 
states and momentum as well. Therefore it is natural to get negative signs for 
momentum states as indicated in other works on FH equation. The time para-
meter has its importance in application of biophysics as it represents growth. It 
is therefore, worth mentioning that the method is elegant and powerful. Our re-
sults can be applied in biophysics and other branches of physics. In this paper, 
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we have applied our result for the Hellmann, screened Kratzer, modified Kratzer, 
screened Coulomb and Coulomb potentials, as special cases of the used potential, 
for quantized momentum eigenvalues. Obviously the momentum states are in-
versely proportional with square of the momentum state of the diatomic mole-
cules. Whereas, from Coulomb case, it is obvious that the momentum eigenvalue 
is proportional to the mass of the diatomic molecules. Therefore, the quantized 
momentum is proportional to the bound state energy of states. 
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